
Counterexample-Guided Bit-Precision Selection?

Shaobo He and Zvonimir Rakamarić

School of Computing, University of Utah
Salt Lake City, UT, USA

{shaobo,zvonimir}@cs.utah.edu

Abstract. Static program verifiers based on satisfiability modulo theo-
ries (SMT) solvers often trade precision for scalability to be able to han-
dle large programs. A popular trade-off is to model bitwise operations,
which are expensive for SMT solving, using uninterpreted functions over
integers. Such an over-approximation improves scalability, but can in-
troduce undesirable false alarms in the presence of bitwise operations
that are common in, for example, low-level systems software. In this pa-
per, we present our approach to diagnose the spurious counterexamples
caused by this trade-off, and leverage the learned information to lazily
and gradually refine the precision of reasoning about bitwise operations
in the whole program. Our main insight is to employ a simple and fast
type analysis to transform both a counterexample and program into their
more precise versions that block the diagnosed spurious counterexample.
We implement our approach in the SMACK software verifier, and eval-
uate it on the benchmark suite from the International Competition on
Software Verification (SV-COMP). The evaluation shows that we signif-
icantly reduce the number of false alarms while maintaining scalability.

1 Introduction

Advances in satisfiability modulo theories (SMT) solving [3] have significantly en-
hanced the potential of program verifiers and checkers to reason about large-scale
software systems. For instance, SLAM [2] has helped developers to find impor-
tant bugs in Windows device drivers. The Linux Driver Verification project [19]
that uses BLAST [13] and CPAchecker [5] has reported a large number of bugs
in Linux drivers. SAGE [12] has been regularly finding security-critical bugs in
large Microsoft applications such as media players.

A major obstacle that still often prevents software developers from adopting
program verifiers is a high rate of false alarms. A recent survey conducted inside
Microsoft shows that most developers are willing to accept only up to 5% false
alarm rate [7], which is much smaller than what most state-of-the-art program
analyzers can achieve. There are several reasons for such low tolerance to false
alarms. First, false alarms can take a long time to triage, therefore significantly
impeding developers’ productivity. Second, trivial false alarms compromise de-
velopers’ confidence in using program verifiers. Finally, if a threshold is set for
reporting alarms, true bugs can be masked in the presence of many false alarms.

? This work was supported in part by NSF award CNS 1527526.

In SMT-based program verifiers, false alarms usually arise from a trade-off
between the efficiency of the underlying theory solvers and complete modeling
of program semantics. For example, low-level programming languages such as C
contain bitwise operations. While the commonly used SMT theory of integers
is scalable, it cannot be used to efficiently and precisely model such program
constructs. Hence, in practice, verifiers often rely on uninterpreted functions over
unbounded integers to over-approximate bitwise operations. This design choice
aims to improve scalability at the expense of occasionally losing precision — it
does not miss bugs, but can introduce false alarms. On the other hand, it is not
difficult for program verifiers to model these behaviors precisely using the theory
of bit-vectors instead of integers. However, scalability suffers since the theory of
bit-vectors is typically much slower. Moreover, manually deciding which theory
to use reduces the usability of program verifiers since users have to determine
the necessity for bit-precision, which may not be obvious even for medium-sized
programs. For example, bit-field manipulations in C typically compile to bitwise
operations. Users of a program verifier that operates on a compiler intermediate
representation (or even binary) may not be aware of such details, and would fail
to enable the theory of bit-vectors even though a verifier maybe supports it.

In this paper, we propose an automatic counterexample-guided abstraction
refinement (CEGAR) [8] approach to gradually on-demand (i.e., lazily) improve
bit-precision of SMT-based verifiers. Our approach is based on the observa-
tion that the precision of only a subset of bitwise operations is relevant for
proving program assertions. Therefore, enabling bit-precision everywhere is an
overkill that degrades scalability. We start with a program that uses uninter-
preted integer functions to model bitwise operations, iteratively convert spurious
bit-imprecise counterexamples to precise ones using type unification, and then
propagate the learned type information to the input program until either the
program verifies or a real counterexample is found. Our goal is to focus on the
bitwise operations that affect the correctness of user provided assertions. Our
main contribution is to employ a simple and fast type analysis to assign precise
bit-vector types to imprecise uninterpreted bitwise operations and propagate the
learned type information throughout the program. We implement our approach
as an extension of the SMACK software verification toolchain [21, 23]. We per-
form an empirical evaluation on benchmarks used in the International Competi-
tion on Software Verification (SV-COMP) [25], and show that it automatically
removes a large proportion of false alarms while maintaining scalability.

2 Background

In this section, we describe the SMACK software verification toolchain and the
simple intermediate verification language that our approach takes as input.

2.1 SMACK Software Verification Toolchain

SMACK is an SMT-based static assertion checker that targets languages com-
pilable to the LLVM intermediate representation (IR) [17]. Currently, SMACK

Fig. 1. SMACK software verification toolchain

mainly targets C programs, and adding support for C++ and Rust is work in
progress. By default, SMACK verifies user-provided assertions up to a selected
loop/recursion bound. SMACK can also automatically generate assertions to
check domain-specific properties such as memory safety and signed integer over-
flows. Fig. 1 shows the SMACK verification toolchain. We first obtain LLVM
IR code (bitcode) of the input program using a specific compiler front-end (e.g.,
clang/clang++ for C/C++). The main SMACK module then translates LLVM
IR into the Boogie intermediate verification language (IVL) [20, 10] by encoding
the semantics of LLVM IR instructions into Boogie. Finally, SMACK integrates
multiple Boogie verifiers, and the generated Boogie program is verified using a
chosen back-end verifier. In this work, we use Corral [16] as the Boogie verifier be-
cause it is scalable and can produce precise error traces; Corral internally invokes
SMT solver Z3 [9]. Although we instantiate our approach using SMACK, Corral,
and Z3, any verifier combination would suffice that operates on a statically-typed
input IVL and produces precise counterexamples.

During the translation, SMACK performs analysis and optimization of the in-
put LLVM IR program to simplify the downstream verification process. One such
analysis is the data structure analysis (DSA) [18] provided by LLVM. SMACK
uses it as a precise alias analysis to split the input program heap into distinct
regions such that pointers referring to two regions can never alias [22]. Each
region is translated into a separate memory map (i.e., array) in the Boogie pro-
gram, which often greatly improves scalability since the number of updates of
each individual map is reduced. In situations where the DSA-based alias analy-
sis is imprecise, typically due to low-level pointer manipulations, smaller number
of memory maps with more updates each are generated — this can lead to a
significant performance penalty as we observe in our empirical evaluation.

By default, SMACK uses Boogie integer type to represent both LLVM pointer
type and integer types with certain bit widths. Bitwise operations are over-
approximated using uninterpreted functions and thus results of such operations
are arbitrary integers. We refer to such a setup that uses the theory of integers as
the integer mode of SMACK. In addition to using imprecise bitwise operations,

Γint ::= int1 | int8 | int16 | int32 | int64

Γbv ::= bv1 | bv8 | bv16 | bv32 | bv64

Γscalar ::= bool | ref | Γint | Γbv

Γ ::= Γscalar | [ref]Γscalar

x ∈ Var

lit ::= true | false | intlit | bvlit

pred ::= == | ! =

binopia ::= add | sub | mul | udiv | sdiv | urem | srem

binopbw ::= and | or | lshr | ashr | shl | xor

binop ::= binopia | binopbw | compop | castop

e ::= x | lit | e1 pred e2 | uop(e) | binop(e1, e2) |
load(x, e1) | store(x, e1, e2)

cmd ::= x := e | assert e | assume e | call x := p(ei)

Fig. 2. Subset of Boogie IVL that SMACK emits. We only show the syntax up to
Boogie commands.

the integer mode does not capture either the wrap-around behavior of unsigned
integer overflows or casts between signed and unsigned numbers, which can re-
sult in both false alarms and missed bugs. We consider this to be an orthogonal
issue that can be handled by, for example, injecting overflow checks into the pro-
gram, and we only consider false alarms resulting from the over-approximation
of bitwise operations. The precision with respect to bitwise operations can be
tuned up by enabling the bit-vector mode of SMACK where LLVM scalar types
are translated to fixed-size bit-vector types in Boogie. However, our experience
in applying SMACK on real-world programs indicates that the bit-vector mode
is much less scalable than the integer mode.

2.2 Simple Intermediate Verification Language

A Boogie program generated by SMACK consists of a set of global variables,
procedures, and functions. Each procedure contains a set of basic blocks, each
of which consists of a series of commands. SMACK translates most LLVM IR
instructions to Boogie commands that are either assignments or procedure calls.
The left-hand side of such an assignment is a variable corresponding to the result
of the instruction while the right-hand side is either another variable or appli-
cation of a Boogie function representing the operation of the instruction. The
syntax of Boogie programs generated by SMACK is shown in Fig. 2. Pointer type
ref is a synonym of integer type int32 or int64 depending on the architecture.
Integer type Γint is a synonym of the Boogie integer type int which is only used

#include "smack.h"
#include <stdlib.h>

typedef struct

{
int x;

} S;

int f(int* p)
{

return *p & 0xf;
}

int main()
{

S* s = (S*) malloc(sizeof(S));
unsigned y = __nondet_int ();

if (__nondet_int ()) {
s->x = foo(&s->x);

}
else {

assume(y < 4U);
y >>= 2U;

}

if (s->x >= 16)
assert (!y);

}

procedure main() returns(r:int32) {
var p0, p1 , p5 , p7: ref;
var i2, i3 , i6 , i8, i11: int32;
var i4, i9: int1;

$bb0:
call p0 := malloc (4);
p1 := bitcast.ref.ref(p0);
call i2 := __nondet_int ();
call i3 := __nondet_int ();
i4 := ne.i32(i3, 0);
goto $bb1 , $bb2;

$bb1:
assume (i4 == 1); p5 := p1;
call i6 := f(p5); p7 := p1;
M.0 := store.i32(M.0, p7, i6);
i8 := i2; goto $bb3;

$bb2:
assume !((i4 == 1));
...
i8 := i11; goto $bb3;
... }

procedure f($p:ref) returns(r:int32) {
var i0, i1: int32;
i0 := load.i32(M.0, $p);
i1 := and.i32(i0, 15);
r := i1; return; }

Fig. 3. C program with bitwise operations and part of its Boogie IVL translation

in the integer mode. Instead, Boogie bit-vector type Γbv only shows up in the
programs generated by SMACK in the bit-vector mode.

SMACK translation decorates each function name with types of its arguments
and result. For example, function add.i32 expects the types of its operands to be
int32 and returns an integer value of the same type. There will be an incarnation
of each binary function (binop) for the integer mode and the bit-vector mode,
respectively. Function add.bv32 is the counterpart of add.i32 in the bit-vector
mode which takes two 32 bit bit-vectors as arguments and returns their sum.
Functions encoding bitwise operations (binopbw) are uninterpreted in the integer
mode while implemented precisely as wrappers to Z3 built-in bit-vector functions
in the bit-vector mode. Fig. 3 shows a C program and a code snippet of its Boogie
IVL translation.

An important feature of Corral that we leverage is that it can generate error
trace programs. An error trace program produced by Corral represents an error
path that starts from the program entry and ends with an assertion failure.
It is a regular Boogie IVL program and follows the syntax defined in Fig. 2.
The main difference from the input program is that procedure bodies in the
error trace program follow a single control flow path. Hence, verifying the error
trace program and its transformation only requires unrolling depth one and is
generally much faster than verifying the entire program.

Function cexg(P):
result, trace = verify(P)
if result ∈ {true, timeout} then

return result
else

if binopbw exists and remains uninterpreted then
trace′, ECt = transform(trace)
result = verify(trace′)
if result ∈ {false, timeout} then

return result, trace′

else
P ′ = update(ECt, P)
return cexg(P ′)

end

else
return result, trace

end

end

end

Fig. 4. Pseudocode of our approach

3 Approach

In this section, we present our counterexample-guided approach to reduce the
number of false alarms due to imprecise modeling of bitwise operations. It is
an iterative algorithm that keeps refining the program to verify based on the
feedback provided by the already refined error trace programs.

Fig. 4 presents the pseudocode of our approach. We define it as a tail-recursive
function cexg which consists of the following steps. First, the Boogie verifier
(function verify) is called to verify the input program P . If the program verifies
or the verification is inconclusive (i.e., timeout), function cexg exits with the
result returned by the verifier. If a bug is reported and the error trace program
representing it is generated, then we check if the error trace program contains
any uninterpreted functions corresponding to bitwise operations. If not, this
counterexample is considered feasible and presented to the user. Otherwise, our
approach transforms the error trace program to a more precise version with
respect to bitwise operations (function transform). Then, the verifier is invoked
to verify it. If the verification result is false or timeout, the error trace is feasible
after the refinement or its feasibility cannot be determined given the time limit.
In both cases, function cexg terminates and returns a more precise error trace or
timeout status, respectively. On the other hand, when the verification succeeds,
we know that the counterexample is spurious. Hence, the input program P is
updated to a new program P ′ using function update, which removes the spurious
counterexample according to the type equivalence classes ECt learned from the
error trace. Finally, function cexg recurs with P ′ being the input program. In
the rest of this section, we describe the transformation function transform and
the update function update in details.

tm-p5 = tm-p1 tm-p7 = tm-p1

tm-p5 = tf-$p tm-i6 = tf-r
tm-i8 = tm-i2 tm-i6 = tM.0-val

tf-i0 = tf-load.i32(M.0,$p)

tf-load.i32(M.0,$p) = tM.0-val

tf-i1 = tf-and.i32(i0,15)

tf-and.i32(i0,15) = tf-i0 = BV

tm-p1, tm-p5, tm-p7, tf-$p
tm-i8, tm-i2

tm-i6, tf-r, tM.0-val, tf-i0, tf-i1
tf-load.i32(M.0,$p), tf-and.i32(i0,15), BV

M.0 : [ref]bv8;
procedure main() returns(r:int32) {

var $i6 : bv32;
...
$bb1:
assume (i4 == 1); p5 := p1;
call i6 := f(p5); p7 := p1;
M.0 := store.bytes .32(M.0, p7, i6);
i8 := i2; goto $bb3;
... }

procedure f($p:ref) returns(r:bv32){
var i0, i1: bv32;
i0 := load.bytes .32(M.0, $p);
i1 := and.bv32(i0 , 15bv32);
r := i1; return; }

Fig. 5. The left part shows the type constraints and solution for block $bb1 of procedure
main and the body of procedure f. Procedure name main is abbreviated as m in the
type variables. Equivalence classes are separated by dotted lines. The right part is the
snippet of the transformed program according to the solution.

3.1 Program Transformation

The transformation implemented by the function transform is based on a simple
type analysis. The basic idea is that a new base type representing bit-vectors
is created and the types of variables or expressions involved in uninterpreted
bitwise operations are assigned to this type. The transformed program returned
by function transform is thus more precise than the input program because any
uninterpreted bitwise operations are replaced with their precise bit-vector coun-
terparts during the transformation. To discover which types should be updated
to bit-vectors, we generate type constraints in terms of equalities and the result
of solving these constraints gives us an over-approximation of such types. Finally,
we simply rewrite the program to install the type updates. Fig. 5 demonstrates
the three phases of transforming an error trace program of the program in Fig. 3
when the condition of the first if statement is true.

Generating Type Constraints Recall that Boogie programs generated by
SMACK leverage integer types of LLVM IR that specify the bit-width of each
type. For the purpose of generating type constraints, two base types are intro-
duced into our type system: integer int and bit-vector bv. The integer bit-width
information contained in the original LLVM IR types is sufficient to rewrite in-
teger subtypes to more precise corresponding bit-vector subtypes. For example,
the type of the local variable i1 of procedure f in Fig. 3 is int32. If the type gets
lifted to bv, we can easily rewrite it as bv32 since its original type name contains
the bit-width of integers that it represents.

Fig. 6 formalizes the rules used to generate type constraints. The basic idea of
type constraint generation is that whenever an uninterpreted bitwise operation
is observed, we change the types of the operands as well as the expression into
bv. On the other hand, we simply equate the types of operands and results

Γ ` binopbw(e1, e2) : t Γ ` e1 : t1 Γ ` e2 : t2

t1 = t2 = t = BV

Γ ` op(
→
ei) : t Γ ` ei : ti

ti = t

Γ ` load(M, e) : t Γ ` M : t1 → t2

t2 = t

P ` x := e Γ ` x : t1 Γ ` e : t2

t1 = t2

Γ ` store(M, e1, e2) : t1 → t2 Γ ` M : t3 → t4 Γ ` e2 : t5

t2 = t4 = t5

Γ ` e1 pred e2 : bool Γ ` e1 : t1 Γ ` e2 : t2

t1 = t2

P ` call x := p(
→
ei) Γ ` ei : tai Γ ` x : t Γ ` p : tpi → tr

tai = tpi t = tr

Fig. 6. Type rules for generating type constraints. We introduce a type variable for
each expression (except literals) and a special type constant BV. Symbol binopbw refers
to uninterpreted integer functions that over-approximate bitwise operations. Symbol
op refers to the union of uop and binop (excluding binopbw) from Fig. 2.

for other operations. For the example in Fig. 3, the types of variable i0 and
expression and.i32(i0, 15) in procedure f are assigned to bv since and.i32 is
an uninterpreted function over integers used to model bitwise AND operation.
On the other hand, the type of variable i3 is just equal to that of the inequality
expression ne.i32(i3, 0) in procedure main.

The type of load expression or the value argument e2 in the store expression
is consistent with the type of the map argument M ’s range. The type of map
domain is forced to be int by not generating type constraints associated with it.
We place such a restriction because we observed that combining the theory of
bit-vectors and theory of arrays is generally slow, especially for the case where
bit-vector types are map domain types. However, we do not restrict the type of
pointers to int. For example, the updated type of variable p7 in Fig. 3 could
be bv. Therefore, an expression of type bv is cast to int during the rewriting
stage when it is used as the pointer argument of load and store expressions. On
the other hand, we do not introduce casts from int to bv for two reasons. First,
integer to bit-vector cast is an extremely expensive operation for Z3. Second,
the input integer value of such a cast must be constrained since the resulting
bit-vector has only a finite set of values, thereby increasing the complexity of
modeling and reasoning about the program. The cast operations castop in Fig. 2
include functions representing LLVM cast instructions (e.g., zext, trunc, ptrtoint).
We keep the source type and the destination type as the same base type and thus
equate them. The same rule also applies to the comparison operations compop
in our language that correspond to LLVM comparison instructions.

Solving Type Constraints Since all the type constraints generated are equiv-
alence relations, we use a simple unification algorithm that unifies constraints
and produces a number of disjoint sets that consist of type variables that are
equivalent. We call these sets equivalence classes, and all type variables in an
equivalence class have the same base type. If an equivalence class contains BV,
then all the type variables in this class have type bv. On the other hand, a vari-
able or expression keeps its original type if BV is not in the equivalence class
where its type variable is.

Rewriting Programs Once the generated type constraints are solved, we re-
cursively rewrite the input program based on the computed solution. The de-
clared types of variables are changed to fixed-size bit-vector types if their corre-
sponding identifier expressions have base type bv. For map variables, only their
range types can be lifted. Integer constants are simply replaced with their bit-
vector counterparts if the expressions where they are used have type bv.

For function applications, recall that there is an integer version and a bit-
vector version for each function in the Boogie program generated by SMACK.
Therefore, we simply replace the integer version with the bit-vector version if
the type is decided to be bv and recur to its arguments. Since we would like to
keep the type of map domains as integer, casts from bv to int (implemented as
Z3 built-in function bv2int) are added to expressions which have type bv and are
used to index maps. For this reason, the pointer argument of functions load and
store may be encapsulated with function bv2int.

Note that the concrete type of a load expression or the value argument of
a store expression can be different from the range type of the map passed as
the first argument, although their base types are the same. For example, the
type of expression load.i32(M.0, $p) in Fig. 3 is int32 while the type of M.0

is [ref]int8. This often happens when the alias analysis employed by SMACK
is imprecise and results in a large number of multi-type accesses to a single
map. The range type of such map is int8, which indicates that type unsafe
accesses may occur and thus accesses should be byte-level. In the integer mode,
we assume that elements stored in a map do not overlap. Functions load and store
are just wrappers around map selection and update expressions, respectively.
For example, the body of function load.i32(M, p) in Fig. 3 is simply M[p].
If the range types of such maps get updated to bv, then all the accesses (load
and store) are rewritten to byte-level versions that use bit-vector extraction and
concatenation operations. For example, the body of function load.bytes.32(M,

p) in Fig. 5 is M[p + 3] + +M[p + 2] + +M[p + 1] + +M[p], where ++ is the bit-
vector concatenation operator. For the case where a map holds only elements of
a single type, map accesses are simply replaced with their bit-vector counterparts
that are also wrappers around the map selection or update expressions.

3.2 Program Update

If the precise error trace program trace′ verifies (see Fig. 4), we know that over-
approximation of bitwise operations produces a spurious counterexample and

updating the types of relevant variables invalidates it. Then, as a simple so-
lution to prevent such spurious counterexamples, it is sufficient to enable the
bit-vector mode. However, we observed that such approach severely limits scal-
ability. Instead, rather than changing the bit-precision of the whole program,
we perform a restricted transformation of parts of P (implemented as function
update) such that it only prevents the error trace represented by trace from
reappearing. Such a transformation contains all the type updates performed on
trace that are necessary to block the spurious counterexample. On the other
hand, we do not change the precision of bitwise operations that are not related
to the trace expressions whose types get changed to bit-vectors. Therefore, our
approach has the potential to outperform the bit-vector mode of SMACK or
even applying the transformation described in Sec. 3.1 to the entire program.

Function update first generates and solves the type constraints of the en-
tire program to obtain equivalence classes ECp. Then, it propagates the type
constraint solution of trace, ECt to ECp and thereafter rewrites P . The type
constraints of the whole program P are generated slightly differently than of
the error trace program trace. Recall that for the type constraint generation of
trace, types of an uninterpreted bitwise operation and its operands are equated
to each other and to the type constant BV, according to the first rule in Fig. 6.
In contrast, if an uninterpreted bitwise operation is encountered during the type
constraint generation of the whole program, types of this expression and its ar-
guments are only equated.1 Hence, the type constraint solution for the whole
program does not contain BV and only indicates which expressions have the
same base type.

Propagating the type updates of trace to P works as follows: for each equiv-
alence class ecp ∈ ECp of the whole program, if it intersects with an equivalence
class ect ∈ ECt of the error trace program and BV ∈ ect, then BV is added to
ecp. We show next that the propagation ensures the type updates from int to
bv in trace are also contained in P . Note that for a type variable tv, if tv ∈ ecp

of P and tv ∈ ect of trace then ect ⊆ ecp. The type constraints generated for
the whole program subsume those produced for any error trace programs be-
cause the sequence of commands in error trace programs is always a subset of
the commands in the whole program. Therefore, to solve the type constraints
of the whole program, our unification algorithm could unify type variables that
belong to both the entire program and the error trace program, resulting in the
same set of equivalence classes. Then, we start with these equivalence classes
and continue the unification algorithm, which either expands a class or merges
two classes. Both operations produce an equivalence class that is a super set of
the original one. Hence, lifted types in the scope of the entire program include
those in the scope of an error trace program.

Invoking the verifier on the updated program P ′ cannot produce trace again.
If it would, then the new error trace program trace′′ would have all the necessary

1 The solution to the type constraints of the whole program is the same for each
iteration of function cexg and can thus be cached. To simplify the presentation, we
recompute it in the paper at each iteration.

types being bv since P ′ already contains the type updates of trace, and trace′′

would verify just as trace′ does. Moreover, function update updates at least
several types in P in each iteration of cexg, which ensures that our iterative
approach makes progress. Assume that in iteration i of cexg, update is called if
there are uninterpreted bitwise operations in the error trace program tracei that
cause the counterexample to be spurious. In iteration i + 1, if update is invoked
again it improves the precision of some other uninterpreted bitwise operations
since those in tracei and all previous iterations are already precisely modeled. In
other words, the number of iterations of our approach is bounded by the number
of uninterpreted bitwise operations in the input program, which contributes to
the termination guarantee of our approach formalized by the following theorem.

Theorem 1. Function cexg in Fig. 4 terminates if function verify terminates.

Proof. If each invocation of the verifier finishes or exceeds the time limit, then
the only potentially non-terminating path in cexg is to recur, which calls function
update. Each time update is called, at least one uninterpreted bitwise operation
becomes precisely modeled. Since there is only a finite number of uninterpreted
bitwise operations in the input program, the number of calls to update as well
as cexg is also finite.

4 Empirical Evaluation

We empirically evaluate our approach using benchmarks from SV-COMP [25],
which contain several categories representing different aspects of software sys-
tems. We leverage BenchExec [6] as the core of our benchmarking infrastructure
for reliable and precise performance measurements. Experiments are performed
on machines with two Intel Xeon E5-2630 processors and 64 GB DDR4 RAM
running Ubuntu 14.04, which are a part of the Emulab infrastructure [26, 11].
As in SV-COMP, we set time limit to 900 seconds and memory limit to 15
GB for each benchmark. We implemented functions transform and update of our
approach as a standalone tool, which we invoke from the SMACK toolchain.2

We created 4 different configurations of SMACK: baseline, nobv, allbv, and
cexg. Configuration baseline corresponds to the SMACK baseline version (re-
lease v1.8.1) that uses heuristics for SV-COMP; the baseline has been carefully
optimized for SV-COMP benchmarks using manually crafted filters that iden-
tify benchmarks that require bit-precise reasoning, and subsequently enabling
the theory of bit-vectors on such benchmarks. Configuration nobv uses impre-
cise reasoning in the theory of integers (i.e., bitwise operations are encoded as
uninterpreted functions), while configuration allbv uses precise reasoning in the
theory of bit-vectors. Configuration cexg implements our counterexample-guided
bit-precision selection approach. Whenever the theory of bit-vectors is used, we
tune Corral by enabling several well-known options that improve its performance

2 We made the tool publicly available at https://github.com/shaobo-he/

TraceTransformer.

in the presence of bit-vectors. We run every configuration on all SV-COMP
benchmarks3 except categories ReachSafety-Float, ConcurrencySafety-
Main, MemSafety-LinkedLists, and Termination .4

4.1 Used Metrics

We measure the performance of each configuration using the SV-COMP scoring
schema, which assigns scores to verification results as follows:

a) +2 when the verifier correctly verifies a program,
b) +1 when it reports a true bug,
c) −32 when the verifier misses a bug,
d) −16 when it reports a false bug (i.e., false alarm), and
e) 0 when the verifier either times out or crashes.

We calculate the weighted score of a meta-category (e.g., ReachSafety) by
again following the SV-COMP rules: normalized score of each subcategory is
summed up and multiplied with the average number of benchmarks in that
category.

Since a verifier is severely punished for reporting incorrect results, we add
correct result ratio as an additional metric to complement the weighted score.
We define it as the average percentage of correctly labeled verification tasks of
all subcategories in a (meta-)category. We introduce the timeout ratio and false
alarm ratio metrics to measure the scalability and precision of the configurations,
respectively. Similar to the correct result ratio, the timeout ratio is the weighted
percentage of timeouts in a category, while the false alarm ratio is the weighted
percentage of false alarms.

We use score-based quantile functions [4] to visualize the overall performance
of a configuration. Fig. 7 shows an example of such functions for subcategory
ReachSafety-BitVectors. The horizontal axis x represents the accumulated
score of n fastest correct verification tasks and all of those incorrectly labeled
as false. Therefore, the x coordinate of the leftmost point is the number of all
false alarms multiplied by −16 and of the rightmost point is the total score. The
vertical axis y is the largest runtime of n fastest correct verification tasks.

4.2 Results

Table 1 shows the performance of each configuration over all the used metrics.
As expected, configuration baseline yields the best performance overall in terms

3 Benchmark sleep true-no-overflow false-valid-deref.i from category Sys-
tems BusyBox Overflows is removed because an invalid dereference leads to a
signed integer overflow error, which is not specified by the SV-COMP rules.

4 Bit-vector mode must always be enabled for reasoning about floating-points, and it
is also not consistent with SMACK’s support for Pthreads. Our tool currently does
not fully support SMACK’s encoding of memory safety properties. Finally, SMACK
currently cannot verify termination.

Table 1. Experimental results for all the SV-COMP categories of interest

Category
Weighted Score Timeout Ratio

baseline nobv allbv cexg baseline nobv allbv cexg

ReachSafety 3498 1155 2905 2675 16.6 17.5 29.5 17.7

MemSafety 375 321 179 375 10.9 10.9 57.6 10.9

Overflows 472 141 450 469 4.2 4.2 7.7 4.2

SoftwareSystems 2731 2133 503 2529 46.2 41.8 85.1 44.0

Category
Correct Result Ratio False Alarm Ratio

baseline nobv allbv cexg baseline nobv allbv cexg

ReachSafety 81.2 76.3 66.8 79.2 0.00 3.33 0.00 0.22

MemSafety 88.6 87.5 42.2 88.6 0.00 1.10 0.00 0.00

Overflows 92.3 85.8 91.7 91.4 0.00 5.56 0.00 0.00

SoftwareSystems 50.2 54.6 8.8 53.4 0.04 1.79 0.00 0.85

of both scalability and precision since it has been manually fine-tuned over the
years on these benchmarks. It has the highest weighted score for all the top-
level categories and it solved the largest weighted percentage of benchmarks
correctly in 3 out of the 4 categories total. Configuration nobv times out the
least, but it also produces the largest number of false alarms. Note that the
scoring system is crafted to mimic users’ disfavor of false alarms by deducting a
large number of points (16) when a false alarm is generated. Therefore, although
nobv managed to correctly solve the largest percentage of benchmarks in the
SoftwareSystems category, its score is less than both baseline and cexg as a
result of its high false alarm rate. In contrast, configuration allbv does not gen-
erate any false alarms, but at the expense of solving the smallest percentage of
verification tasks — in particular in the SoftwareSystems category that con-
tains benchmarks from real-world large software systems such as Linux drivers.
Moreover, allbv also times out much more frequently than other configurations
in the MemorySafety category with mostly small or medium benchmarks.
Hence, we conclude that always using the theory of bit-vectors is not practical
on real-world benchmarks. Configuration cexg, which implements our approach,
successfully eliminates most of the false alarms seen in nobv without placing a
significant burden on scalability.

We focus next on the results for benchmarks that could actually benefit
from our approach, meaning those benchmarks where uninterpreted functions
appear in counterexamples. (Note that our approach has basically no influ-
ence on other benchmarks.) For each of these benchmarks, our approach ei-
ther produces a correct result or it times out (on the transformed error trace
program or the updated version of the whole program). Table 2 shows the ex-
perimental data we gathered for subcategories that contain such benchmarks.
The results show that our approach outperforms configurations nobv and allbv
in terms of precision and scalability, respectively. It avoids all the false bugs
reported by nobv and times out less than allbv. In general, our approach does

Table 2. Experimental results for benchmarks that could potentially benefit from
our approach. #B is the total number of such benchmarks; #TOC is the number of
timeouts in cexg ; #TET is the number of true (i.e., confirmed) error traces; #FET
is the number of false (i.e., infeasible) error traces discovered by our approach; #RR
is the average runtime ratio between our approach and baseline; #FAN is the num-
ber of false alarms in nobv ; #TOA is the number of timeouts in allbv. R, M, and
O in the first column stand for categories ReachSafety, MemSafety, and Over-
flows, respectively. The meta-category prefix (Systems) is omitted for subcategories
DeviceDriverLinux64 and BusyBox Overflows.

Subcategory #B #TOC #TET #FET #RR #FAN #TOA

R-BitVectors 20 0 4 16 1.5 14 1

R-ControlFlow 21 2 19 0 3.6 0 21

R-Loops 2 0 1 1 4.4 0 1

M-Heap 8 0 1 7 1.8 6 0

O-Other 6 0 0 6 2.3 6 0

DeviceDriversLinux64 136 111 22 18 11.6 3 133

BusyBox Overflows 1 1 0 1 — 1 1

not place a significant runtime overhead on the verification tasks such that the
time limit is exceeded. However, as the complexity of benchmarks increases,
and especially when they become memory-intensive (i.e., containing numerous
reads and writes from dynamically allocated memory), our approach may not
scale well. Benchmarks in the two subcategories with high runtime overhead,
ReachSafety-ControlFlow and DeviceDriversLinux64, contain many
more memory accesses than those in the other subcategories in Table 2. Never-
theless, our approach still outperforms allbv on these subcategories. Moreover,
for subcategory DeviceDriversLinux64 where error traces are usually long
and tedious to debug, it successfully rejected 18 spurious counterexamples, 2 of
which lead to more precise ones.

4.3 Discussion

We identify memory accesses as the main culprit that sometimes limits the
scalability of our approach because type updates are much less contained in
their presence. The range type of a memory map is updated to bit-vector if it
is involved in a bitwise operation in an error trace, thereby changing the types
of all the elements in this map to bit-vectors. This leads to large parts of the
program being unnecessarily converted into using the more expensive theory
of bit-vectors. Moreover, the imprecision of the alias analysis used for memory
splitting can also cause the types of pointer variables to be changed to bit-vectors
even though they are not involved in any bitwise operations (due to false aliasing
with an integer variable that is involved in a bitwise operation). In this case, we
add expensive type cast operations to load and store expressions. Finally, bit-
vector extraction and concatenation operations are needed for byte-level accesses
to maps containing elements of different types. We conjecture that improving

Fig. 7. Quantile functions for subcategory ReachSafety-BitVectors for configura-
tions baseline and cexg. The vertical axis uses a logarithmic scale.

the precision of the alias analysis used in memory splitting would result in better
scalability of our approach, but this is beyond the scope of this paper.

Another issue that can limit the scalability of our approach is that the type
constraint generation can lead to overly aggressive type changes since all the
uninterpreted functions in an error trace are considered, some of which may not
affect the correctness of program assertions. Although optimizations are possible
as discussed in Sec. 6, the current setup suffices to give correct diagnose when
a false alarm arises as a result of over-approximations of bitwise operations.
Furthermore, the type analysis is context-insensitive which can also be optimized
(e.g., by forking stateless procedures). In the rest of this section, we present two
detailed case studies that highlight the strengths and limitations of our approach.

ReachSafety-BitVectors Subcategory ReachSafety-BitVectors contains
benchmarks that require precise modeling of bitwise operations and unsigned in-
tegers (e.g., to model the wrap-around behavior of unsigned integer overflows).
Therefore, configuration nobv yields a high false alarm rate on this subcategory,
reporting 15 false alarms out of 50 verification tasks in total. Moreover, even for
the buggy benchmarks the produced error traces are likely to be infeasible. On
the other hand, our approach removed 14 of these false alarms. (The only false
alarm that is not removed by our approach is due to lack of precise modeling
of casts between signed and unsigned integers.) In addition, it also discovered 2
infeasible error traces due to the imprecise modeling of bitwise operations, and
it automatically refined them into their precise counterparts. With respect to
scalability, our approach did not cause any verification tasks to time out and it
also placed little run time overhead as demonstrated by Table. 2. It even outper-

formed the baseline version on some benchmarks. Fig. 7 presents the quantile
functions of cexg and baseline, and we can observe that the two are close in terms
of performance and scalability. We find these results to be particularly encour-
aging because our approach completely automatically achieves almost the same
level of precision and performance as the highly-optimized (albeit manually)
baseline version.

SoftwareSystems This category includes large and complicated real-world
benchmarks, and hence the results obtained by our approach are mixed.

BusyBox Benchmarks Benchmarks ported from the BusyBox 1.22.0 Linux util-
ities are checked for memory safety and signed integer overflows in the Sys-
tems BusyBox MemSafety and Systems BusyBox Overflows subcate-
gories, respectively. Our approach outscored the baseline version in subcategory
Systems BusyBox Overflows by proving 4 more benchmarks while report-
ing zero false alarms. In System BusyBox MemSafety, although the baseline
version outscores our approach, we still report one more correct result. The only
remaining false alarm we report is not due to bitwise operations, and is thus out
of scope of this work. The SMACK baseline version is not as fine-tuned on the
BusyBox benchmarks as it is on the benchmarks from other categories. Hence,
the fact that our approach correctly solves more benchmarks proves its poten-
tial to enable automatic bit-precision selection that has better performance than
manually deciding bit-precision.

Linux Drivers The subcategory Systems DeviceDriversLinux64 contains
large benchmarks extracted from Linux drivers. This category pushes our ap-
proach to the limits of its scalability: only 39.4% of the benchmarks that the
baseline version correctly reported as false is also correctly reported by our ap-
proach, while 81.6% of the benchmarks times out when Corral is invoked on
either the transformed error trace programs or updated input programs. Several
reasons contribute to such poor scalability of our approach on this subcate-
gory. First, these benchmarks contain numerous bit-level manipulations over the
driver flags that are often defined as C bit-fields, and some even employ bit-
wise operations in pointer arithmetic. Second, the benchmarks are pointer- and
memory-intensive due to the heavy usage of the Linux kernel data structures.
Finally, the alias analysis used in memory splitting loses precision more in this
subcategory than in the other (sub-)categories, likely due to the existence of
external calls and inline assembly.

5 Related Work

The Boogie-to-Boogie transformation used in our approach was inspired by Mi-
crosoft’s Static Driver Verifier (SDV) [15], which also leverages type analysis to
re-type the program and generate a mixed integer and bit-vector program which
may precisely model the semantics of bitwise operations. However, SDV eagerly

lifts the types of the whole program while our approach lazily updates them
based on the feedback obtained from error trace programs. SDV’s memory model
as well as rare appearance of bitwise operations in the SDV’s benchmark suite
makes type changes fairly controlled even at the level of the entire programs. On
the other hand, even though in our approach the transformation function can
be applied to the whole program, verification of the transformed program does
not scale on our more complex benchmarks. The proposed selective type up-
dates guided by counterexamples allow us to alleviate this limitation. Moreover,
the transformation used in our approach is guaranteed to improve the precision
of modeling bitwise operations whereas SDV’s may not because it restricts the
types of certain expressions as integers in order to maintain scalability.

Our approach is also similar to the framework of counterexample-guided ab-
straction refinement (CEGAR) [8] used in SLAM [2]. Both systems validate the
counterexamples produced in the verification process and leverage them to refine
the input program. They are different in two aspects. First, the root cause of
the spurious witness traces in SLAM is the predicate abstraction on the input
program while for this paper it is using uninterpreted functions over integers to
model bitwise operations. Second, although CEGAR guarantees progress, it does
not necessarily terminate since the input program may contain infinite states. In
contrast, the number of iterations in our approach is bounded by that of bitwise
operations and thus it eventually terminates given that the verifier terminates
when invoked. Furthermore, our approach also guarantees to make progresses in
each iteration as discussed in Sec. 3.2.

Others have explored the idea of counterexample-guided abstraction refine-
ment as well. For example, Lahiri et al. [14] present a greedy CEGAR technique
that is used to refine memory maps of a program. Babić et al. [1] introduce
a technique called structural abstraction that iteratively refines a program by
analyzing counterexamples and replacing uninterpreted functions with inlined
procedures. CAMPY [24] tackles the problem of verifying if a program satisfies
a complexity bound expressed in undecidable non-linear theories by selectively
inferring necessary axioms in terms of grounded theorems of such non-linear the-
ories and fitting them into decidable theories. This framework could potentially
be used as an alternative method to refine the uninterpreted functions that over-
approximate bitwise operations. However, for certain programs, especially those
in the ReachSafety-BitVectors subcategory of the SV-COMP benchmark
suite, simple axioms over integers and uninterpreted functions are usually not
expressive enough to complete the proofs, while complex axioms (e.g., enumera-
tions of input-output mappings of bit-vector functions) may significantly reduce
the performance.

6 Conclusions and Future Work

Based on our experience with performing software verification on real-world
low-level programs, we identified the need for precise reasoning about bitwise
operations as an important issue that is crippling many contemporary software

verifiers. On one end of the spectrum, verifiers opt for exclusively bit-precise rea-
soning, which often becomes a performance and/or scalability bottleneck. On the
other end, verifiers opt for imprecise modeling using integers and uninterpreted
functions, which often leads to a large number of false alarms. We propose an ap-
proach that attempts to strike a balance between the two extremes — it starts
with imprecise modeling and gradually increases precision on-demand driven
by spurious counterexamples. We implemented the approach by leveraging the
SMACK toolchain, and performed an extensive empirical evaluation on the SV-
COMP benchmarks. Our results show that it reduces the number of false alarms
while maintaining scalability, which makes it competitive with a highly manually
optimized baseline on small- to medium-size benchmarks.

As future work, we would like to improve the scalability of our approach on
large-scale memory-intensive benchmarks by exploring two possible directions.
The first direction is to refine the memory model such that the type updates
are more controlled. For example, we could leverage the strict aliasing rules of
C/C++ to further split memory regions (maps) by element types since aliasing
of pointers pointing to elements with different types is undefined behavior. In
this way, we could probably avoid the case where pointers become bit-vectors due
to the overly conservative alias analysis. The second direction is to increase the
granularity of the refinement. Currently, all the uninterpreted bitwise operations
in an error trace program are considered, while in fact some of them may not
contribute to the false alarm. Therefore, we could greedily start from one of the
uninterpreted bitwise operations and perform the transformation, while leaving
the others as uninterpreted. If the false alarm disappears, we propagate the type
updates caused by only a subset of the uninterpreted bitwise operations in the
error trace program. As an alternative to this greedy technique, we could analyze
the model returned by Z3 to identify relevant bitwise operations.

References

1. Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Proceedings of the International Conference on Computer Aided Verification
(CAV). pp. 371–383 (2007)

2. Ball, T., Bounimova, E., Kumar, R., Levin, V.: SLAM2: Static driver verification
with under 4% false alarms. In: Proceedings of the Conference on Formal Methods
in Computer-Aided Design (FMCAD). pp. 35–42 (2010)

3. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, chap. 26, pp. 825–885. IOS Press (2009)

4. Beyer, D.: Second competition on software verification. In: Proceedings of the In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). pp. 594–609 (2013)

5. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: Proceedings of the International Conference on Computer Aided Veri-
fication (CAV). pp. 184–190 (2011)

6. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In:
Proceedings of the International Symposium on Model Checking Software (SPIN).
pp. 160–178 (2015)

7. Christakis, M., Bird, C.: What developers want and need from program analysis:
An empirical study. In: Proceedings of the International Conference on Automated
Software Engineering (ASE). pp. 332–343 (2016)

8. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement. In: Proceedings of the International Conference on Computer
Aided Verification (CAV). pp. 154–169 (2000)

9. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Proceedings of the In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). pp. 337–340 (2008)

10. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. Rep. MSR-TR-2005-70, Microsoft Research (2005)

11. Emulab network emulation testbed. http://www.emulab.net
12. Godefroid, P., Levin, M.Y., Molnar, D.: Automated whitebox fuzz testing. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS).
pp. 151–166 (2008)

13. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: Pro-
ceedings of the Symposium on Principles of Programming Languages (POPL). pp.
58–70 (2002)

14. Lahiri, S.K., Qadeer, S., Rakamarić, Z.: Static and precise detection of concurrency
errors in systems code using SMT solvers. In: Proceedings of the International
Conference on Computer Aided Verification (CAV). pp. 509–524 (2009)

15. Lal, A., Qadeer, S.: Powering the Static Driver Verifier using Corral. In: Pro-
ceedings of the International Symposium on Foundations of Software Engineering
(FSE). pp. 202–212 (2014)

16. Lal, A., Qadeer, S., Lahiri, S.: Corral: A solver for reachability modulo theories.
In: Proceedings of the International Conference on Computer Aided Verification
(CAV) (2012)

17. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization (CGO). pp. 75–86 (2004)

18. Lattner, C., Lenharth, A., Adve, V.: Making context-sensitive points-to analysis
with heap cloning practical for the real world. In: Proceedings of the Conference on
Programming Language Design and Implementation (PLDI). pp. 278–289 (2007)

19. Linux driver verification project. https://forge.ispras.ru/projects/ldv
20. Leino, K.R.M.: This is Boogie 2 (2008)
21. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from veri-

fier implementations. In: Proceedings of the International Conference on Computer
Aided Verification (CAV). pp. 106–113 (2014)

22. Rakamarić, Z., Hu, A.J.: A scalable memory model for low-level code. In: Proceed-
ings of the International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI 2009). pp. 290–304 (2009)

23. SMACK software verifier and verification toolchain. http://smackers.github.io
24. Srikanth, A., Sahin, B., Harris, W.R.: Complexity verification using guided theorem

enumeration. In: Proceedings of the Symposium on Principles of Programming
Languages (POPL). pp. 639–652 (2017)

25. International competition on software verification (SV-COMP). https://sv-comp.
sosy-lab.org

26. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. SIGOPS Oper. Syst. Rev. 36(SI), 255–270 (2002)

