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Abstract. A major obstacle to putting software verification research
into practice is the high cost of developing the infrastructure enabling
the application of verification algorithms to actual production code, in
all of its complexity. Handling an entire programming language is a huge
endeavor that few researchers are willing to undertake; even fewer could
invest the effort to implement a verification algorithm for many source
languages. To decouple the implementations of verification algorithms
from the details of source languages, and enable rapid prototyping on
production code, we have developed SMACK. At its core, SMACK is a
translator from the LLVM intermediate representation (IR) into the Boo-
gie intermediate verification language (IVL). Sourcing LLVM exploits an
increasing number of compiler front ends, optimizations, and analyses.
Targeting Boogie exploits a canonical platform which simplifies the im-
plementation of algorithms for verification, model checking, and abstract
interpretation. Our initial experience in verifying C-language programs is
encouraging: SMACK is competitive in SV-COMP benchmarks, is able
to translate large programs (100 KLOC), and is being used in several
verification research prototypes.

1 Introduction

A major obstacle to putting software verification research into practice is the
high cost of developing the infrastructure enabling the application of verification
algorithms to actual production code, in all of its complexity. Each high-level
programming language brings a diverse assortment of statements and expressions
with varying semantics. Handling an entire language is a huge effort which few
researchers are willing to undertake; even fewer could invest the effort required
to implement their verification algorithms for multiple source languages.

To address this problem, we introduce SMACK: a translator from the LLVM
compiler’s popular intermediate representation (IR) [27,24] into the Boogie in-
termediate verification language (IVL) [19,26]. SMACK’s primary function is to
precisely and efficiently translate the rich set of LLVM-IR features, including dy-
namic memory allocation and pointer arithmetic, to the comparatively-simple
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Boogie IVL, which does not include such features. SMACK thus promotes the
development of verification algorithms on simple IVLs, effectively decoupling the
implementations of verification algorithms from the details of source languages,
and enabling rapid prototyping on production code. Sourcing LLVM IR exploits
a rapidly-growing frontier of LLVM frontends, encompassing a diverse set of lan-
guages including C/C++, Java, Haskell, Erlang, Python, Ruby, Ada, and For-
tran. In addition, SMACK benefits from code simplifications made by LLVM’s
optimizer, including constant propagation and dead-code elimination, as well as
readily-available analyses, including LLVM’s pointer analyses. Targeting Boogie
IVL exploits a canonical platform which simplifies the implementation of verifi-
cation algorithms due to Boogie’s minimal syntax and mathematically-focused
expression language, which is easily rendered into the satisfiability modulo theo-
ries (SMT) format of automated theorem provers [6]. By embracing Boogie IVL
as a canonical program representation, SMACK not only simplifies the devel-
opment of program verification technology, but also fosters the development of
interoperable technology in which verification backends can be easily swapped.

Our initial experience in verifying C-language programs with SMACK, us-
ing Microsoft Research’s Boogie and Corral [23] as backends, is encouraging.
SMACK has eased the development of our research prototypes by enabling IVL-
level, rather than C-level or LLVM-level, implementations. In doing so, it appears
that our approach does not significantly compromise performance, as SMACK
(with Boogie and Corral backends) is competitive on SV-COMP [33] bench-
marks. Furthermore, SMACK translates large, full-featured programs — includ-
ing the entire Contiki operating system [15], at around 100 KLOC of C code
— and has been used on intricate implementations which make extensive use of
features such as dynamic memory allocation.

While our experience with SMACK has thus far been centered on SMT-
based bounded verification, i.e., validation of program assertions up to recursion-
depth and loop-unroll bounds, our prior experience [10,30] suggests that SMACK
can also be applied straightforwardly to deductive verification, i.e., validation of
assertions in programs adequately annotated with loop invariants and proce-
dure pre- and post-conditions. While in theory SMACK is equally applicable
for fully automatic unbounded verification methods (e.g., based on computing
fixed points), in practice such applications may require powerful reasoning en-
gines capable of generating quantified invariants over the unbounded maps which
SMACK uses to model dynamically-allocated memory; it remains to be seen
whether such applications are feasible.

SMACK is an open source project available on GitHub3 implemented in
roughly 4K lines of C++ code, and is integrated into the rise4fun website.4

Currently, SMACK is supported on Linux, OSX, and Windows, and is used in
several projects, including Microsoft Research’s Q program verifier.5

3 http://github.com/smackers/smack
4 http://rise4fun.com/SMACK
5 http://research.microsoft.com/en-us/projects/verifierq
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Fig. 1. Design of the SMACK modular software verification ecosystem.

Related Work. Automatic verification using automated theorem provers, and in
particular SMT solvers, is an active area of research. Many tools are available
with various capabilities, features, and trade-offs, including Caduceus [21], Ca-
lysto [4], Cascade [34], CBMC [13], CPAchecker [7], ESBMC [16], Frama-C [17],
GraVy [2], HAVOC [10], Joogie [3], KLEE [9], LLBMC [28], SATABS [12], Sym-
bolic PathFinder [29], TASS [32], UFO [1], and VCC [14]. Our SMACK effort
stands alone, since none of these tools combine the language independence of
leveraging a popular IR with the ease of implementation provided by IVLs.
Furthermore, SMACK has been designed to accommodate a diverse set of ex-
tensions, from supporting new source language features to generating alternate
IVL encodings.

2 Translation from LLVM IR to Boogie IVL

We have developed SMACK as one essential component of the software verifi-
cation ecosystem depicted in Fig. 1. Currently, the other components include
the Clang compiler [11], the LLVM compiler infrastructure [27,24], and the Boo-
gie [19,26] and Corral [23] verification engines. Beginning from a program written
in C/C++, we use Clang to emit LLVM bitcode in an intermediate representa-
tion (IR) used by LLVM. LLVM IR is a typed, static single assignment (SSA),
and platform-independent assembly language, and an ideal representation for
LLVM’s code optimizer/analyzer.

Following LLVM code optimizations, such as constant propagation and dead-
code elimination, SMACK translates LLVM bitcode to code in Boogie’s inter-
mediate verification language (IVL). Boogie IVL is typed, imperative, and pro-
cedural, includes a rich mathematical expression language, and is an ideal repre-
sentation for program verifiers. The Boogie programs which SMACK generates
are essentially control-flow graphs with very few statements — they have goto,
assignment, procedure call & return, and assume/assert statements — which
manipulate global and procedure-local variables over very few types — only
integers and maps from integers to integers. For the most part, SMACK’s trans-
lation is tight, in the sense that LLVM data and instructions correspond closely



to Boogie data and instructions, modulo representing fixed-width integers with
mathematical integers.6

While there are many syntactic differences between LLVM IR and Boogie
IVL, a key fundamental difference which SMACK addresses is memory repre-
sentation: while LLVM IR performs dynamic allocation on the memory heap,
programs in Boogie IVL have only a fixed number of global variables, albeit
over unbounded types including mathematical integers and maps (i.e., arrays).
Although in theory the entire heap could be represented with one single map,
experience indicates that this strategy is not efficient; a verifier which represents
map-type variables with array-theory expressions would suffer as the map is up-
dated across many addresses. Instead, SMACK uses static analyses in LLVM to
infer a set of memory regions which are disjoint, in the sense that two distinct
regions are never accessed by the same program expression; each region of the
heap is then given its own map, and each heap access translates to an expression
using the accessed region’s map [31]. SMACK’s modular design facilitates the
implementation of alternate memory models by, for example, redefining: (1) the
Boogie-code implementations of malloc and free to describe alternate allocation
policies (which does not require recompiling SMACK), or (2) the translation
of load and store operations to model heap accesses at byte-sized granularity
(currently requires recompilation).

SMACK passes the resulting Boogie-IVL program to either the Boogie or
Corral verifier; both function by generating verification conditions [5] which are
discharged using satisfiability modulo theories (SMT) solvers, such as Z3 [18].

3 An Example Translation

We illustrate our verification workflow step-by-step on the program listed in
Fig. 2. The C program (top left) is first compiled with Clang into the LLVM
IR program shown on the right. In the process, calls to malloc in C are com-
piled into the respective invocations in the LLVM IR. Structure field accesses
are compiled into a combination of getelementptr and load/store instructions,
where getelementptr performs the structure field address computation that is
subsequently accessed using load/store. Note that while the LLVM IR is a simple
representation, it does include dynamic memory allocation, pointer arithmetic,
and complex data types — none of which are included in the Boogie IVL.

From the LLVM IR program, SMACK generates the Boogie IVL program
by leveraging LLVM’s static data structure analysis (DSA) [25] to split memory
into a set of disjoint regions so that pointers to two distinct regions can never
alias [31]. Each such region is then statically assigned its own map, and each
memory access translates to an expression using the accessed region’s map. In
Fig. 2, based on the fact that DSA accurately reported that LLVM IR pointer
variables %5 and {%6, %7} cannot alias, SMACK statically introduced memory

6 While our current implementation uses unbounded integers and maps thereof, in
principle we could also use bit-vectors to model, e.g., 32-bit integers precisely.



// original C code
typedef struct { int f; int g; } S;

void main() {
S *x = malloc(sizeof(S));
S *y = malloc(sizeof(S));
x->f = 1;
y->f = 2;
y->g = 3;
assert(x->f == 1);

}

// Boogie IVL code from SMACK
var $M.0, $M.1: [int] int;

procedure main() {
var $p, $p1, $p2, .., $p6: int;

$bb0:
call $p := $malloc(8);
call $p1 := $malloc(8);
$p2 := $pa($pa($p, 0, 8), 0, 1);
$M.0[$p2] := 1;
$p3 := $pa($pa($p1, 0, 8), 0, 1);
$M.1[$p3] := 2;
$p4 := $pa($pa($p1, 0, 8), 4, 1);
$M.1[$p4] := 3;
$p5 := $pa($pa($p, 0, 8), 0, 1);
$p6 := $M.0[$p5];
assert($p6 == 1);
return;

}

// LLVM IR code from Clang/LLVM
define void @main() #0 {
%1 = call i8* @malloc(i64 8)
%2 = bitcast i8* %1 to %struct.S*
%3 = call i8* @malloc(i64 8)
%4 = bitcast i8* %3 to %struct.S*
%5 = getelementptr inbounds

%struct.S* %2, i32 0, i32 0
store i32 1, i32* %5, align 4
%6 = getelementptr inbounds

%struct.S* %4, i32 0, i32 0
store i32 2, i32* %6, align 4
%7 = getelementptr inbounds

%struct.S* %4, i32 0, i32 1
store i32 3, i32* %7, align 4
%8 = getelementptr inbounds

%struct.S* %2, i32 0, i32 0
%9 = load i32* %8, align 4
%10 = icmp eq i32 %9, 1
... assertion omitted ...
ret void

}

Fig. 2. An example program in C, along with its LLVM IR and Boogie IVL translations.

maps $M.0 and $M.1 in Boogie code, respectively. While not shown, our transla-
tion defines the $pa function to model getelementptr, and the $malloc procedure
to model memory allocation, by keeping track precisely of allocated and unallo-
cated sections of memory. The load and store instructions are then translated as
accesses into the appropriate region’s map. Finally, assertions in C are ultimately
translated into Boogie assertions, and checked using our backend verifiers.

4 Our Experience with SMACK

Our experience in using SMACK for developing research prototype verification
tools has benefited from increased productivity without prohibitive performance
sacrifices. One example is the c2s project7 which implements various concurrent-
to-sequential Boogie code translations — so called “sequentializations” — for
delay-bounded verification [20], and which has been used in several of the au-
thors’ research projects. The authors of the CSeq tool [22], which implements a
related sequentialization directly in C code rather than in a simple IVL, admit
a telling limitation:

7 http://github.com/michael-emmi/c2s
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Table 1. Comparison of SMACK, CPAchecker, CBMC, and UFO on SV-COMP bench-
marks. #B is the number of benchmarks (both correct and buggy) in a suite. No-Reuse
and Reuse correspond to two distinct memory models currently provided by SMACK.
Experiments were performed on an Intel Core i7-3930K 3.20 GHz machine with 32 GB
of memory running Ubuntu 12.04. All runtimes are in seconds.

Benchmark
Suite

#B KLOC

SMACK
SV-COMP 2014

No-Reuse Reuse

Boogie Corral Boogie Corral CPAchecker CBMC UFO

locks 13 2.3 9.1 9.3 9.0 9.3 365.1 1.4 2.9

ntdrivers-simpl 10 18.1 12.3 85.7 12.3 86.4 43.5 4.6 3.4

“CSeq does not support [heap-allocated memory] yet. Lifting these re-
strictions, and in particular supporting dynamic memory . . . will require
significant efforts.”

In contrast, the Boogie IVL-based c2s tool was simple to implement, and has
been used for the analysis of intricate C-language concurrent data structure
implementations which make extensive use of dynamic memory allocation [8].

Despite the threat to performance incurred by separating backend verifiers
from source languages, SMACK-based tools are competitive with state-of-the-art
verifiers. While a truly-meaningful comparison is difficult, since different verifiers
generally provide different guarantees, Table 1 makes an attempt, comparing
SMACK with 3 competitive verifiers (CPAchecker [7], CBMC [13], UFO [1]) on
2 benchmark suites from the SV-COMP [33] annual software verification compe-
tition. Both suites contain both correct and buggy benchmarks, and all verifiers
categorize them correctly: neither false positives nor negatives are reported.8

Note that since these are preliminary results mixing tools aimed at bug-
finding (SMACK, CBMC) with those aimed at verification (CPAchecker, UFO),
a direct comparison of runtimes is somewhat unfair. However, the table does
illustrate that even though SMACK has not been optimized for SV-COMP
benchmarks — thus far we have spent minimal effort in optimization — its
performance is comparable to established verifiers which regularly participate in
SV-COMP. As future work, we plan to expand these preliminary results with
more benchmarks, and enroll SMACK in a future SV-COMP.

As expected, the current version of SMACK does have some limitations.
First, integer datatypes are modeled with unbounded mathematical integers; this
limitation can be lifted by leveraging Boogie’s support for bit-vectors. Floating
point datatypes pose a more serious challenge, as they are not widely supported
by current software verifiers and automated theorem provers. Finally, SMACK
currently precisely handles word-aligned memory accesses only.

8 To make our results readily reproducible, we created a virtual machine profile in the
Apt testbed facility containing all used tools, scripts, and benchmarks. It is available
at https://www.aptlab.net/p/fmr/smack-cav2014.
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