
Visualization Support for JDart

Chaofeng Zhou
University of Utah

chaofeng.zhou@
utah.edu

Kasper S. Luckow
Carnegie Mellon University

kasper.luckow@
sv.cmu.edu

Falk Howar
TU Clausthal / IPSSE

falk.howar@tu-
clausthal.de

Zvonimir Rakamarić
University of Utah

zvonimir@
cs.utah.edu

ABSTRACT
JDart is a tool for performing dynamic symbolic execution
of a Java program. The result is a constraints tree that
describes the decisions taken during program exploration.
Such a tree typically contains thousands of nodes even for
medium-sized programs. It is very difficult to comprehend
such large trees since, for example, identifying nodes that
match particular program branches is extremely tedious.
Hence, debugging and program understanding is all but im-
possible. To address this, we describe recent advances in the
reporting facility in JDart that uses an interactive visual-
ization of the tree, thus enabling a developer to traverse and
search for specific behaviors.

Keywords
Dynamic Symbolic Execution, Visualization, Program Un-
derstanding

1. INTRODUCTION
JDart [2] is a tool for performing dynamic symbolic ex-

ecution of Java programs; it is built on top of the Java
PathFinder tool-set [1]. The aim of dynamic symbolic ex-
ecution is to leverage automatic Satisfiability Modulo The-
ories (SMT) solvers in order to explore additional program
behaviors by generating input values which result in a dif-
ferent path being taken through a program.

The result of dynamic symbolic execution is a constraints
tree, i.e., a tree with its inner nodes reflecting the decisions
(involving at least one symbolic variable) that were made
during the exploration of a particular path in the program.
Leaves in the tree (i.e., explored paths) are labeled as fol-
lows: OK upon normal exploration, ERROR if an excep-
tion is thrown or an assertion is violated (i.e., an error in
the program was discovered), or DONT KNOW if no valu-
ation could be generated for the respective path (e.g., due
to limitations of the underlying solver or constraints from
undecidable theories). By default, JDart only support out-
putting the constraints tree in either plain text or JSON.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

JPF-Workshop 2016
© 2017 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Listing 1 gives a simple Java program, while Fig. 1 shows
the respective constraints tree as outputted by JDart.

public void baz(Data d) {
if (d.getX() < 5) {
System.err.println(”x < 5”);

}
if (d.getY() > 40) {
System.err.println(”y > 40”);

}
assert (d.getX() + d.getY() < 43);

}
Listing 1: Simple Java example.

-(’d.x’ >= 5)
|-[+]-(’d.y’ <= 40)
| |-[+]-((’d.x’ + ’d.y’) < 43)
| | |-[+]_/OK: [d.x:=’d.x’, d.y:=’d.y’,]
| | +-[-]_/ERROR: java.lang.AssertionError
| +-[-]-((’d.x’ + ’d.y’) < 43)
| |-[+]_/OK: [d.x:=’d.x’, d.y:=’d.y’,]
| +-[-]_/ERROR: java.lang.AssertionError
+-[-]-(’d.y’ <= 40)

|-[+]-((’d.x’ + ’d.y’) < 43)
| |-[+]_/OK: [d.x:=’d.x’, d.y:=’d.y’,]
| +-[-]_/ERROR: java.lang.AssertionError
+-[-]-((’d.x’ + ’d.y’) < 43)

|-[+]_/OK: [d.x:=’d.x’, d.y:=’d.y’,]
+-[-]_/ERROR: java.lang.AssertionError

Figure 1: Constraints tree example.

One of the main purposes of symbolic analysis is pro-
gram comprehension, such as understanding the behaviors
(i.e., decisions) leading to an ERROR state in the program.
However, it is extremely hard and tedious to do this in the
simplistic representation currently supported in JDart (see
Fig. 1). To address this issue, we describe our ongoing effort
supported by Google Summer of Code to add a visualization
component to JDart, called JDart-vis. This component
enables the developer to interactively explore the constraints
and search for specific behaviors and analysis results. We de-
scribe this new component and demonstrate its applicability
in a preliminary case study.

2. VISUALIZATION SUPPORT
JDart-vis is a web-based tool that enables interactive ex-

ploration of the resulting constraints tree. The web-based
approach to visualization brings interesting new ways of how
symbolic analysis is conducted and the analysis result con-
veyed in a team of developers. One can imagine it as part of

10.1145/1235

Figure 2: Expanding decision nodes.

Figure 3: Highlighting ERROR paths.

a continuous integration environment or as a team collabo-
ration tool, where developers can consult the visual output
to get a better understanding of the behaviors in critical
components or to facilitate understanding of causes of bugs.

The front-end itself is largely based on the JavaScript
D3.js1 library. D3.js is a powerful visualization tool that cal-
culates the coordinates for geometric elements (rectangles in
our case) and places them in SVG of HTML. Furthermore, it
is a data-driven JavaScript library, which means the genera-
tion of the rectangles is driven by a JavaScript Object parsed
from a JSON file. The JSON file in our case contains the
symbolic decisions (i.e., the nodes in the constraints tree),
status labels and, information about child nodes.

At a basic level, a user has an intuitive overview of the
whole generated tree. Users can navigate the tree in an
interactive fashion by expanding/collapsing decision nodes
as shown in Figure 2.

Also, users have the ability to expand all paths filtered by
the status labels. This is particularly useful in those cases
where JDart computes constraint trees with thousands of
deep paths and decisions, but only relatively few paths lead
to ERROR. In this case, the user can easily isolate those
paths and study in detail the program behavior leading to
those outcomes. This functionality is shown in Figure 3.

Finally, hovering over a node highlights its ancestor nodes
to easily see the execution path leading to the particular
decision being explored.

JDart-vis can be initiated using the command-line inter-
face application we developed; after JDart terminates and
generates the JSON-formatted constraints tree, a browser-
based web-panel starts up and automatically loads the JSON
file in order to render the tree. At a later stage, we will
enable the user to invoke JDart directly from the web-
interface. We have created an online demo site2 to show
how the visualization and the described features work.

1https://d3js.org/
2http://chaofz.me/jdart-vis

Figure 4: Finding ERROR paths with JDart-vis.

2.1 Example
To demonstrate the merits of JDart-vis, we use the method

shown in Listing 2.

public int m1(char[] c, int n) {
String str = new String(c);
int state = 0;
for(int i = 0; i < c.length; i++) {
if(c[i] == ’[’) state = 1;
else if (state == 1 & c[i] == ’{’) state = 2;
else if (state == 2 & c[i] == ’<’) assert(false);
else if (state == 3 & c[i] == ’∗’) {
state = 4;
if(c.length == 15) {
state = state + n;

}
}

}
return 1;

}
Listing 2: Simple Java example.

For this example, JDart explores 31,249 constraint nodes.
Among these, there are 611 ERROR paths. Identifying
those paths from a textual representation—as the one shown
previously—is inherently difficult due to the number of paths
and their depth.

However, with the help from JDart-vis, we were able to
isolate the ERROR paths and study the constraints (and
thus the input) that expose them. As Figure 4 shows, the
enormous constraint node are presented graphically and hi-
erarchically on the panel: regular nodes have blue back-
ground, while leaf nodes with status OK are green; yellow
denotes DONT KNOW status nodes, and ERROR status
nodes are red.

3. REFERENCES
[1] Java Pathfinder. http://jpf.byu.edu.

[2] K. Luckow, M. Dimjašević, D. Giannakopoulou,
F. Howar, M. Isberner, T. Kahsai, Z. Rakamarić, and
V. Raman. JDart: A dynamic symbolic analysis
framework. In International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), pages 442–459, 2016.

https://d3js.org/
http://chaofz.me/jdart-vis
http://jpf.byu.edu

	Introduction
	Visualization Support
	Example

	References

