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Abstract

Software is large, complex, and error-prone. According to the US National
Institute of Standards and Technology, software bugs cost the US econ-
omy an estimated $60 billion each year. The trend in hardware design of
switching to multi-core architectures makes software development even more
complex. Cutting software development costs and ensuring higher reliability
of software is of global interest and a grand challenge. This is especially true
of the system software that is the foundation beneath all general-purpose
application programs.

The verification of system software poses particular challenges: system
software is typically written in a low-level programming language with dy-
namic memory allocation and pointer manipulation, and system software
is also highly concurrent, with shared-memory communication being the
main concurrent programming paradigm. Available verification tools usu-
ally perform poorly when dealing with the aforementioned challenges. This
thesis addresses these problems by enabling precise and scalable verification
of low-level, shared-memory, concurrent programs. The main contributions
are about the interrelated concepts of memory, modularity, and concurrency.

First, because programs use huge amounts of memory, the memory is
usually modeled very imprecisely in order to scale to big programs. This im-
precise modeling renders most tools almost useless in the memory-intensive
parts of code. This thesis describes a scalable, yet precise, memory model
that offers on-demand precision only when necessary.

Second, modularity is the key to scalability, but it often comes with a
price — a user must manually provide module specifications, making the
verification process more tedious. This thesis proposes a light-weight tech-
nique for automatically inferring an important family of specifications to
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Abstract

make the verification process more automatic.
Third, the number of program behaviors explodes in the presence of

concurrency, thereby greatly increasing the complexity of the verification
task. This explosion is especially true of shared-memory concurrency. The
thesis presents a static context-bounded analysis that combines a number
of techniques to successfully solve this problem.

We have implemented the above contributions in the verification tools
developed as a part of this thesis. We have applied the tools on real-life
system software, and we are already finding critical, previously undiscovered
bugs.
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Chapter 1

Introduction

1.1 Motivation

Today’s software systems are large, complex, and error-prone. According
to a 2002 study by the U.S. National Institute of Standards and Technol-
ogy [Tas02], software bugs cost the U.S. economy an estimated $60 billion
each year. Even worse, the recent trends in hardware design of switching
to multi-core architectures require highly concurrent software systems to
take advantage of available cores. Inherent concurrency makes software de-
velopment even more complex and harder to get right. Cutting software
development costs and ensuring higher reliability of software is of global
interest and a grand challenge [Hoa03]. Program analysis and verification
is one of the most promising solutions for this problem, and therefore is a
rapidly growing area of research, with steadily emerging new techniques,
applications, and tools.

System software manages and controls computer hardware, providing
the foundation on top of which general application programs can operate.
The correct execution of programs built on top of system software relies on
it to provide the correct functionality. Therefore, system software is the
most critical part of a typical software stack and ensuring its correctness is
of utmost importance. For example, the correct execution of even the most
mundane software relies on a vast array of supporting system software: the
compiler and linker during development, and also all the OS services at
runtime: application-level memory management and the underlying virtual
memory system, context swaps and the underlying OS scheduler, device
drivers for all I/O, etc. With the emergence of virtualization, the hypervisor
becomes an even lower-level, even more critical layer that needs verification
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1.2. Software Verification

(e.g., [SXSP07]), as even the operating system relies on its correctness.
The verification of system software poses additional challenges when

compared to the usual application software:

• system software is typically written in a low-level programming lan-
guage such as C and uses dynamic memory allocation and low-level
pointer manipulation

• system software is highly concurrent, with shared-memory communi-
cation being the main concurrent programming paradigm.

In the last couple of years, many software verification tools emerged that
have been successfully applied to real-life code bases. Unfortunately, the
available tools still usually perform poorly when dealing with the aforemen-
tioned challenges of system software. This is a serious problem since these
challenges are also the major sources of errors and complexity of system
software [CYC+01, LTW+06, SC91, RCKH09, GN08]. The goal of this the-
sis is to address the problem by enabling precise and scalable verification of
low-level shared-memory concurrent programs. The main contributions are
about the interrelated concepts of memory, modularity, and concurrency in
the context of low-level shared-memory software verification.

1.2 Software Verification

This section gives a brief taxonomy of software verification, and situates this
thesis within it. Note that the term “verification” is often overloaded: the
broader software engineering community uses the term when referring to
any method whose goal is to increase confidence that software satisfies the
specified requirements; on the other hand, parts of the formal verification
community define verification as an absolutely sound1 approach to proving
correctness of a system using formal methods of mathematics. Therefore, the
intended meaning of the term has to be clarified in order to avoid confusion.

1In the context of formal software verification, soundness means that we are not missing
bugs, while completeness means we are not reporting spurious bugs.
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In this thesis, the usage of the term verification lies in-between the two
mentioned extremes: verification refers to any formal method for improving
software correctness, where the method is allowed to systematically make
calculated trade-offs in order to achieve scalability and precision at the cost
of possibly missing bugs.

The foundations of software verification were laid down by Floyd [Flo67]
and Hoare [Hoa69] in the 1960s with their work on logical reasoning about
the correctness of programs. They defined Floyd-Hoare logic as a set of
logical rules for reasoning about program correctness. Then, Dijkstra [Dij75]
built on that and introduced predicate transformer semantics, in particular
the well-known weakest precondition transformer. Predicate transformers
enabled automatic, algorithmic transformation of reasoning about program
correctness using Floyd-Hoare rules into proving a first-order logical formula
valid. This seminal work branched into a few different directions in the 1970s
and 1980s.

Interactive theorem proving approaches, started in the 1970s, advocate
applying rigorous methods of mathematics to prove full functional correct-
ness of a program. The approaches usually support expressive higher-order
logics, and as such are used to prove complex program properties while con-
centrating on absolute soundness. However, this expressive power comes at
a cost, and typically interactive theorem proving requires a lot of manual
effort and user ingenuity: a user does proofs by guiding the proof search in
some sort of a mechanical proof assistant (e.g., PVS [ORS92], HOL [GM93],
ACL2 [KM97], Coq [BC04]).

In contrast, the verification-condition-checking paradigm aims to bring
more automation and scalability into software verification. The main idea
behind it is to automatically generate a logical formula from a program
and a desired property in such a way that the formula’s validity implies
program correctness (with respect to the property). The generated logical
formula is called a verification condition (VC). Verification conditions are
then discharged using automated decision procedures. Scalability is often
achieved by taking advantage of program modularity in order to check mod-
ules (e.g., procedures, functions, methods) one at a time. However, that
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requires from a user to provide module specifications and invariants. The
approach was pioneered in the Stanford Pascal Verifier [LGvH+79]. VC-
checking owes its success to the seminal work on combining decision proce-
dures [NO79, Sho84]. This work enables seamless combination of decision
procedures for different theories used for software verification (e.g., the the-
ory of uninterpreted functions, the theory of arrays, Presburger arithmetic).

Abstract interpretation [CC77] and model checking [QS82, CE82, CES86]
set complete automation as their main goal. To scale to large programs
these approaches analyze abstractions of the programs: Abstract interpre-
tation abstracts a program based on the chosen abstract domain (e.g., in-
tervals, octagons, polyhedra), while for model checking a program has to
be abstracted into a finite-state system. Both approaches are completely
automatic and sound. However, because they rely heavily on program ab-
straction, which introduces extraneous behaviors not possible in the original
program, they tend to report a high rate of spurious bugs. Predicate ab-
straction [GS97, CGJ+00, BMMR01] partially alleviates that problem by
combining model checking with automated decision procedure: Automated
decision procedures are used to precisely abstract programs into finite-state
systems, which are then in turn model checked.

Recently, we’ve seen a renaissance of verification-condition-checking in
the form of extended static checking (e.g., [FLL+02, FM04, BLS05, CLQR07,
BH08]). The renaissance was spurred by the availability of much faster
machines and the birth of Satisfiability Modulo Theories (SMT) solvers
(e.g., [GHN+04, BT07, dMB08, BCF+08]), which dramatically improved
performance of automated decision procedures. Today’s extended static
checking tools use extremely fast SMT solvers in the back-end. This en-
ables them to be very precise (i.e., have low rate of spurious bugs) as well
as scalable. The research contributions presented in this thesis fall into the
extended static checking area of software verification.
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1.3. Contributions

1.3 Contributions

The main contributions of this thesis are each described in their respective
chapter:

Chapter 3: Memory Models for Low-Level Code. Low-level sys-
tem software must sometimes make type-unsafe memory accesses (e.g., us-
ing type casts or pointer arithmetic), but because of the vast size of avail-
able heap memory in today’s computer systems, faithfully representing each
memory allocation and access does not scale when analyzing large programs.
Instead, verification tools rely on abstract memory models to represent the
program heap. This chapter reports on several related investigations to de-
velop an accurate (i.e., providing a useful level of soundness and precision)
and scalable memory model. First, we compare a recently introduced mem-
ory model, specifically designed to more accurately model low-level memory
accesses in system code, to an older, widely adopted memory model. Unfor-
tunately, the newer memory model scales poorly compared to the earlier, less
accurate model. Next, we investigate how to improve the soundness of the
less accurate model. A direct approach is to add assertions to the code that
each memory access does not break the assumptions of the memory model,
but this causes verification complexity to blow-up. Instead, we develop
a novel, extremely lightweight static analysis that quickly and conserva-
tively guarantees that most memory accesses safely respect the assumptions
of the memory model, thereby eliminating almost all of these extra type-
checking assertions. Furthermore, this analysis allows us to automatically
create memory models that flexibly use the more scalable memory model for
most of memory, but resort to a more accurate model for memory accesses
that might need it.

Chapter 4: Automatic Frame Axiom Generation. Modularity
is the key to scalable software verification. However, many approaches
to modular software verification are currently semi-automatic: a human
must provide key logical insights — e.g., loop invariants, class invariants,
and frame axioms2 that limit the scope of changes that must be analyzed.

2In practice, a user typically writes modifies clauses, which specify a potentially un-
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1.4. Organization of the Thesis

This chapter describes a technique for automatically inferring frame axioms
of procedures and loops using static analysis. The technique builds on a
pointer analysis that generates limited information about all data structures
in the heap. Then, it uses that information to over-approximate a poten-
tially unbounded set of memory locations modified by each procedure/loop;
this over-approximation is a candidate frame axiom. We have tested and
demonstrated the effectiveness of this approach on a set of buffer-overflow
benchmarks.

Chapter 5: Verification of Shared-Memory Concurrent Pro-

grams. Context-bounded analysis is an attractive approach to verifica-
tion of concurrent programs. Bounding the number of contexts executed
per thread not only reduces the asymptotic complexity, but also causes the
complexity to increase gradually from checking a purely sequential program.
This chapter presents an approach to context-bounded verification of con-
current system programs written in C, with the heap and accompanying low-
level operations such as pointer arithmetic and casts, by translating them
into sequential programs. In turn, that allows traditional sequential reason-
ing to be employed for verification of concurrent programs. The approach is
completely automatic and evaluated on a set of real-world Windows device
drivers.

1.4 Organization of the Thesis

Background information required for understanding the material presented
in this thesis is given in Chapter 2. Chapter 3 treats memory modeling in
verification of low-level software and introduces a class of novel, scalable, and
precise memory models. Chapter 4 concentrates on bringing more automa-
tion into modular software verification by presenting a technique for auto-

bounded set of memory locations that might be modified by a piece of code (e.g., pro-
cedure, loop). The underlying verification engine then automatically translates modi-
fies clauses into frame axioms. We use the term “frame axiom”, which comes from the
well-known frame problem in artificial intelligence [MH69], for historical reasons. In our
context, frame axioms are logical formulas that delimit what memory locations can be
modified by a program module. As such, they are used in the modular assume-guarantee
reasoning and actually have to be proved for each module.

6
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matic inference of frame axioms. Chapter 5 gives an approach to context-
bounded analysis of concurrent system programs by translating them into
sequential programs. Finally, Chapter 6 concludes the thesis and discusses
future research directions.

7



Chapter 2

Background

The goal of this chapter is to provide technical background material shared
by multiple following chapters that describe thesis contributions. Therefore,
Section 2.1 introduces the pointer analysis employed by the techniques de-
scribed in Chapter 3 and Chapter 4, and Section 2.2 gives a brief overview
of the thesis tool flows.

2.1 Data Structure Analysis (DSA)

This section gives some background information on the pointer analysis
that is the starting point of the approach in Chapter 3 to make memory
models more scalable, as well as the technique in Chapter 4 for automatically
inferring frame conditions.

There is a vast body of research on pointer and related analysis, with
many published algorithms that have different scalability/precision trade-
offs. (Hind [Hin01] provides a good survey of many of these algorithms.) The
algorithms range from the highly scalable, like Steensgaard’s [Ste96], which
scale to millions lines of code, to the extremely precise, such as TVLA shape
analysis algorithm [LAS00], which can infer complex shapes of unbounded
heap data structures but scale to only a few hundred lines of code. In that
spectrum, for my research I was looking for a pointer analysis that is scalable,
but precise enough for my needs, as well as readily available in a production
compiler. As it turned out, Data Structure Analysis (DSA) [LLA07] worked
extremely well for my purpose.

Data Structure Analysis (DSA) [LLA07] is a highly scalable and fast,
context-sensitive (with full heap cloning), field-sensitive3 (even in a type-

3The analysis precisely tracks values of distinct pointer fields of the same structure.
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2.1. Data Structure Analysis (DSA)

unsafe4 setting), conservative pointer analysis. It offers scalability to hun-
dreds of thousands of lines of code, with better precision than previous,
highly scalable pointer analyses. The term “heap cloning” refers to a prop-
erty important for achieving true context-sensitivity — heap objects are
distinguished not just by allocation site, but also by (acyclic) call paths
leading to their allocation, i.e. the calling context in which they were cre-
ated. Support for data structure operations is often encapsulated in a library
used throughout the code, and therefore context-sensitivity is important to
be able to handle such cases precisely.

DSA constructs a representation of the heap in the form of Data Struc-
ture Graphs (DS graphs); it creates one DS graph per procedure plus an
additional one for global storage. The separate globals graph is a key op-
timization allowing procedure graphs to contain only the parts of global
storage reachable from that procedure. A DS graph consists of a set of
nodes (DS nodes) and a set of edges. As an example, a simplified part of
the globals DS graph for the applicom Linux device driver5 is shown in Fig-
ure 2.1. DS graphs have two types of DS nodes: heap nodes with a number
of fields at different offsets (e.g., rectangular nodes in the example graph),
and pointer variable nodes that point into heap nodes (e.g., oval nodes in the
example graph). A pointer variable node is named after the pointer variable
it represents and has one outgoing edge. A heap node has one outgoing edge
per pointer field. Each heap node has a type and represents a potentially
unbounded number of objects in memory of that type. A DS graph edge is
defined by its source node and offset (i.e. offset of the respective pointer field
in the source node), and its end node and offset. For instance, if the word size
in Figure 2.1 is 4 bytes, the second edge coming out of the genhd registered

node is defined by 〈genhd registered, 8〉 → 〈block device, 0〉.
Instead of just providing the usual pairs of references that may alias

(points-to/alias information), the explicit heap representation DSA con-
4We say a program is type-safe if pointers to objects (or fields) of different types do

not alias. Otherwise, we say a program is type-unsafe.
5The applicom driver can be found in the /drivers/char directory of the Linux

kernel source code.
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%struct.ddv_genhd
 genhd_registered

                    

%struct.gendisk

                                

%struct.block_device
 block_device

    

void

%struct.block_device_operations

          

%struct.request_queue

            

operations

void void void void void
%struct.mutex

  

device

Figure 2.1: Example of a Data Structure Graph. The graph shows a
simplified part of the globals DS graph for the applicom Linux device
driver. Oval nodes in the graph are pointer variable nodes (e.g., device
and operations); rectangular nodes are heap nodes (e.g., genhd registered
and block device). Each heap node has a type. For instance, the type of
the genhd registered node is struct.ddv genhd, the type of the block device
node is struct.block device, etc. Pointer fields of heap nodes have outgoing
edges, while fields of other types are just empty boxes.

structs includes objects that might not be directly necessary for identifying
aliases. That additional information about linked data structures in the
heap and explicit tracking of reachability relations between heap objects
makes DSA a simple form of shape analysis. It can identify different in-
stances of data structures and provide structural and type information for
each identified instance.

The conservative type information for each heap object is one of the
key features of DSA. The approach on scaling memory models described in
Chapter 3 takes advantage of this feature. DSA defines memory accesses as
operations on pointers that point into the node and actually interpret the
type: load and store operations, and structure and array indexing operations
on pointers. Operations such as memory allocation and pointer casts (e.g.,
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2.2. Thesis Tool Flows

from void*) are not counted as accesses and don’t influence a node type. In
particular, if all accesses to objects that a node represents obey a consistent
type, such node is called “type-homogeneous”. If accesses with incompatible
types are found, the type of the node is marked as Unknown. Therefore,
DSA tracks types precisely in the type-safe parts of the heap/program, while
in the presence of type-unsafe operations, it conservatively treats nodes as
having an unknown type.

The automatic inference technique presented in Chapter 4 involves de-
scribing sets of objects that DS nodes represent by traversing paths through
which they are reachable from global variables, procedure parameters, etc.
Hence, it is crucial to have explicit representation of heap objects and their
connectives (and therefore also reachability information). Another impor-
tant feature of the algorithm is conservative field-sensitivity in a type-unsafe
language such as C. DSA tracks fields precisely in the type-safe parts of the
heap/program, while in the presence of type-unsafe operations it conserva-
tively collapses all fields of an object. The field-sensitivity of DSA enabled
us to take advantage of the precise memory models described in Chapter 3,
and therefore to generate more precise modifies sets.

DSA is a flow-insensitive and context-sensitive analysis. By definition, a
flow-insensitive analysis doesn’t take the order of program statements into
account when analyzing a program. Therefore, it trivially extends from se-
quential to concurrent programs since it conservatively over-approximates
all of the interleavings of parallel executions [RR99]. Furthermore, context-
sensitivity comes from relying on a call graph in the analysis, which is again
independent of the order of program statements. As such, it is straightfor-
ward to use DSA in the context of analysis of concurrent programs from
Chapter 5 as well.

2.2 Thesis Tool Flows

An important part of this thesis consists of several verification tools that I
implemented. The implemented tools interact with many others, and there-
fore having a high-level picture of how they are connected will allow easier

11
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Boogie

HAVOC

SMACK

C

LLVM/gcc

Concurrent C

cl.exe

Z3

VC

BoogiePLBoogiePL

STORM

Concurrent BoogiePL

Valid/Invalid

Figure 2.2: Thesis Tool Flows.

understanding of the material that follows in the later chapters. For this
purpose, understanding the details is not important as the tools are ex-
plained in greater detail later on in the thesis. The tool flows are given in
Figure 2.2.

During my first internship at Microsoft Research back in 2006, I was in-
volved in creating the foundations of Havoc [CLQR07]. Havoc is a verifier
for C programs built on top of Microsoft’s Visual C compiler (cl.exe), and
therefore is targeting Windows programs. It transforms a C program into
a BoogiePL [DL05] program, which is the input of the well-known Boo-

gie verification-condition (VC) generator [BCD+05]. Generated VCs are
handed over to the Z3 theorem prover [dMB08], currently one of the fastest

12



2.2. Thesis Tool Flows

in the world. Based on the VC’s validity, the verification either succeeds or
the tool returns an error trace.

After this internship, I wanted to try out my own novel ideas in this re-
search area. However, Havoc was developed at Microsoft and is not open-
source. Therefore, I implemented my own verifier in the spirit of Havoc

and called it Smack [RH08, RH09]. Smack uses the open-source LLVM
compiler infrastructure [LA04], which in turn relies on gcc as the front-end;
LLVM essentially uses the gcc parser to convert source code into LLVM’s in-
termediate representation. Therefore, Smack can check a different spectrum
of programs — a large number of gcc-based, mainly open-source applications
that are readily available. The contributions in Chapter 3 and Chapter 4
are based on this work.

During my second internship at Microsoft Research in 2008, I built a
checker for concurrent C programs called Storm [LQR09]. Storm takes a
multithreaded BoogiePL program generated by Havoc as input, and gen-
erates a sequential BoogiePL program as output. The sequential BoogiePL
program is then handed over to Boogie as usual. Storm currently uses
Havoc as the front-end and therefore aims at checking Windows programs.
The contribution in Chapter 5 is based on this work.

13



Chapter 3

Memory Models for

Low-Level Code

This chapter presents novel techniques for modeling memory in low-level
code verification. It is largely based on my published paper [RH09]. In
addition, Section 3.7 introduces a very recent, unpublished memory model,
influenced by discussions with Ken McMillan. Overall, the described tech-
niques rely on other front- and back-end tools orthogonal to this work (see
Section 2.2), which have been significantly improved since the paper was
published. Therefore, I have re-run all of the experiments of this chapter
with the current tools, in order to be able to present consistent results. Un-
derstandably, the runtimes of the experiments in the thesis have changed
compared to the ones from the paper. Despite that, the main message and
conclusions of the chapter remain the same.

The chapter starts by giving a short introduction in Section 3.1. Sec-
tion 3.2 introduces an encoding of the operational semantics of C into an
intermediate language suitable for program verification. Section 3.3 explains
the modeling of the semantics of memory in software verification and the
related concept of memory models. It also introduces two commonly used
memory models. Then, Section 3.4 compares the two introduced memory
models. Section 3.5 describes a novel approach to modeling memory in low-
level code verification that eliminates the weaknesses found in the previous
models. Section 3.6 gives the experimental results and compares the three
different techniques used in the novel approach. Section 3.7 introduces the
new alias-analysis-based memory model, along with the supporting experi-
mental results. Section 3.8 presents related work. Finally, Section 3.9 briefly
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summarizes the chapter by listing main contributions.

3.1 Introduction

All formal software analysis must model memory in some way. At one
extreme, the entire memory space could be modeled as a single, giant ar-
ray of bytes/words (e.g., [CHRF00, CKSY04, CKL04], early versions of
VCC [SXSP07] also supported byte-level reasoning). Doing so makes the
verification completely accurate (sound and precise with respect to the
effect of any memory access), but does not scale beyond very small seg-
ments of code. At the other extreme, we can restrict our analysis to han-
dle only code that has no dynamic memory allocation and is completely
type-safe (e.g., [BCC+03])6. Such an approach has scaled to millions of
lines of code [BCC+03], but obviously precludes verification of typical main-
stream software. Most software verification tools (e.g., [BMMR01, HJMS02,
ISG+05, CCG+03, FM04]) try to strike a balance, assuming some degree of
type-safety, e.g., assuming that pointers to different types of objects do not
alias. Note that most tools do not check these assumptions — if the code
violates the assumption, the tool might report wrong answers without any
warning.

The choice of memory model is particularly challenging for low-level
system software, because such software must sometimes make type-unsafe
memory accesses. For example, common idioms include casting a data struc-
ture from/into an array of bytes or integers for efficiency or to interface to
hardware, and accessing a structure via differently-typed pointers as a way
to implement sub-typing in C. Address arithmetic is also common, usually
to offset before or after a given pointer in order to access a nearby data field.
Verification tools for low-level software must find an intermediate memory
model that relies on some type information to provide scalability, yet accu-
rately captures the effects of lower-level, type-unsafe memory accesses.

In this chapter, we develop such a model. We start by defining an encod-
6Astrée now supports type casts, but still does not support dynamically allocated

memory [Min06].
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3.2. Operational Semantics of C

ing of the operational semantics of C into BoogiePL [DL05], an intermediate
language suitable for program verification. Then, we give some background
information on modeling the semantics of memory in software verification
and by introducing two memory models: the monolithic memory model,
which is a recently introduced memory model specifically designed to more
accurately model low-level memory accesses in systems code, and Burstall’s
memory model, which is an older, widely adopted memory model that is less
accurate. We compare the two memory models and find that the monolithic
memory model scales poorly compared to Burstall’s memory model. Then,
we investigate how to improve the soundness of Burstall’s model. We first
consider adding to the code type-checking assertions that each memory ac-
cess does not break the assumptions of the memory model, but this causes
verification complexity to blow-up. Then, we develop a novel, extremely
lightweight static analysis that quickly and conservatively guarantees that
most memory accesses safely respect the assumptions of the memory model,
thereby eliminating almost all of these extra type-checking assertions. Fur-
thermore, this analysis allows us to automatically create memory models
that flexibly use the more scalable memory model for most of memory, but
resort to a more accurate model for memory accesses that might need it. Our
experimental results show that the static analysis is very fast, maintaining
the scalability of the less accurate memory model. In the published work, we
used the conservative type information generated by the static analysis to
split the memory based on computed types of memory locations. Recently,
we went a step further and introduced a conservative memory splitting built
on the alias information generated by the static analysis.

3.2 Operational Semantics of C

This section presents an encoding of the operational semantics of C into the
BoogiePL language, which has been designed to be an intermediate language
for program verification tools that use automated theorem provers. The
language is simple, easy to understand, and has a well-defined semantics, so
we’ll use it throughout this thesis.

16



3.2. Operational Semantics of C

Locs l ::= ∗e | e→ f
Expr e ::= x | n | l | &l | e1 op e2 | e1 ⊕n e2

Command c ::= skip | c1; c2 | x := e | l := e
| if e then c | while e do c

Figure 3.1: Simplified Subset of C.

E(x) = x
E(n) = n
E(&e→ f) = E(e) + Offset(f)
E(& ∗ e) = E(e)
E(e1 op e2) = E(e1) op E(e2)
E(e1 ⊕n e2) = E(e1) + n ∗ E(e2)

C(skip) = skip
C(c1; c2) = C(c1); C(c2)
C(x := e) = x := E(e);
C(l := e) = E(l) := E(e);
C(if e then c) = if E(e) then C(c)
C(while e do c) = while E(e) do C(c)

Figure 3.2: Translation from C into BoogiePL.

Figure 3.1 shows a simplified subset7 of C for illustrating the translation
from C into BoogiePL. We assume all structures, global variables, and local
variables whose address can be taken are allocated on the heap. The field
names are assumed to be unique and Offset(f) provides the offset of a field
f in its enclosing structure. In the figure, Locs denotes the set of heap
expressions that can be used or assigned to, and Expr denotes the set of C
expressions. The expressions include variables (x), constants (n), Locs and
their addresses, binary operations (such as ≤), and pointer arithmetic ⊕n

over n-byte pointers. The language contains skip, sequential composition,
assignments, conditional statements, and loops.

Figure 3.2 shows our translation from C into BoogiePL. Note that here
7We are using a simplified subset of C to illustrate key concepts. Obviously, the thesis

tool flows handle the full C language (see Section 2.2).
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we omitted giving translations for the heap expressions e → f and ∗(e : τ)
because those access memory. We are going to introduce the translation of
the heap expressions later on, when we’ll show how to model the semantics
of memory using different memory models. In the figure, the operator E(e)
describes the translation of a C expression e. Addresses of fields and pointer
arithmetic are compiled away in terms of arithmetic operations. The oper-
ator C(c) translates a C statement into BoogiePL and is self-explanatory.

3.3 Modeling the Semantics of Memory

Because of the vast size of available memory in today’s computer systems,
faithfully representing each memory allocation and access in a static ver-
ifier does not scale. Therefore, verification tools rely on memory models
that trade precision for scalability, and in turn, they define their program-
ming language operational semantics with respect to the chosen memory
model. This section introduces two memory models that are typically used
in modular deductive verification tools and describes their advantages and
drawbacks, as well as underlying assumptions in the context of low-level
code verification.

3.3.1 Monolithic Memory Model

The monolithic memory model is heavily influenced by the one used in early
versions of Havoc [CLQR07], and also similar to the one used in the first
incarnation of VCC [SXSP07]. The main idea behind this memory model
is to divide the memory into disjoint objects (or regions). Each object is
identified by its reference, and has a fixed size determined when the object
is allocated. A pointer in the memory model is therefore a pair, consisting
of a reference and an offset; the reference uniquely defines the object into
which the pointer points; the byte offset defines the byte in the object being
pointed to.

To be able to translate a program into a representation that uses a
memory model, we have to define the semantics of its source language with
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3.3. Modeling the Semantics of Memory

respect to the chosen memory model. In the monolithic memory model,
the semantics of programs depends on three fundamental types: the unin-
terpreted type ref of object references, the type int of integers8, and the
type ptr = ref × int of pointers. For convenience, each variable in a pro-
gram, regardless of its declared type, contains a pointer value: a pointer is
a pair containing an object reference and an integer offset, and an integer
value is encoded as a pointer value whose first component is the special con-
stant null of type ref. Note that because of the integer offset component,
the memory model can precisely capture byte offsets and low-level pointer
arithmetic inside an object. On the other hand, since object references are
uninterpreted, the objects are essentially “infinitely apart”, and the memory
model cannot precisely model pointer arithmetic between objects. This is
not really a drawback since according to the current C standard [C99] such
pointer arithmetic operations result in undefined behavior.

The heap of a program is modeled using two map variables, Mem and
Alloc, and a map constant Size:

Mem : ptr→ ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

The variable Mem maps pointers to pointers and represents the contents
of memory at a location. The variable Alloc maps object references to the
set {UNALLOCATED, ALLOCATED} and is used to model memory allocation.
The constant Size maps object references to positive integers and represents
the size of the object. For instance, the procedure call malloc(n) for
allocating a memory buffer of size n returns a pointer Ptr(o, 0) where o

is an object reference such that Alloc[o] = UNALLOCATED and Size[o] ≥ n

before the call, and Alloc[o] = ALLOCATED after the call. Memory allocation
failure can be easily modeled by nondeterministically returning null-pointer

8Although currently the memory model supports only the integer data type, using the
new polymorphic type system of the latest version of BoogiePL (called Boogie 2) [Lei08]
other data types could be supported as well. However, since systems code, which is the
main focus of this thesis, uses mainly integers, supporting additional data types hasn’t
been needed in our experiments.
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3.3. Modeling the Semantics of Memory

C1 typedef struct {
C2 int a;
C3 int b;
C4 } S;
C5

C6 void main() {
C7 S* s, t; int i;
C8 s = (S*)malloc(
C9 10*sizeof(S));
C10 i = 0;
C11 while(i < 10) {
C12 t = s[i];
C13 t->a = i;
C14 t->b = 5;
C15

C16 i++;
C17 }
C18 }

B1

B2

B3

B4

B5

B6 procedure main() {
B7 var s:ptr, t:ptr, i:ptr;
B8 call s := malloc(Ptr(null,80));
B9

B10 i := Ptr(null,0);
B11 while(LT(i, Ptr(null,10))) {
B12 t := PLUS(s,Ptr(null,Off(i)*8));
B13 Mem[PLUS(t,Ptr(null,0))] := i;
B14 Mem[PLUS(t,Ptr(null,4))] :=
B15 Ptr(null,5);
B16 i := PLUS(i,Ptr(null,1));
B17 }
B18 }

Figure 3.3: Monolithic Memory Model Example. The example illustrates
translation of the simple C program on the left into the BoogiePL program
on the right using the monolithic memory model. We assume that the word
size is 4 bytes, and that pointers and integers are one word each.

Ptr(null, 0) instead.
Using the monolithic memory model, we extend Figure 3.2 with the

following translations of the heap expressions (i.e., expressions that access
memory):

E(e→ f) = Mem[E(e) + Offset(f)]
E(∗(e)) = Mem[E(e)]

Pointer arithmetic is compiled away in terms of arithmetic operations, and
dereferences are simply translated as lookups into the Mem map.

The operational semantics of C with respect to the monolithic memory
model are illustrated with a simple example in Figure 3.3. The figure shows
the procedure main written in C on the left and its translation based on
the monolithic memory model into the BoogiePL program on the right.
The example starts by defining the C structure type S on line C1. Then,
the procedure main begins by defining three variables: the variables s and
t of type S, and the variable i of type int. Note that all variables are
translated uniformly as variables of type ptr on line B7. Assigning 0 to i
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on line C10 shows how the integer value 0 is translated as the pointer value
Ptr(null,0) whose first component is the special constant null. Then,
the example illustrates how both array and field accesses are translated
uniformly as pointer arithmetic. The array access on line C12 is translated
as essentially s + i ∗ 8 on line B12 since the size of each array element is 8.
Similarly, the translation of lines C13 and C14 shows how field accesses are
translated as pointer arithmetic. For instance, since the field b is at offset
4 in the structure type S, t->b is treated as t + 4 on line B14.

3.3.2 Burstall’s Memory Model

The second memory model is a type-indexed memory model (also known
as Burstall’s memory model [Bur72]) that has been commonly used in the
deductive verification of type-safe languages (e.g., [BLS05, FLL+02]). The
main idea behind this model is that, apart from dividing memory into dis-
joint objects as in the previous model, the memory is also split according
to a set of possible types. To achieve this splitting, a set of unique type
constants of type type is introduced, which represent types in the original
program. The common types found in a language, such as int, int*, char,
etc., are going to be translated as type constants $int, $intP, $char, etc.
Furthermore, apart from all of the commonly found types, the set of type
constants also contains a unique type constant for each structure field. For
instance, the structure

struct {

int a;

int b;

} S;

introduces unique type constants $S#a and $S#b. It turns out that this
“type-awareness” in the model, caused by adding type constants and split-
ting the memory according to those, is exactly what gives this model an
edge when it comes to scalability over the monolithic model.

Therefore, instead of mapping pointers to pointers as in the previous
memory model, the map Mem is going to map type-pointer pairs to pointers.
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3.3. Modeling the Semantics of Memory

We also introduce in the model an additional map constant Type that maps
pointers (memory locations) to types and represents the allocation type of
memory locations. Each type in the memory model is a unique constant
distinct from all other types. The type-indexed memory model therefore
has four maps:

Mem : (type× ptr)→ ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

Type : ptr→ type

Using Burstall’s memory model, we extend Figure 3.2 with the following
translations of the heap expressions:

E(e→ f) = Mem[f ][E(e) + Offset(f)]
E(∗(e : τ)) = Mem[τ ][E(e)]

Here, we use e : τ to denote that τ is the static type of e, where static
type refers to the declared type of e. The translation is mostly the same as
the translation using the monolithic memory model given in the previous
section. As before, pointer arithmetic is compiled away in terms of arith-
metic operations. The only difference is the introduction of types into the
memory model. Then, dereferences are translated as lookups into the Mem

map using the appropriate type.
Figure 3.4 shows the translation of the simple example from the previous

section using Burstall’s memory model. First, based on the definition of
the C structure type S on line C1, a new type for each structure field is
introduced in the BoogiePL code; the introduced types $S#a and $S#b are
defined on lines C1 and C2. Then, memory map Mem is going to be indexed
with type-pointer pairs, as illustrated with the translation of assignments to
t->a and t->b on lines C13 and C14, respectively.

Adding types to the memory model makes proving programs easier and
faster:

• One can conclude that updates to different fields of a structure don’t
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C1 typedef struct {
C2 int a;
C3 int b;
C4 } S;
C5

C6 void main() {
C7 S* s, t; int i;
C8 s = (S*)malloc(
C9 10*sizeof(S));
C10 i = 0;
C11 while(i < 10) {
C12 t = s[i];
C13 t->a = i;
C14 t->b = 5;
C15

C16 i++;
C17 }
C18 }

B1 const unique $S#a:type;
B2 const unique $S#b:type;
B3

B4

B5

B6 procedure main() {
B7 var s:ptr, t:ptr, i:ptr;
B8 call s := malloc(Ptr(null,80));
B9

B10 i := Ptr(null,0);
B11 while(LT(i, Ptr(null,10))) {
B12 t := PLUS(s,Ptr(null,Off(i)*8));
B13 Mem[$S#a][PLUS(t,Ptr(null,0))] := i;
B14 Mem[$S#b][PLUS(t,Ptr(null,4))] :=
B15 Ptr(null,5);
B16 i := PLUS(i,Ptr(null,1));
B17 }
B18 }

Figure 3.4: Burstall’s Memory Model Example. The example illustrates
translation of the simple C program on the left into the BoogiePL program
on the right using Burstall’s memory model. We assume that the word size
is 4 bytes, and that pointers and integers are one word each.

influence each other without reasoning about integer offsets and pointer
arithmetic, as would be needed in the monolithic memory model. Such
reasoning is often hard in the presence of quantifiers.

• Memory locations of different fields of two distinct objects usually
don’t alias, which is nicely captured by this memory model. This also
greatly simplifies the task of proving many interesting assertions.

• When a field is being updated, based on its type, only the correspond-
ing submap of Mem changes, which simplifies expressing and checking
frame axioms9.

9As noted earlier, we use the term “frame axiom” for historical reasons. In our context,
frame axioms are not really axioms, but rather formulas that define what is not changed
by a piece of code and therefore limit the scope of changes that must be analyzed. As
such, apart from being assumed, they have to be proved as well (see Chapter 4 for details).
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3.3.3 Underlying Assumptions

This section gives simplifying underlying assumptions made in order to
achieve scalability. The soundness of our memory models relies on these
assumptions. If any are violated, soundness of a memory model is not guar-
anteed.

Aligned Memory Accesses. The memory models understand mem-
ory accesses to primitive types only through their first byte. It also doesn’t
correctly handle memory accesses that reinterpret primitive types. For ex-
ample, writing a 4-byte integer value to the memory location Ptr(o, 20) is
not going to affect the value stored at the memory location Ptr(o, 21). Sim-
ilarly, reading a byte from the memory location Ptr(o, 21) is not going to
return the second byte of the integer that was written to Ptr(o, 20), but
rather an unconstrained value. Furthermore, reading a 2-byte integer value
from the memory location Ptr(o, 20), which reinterprets the 4-byte integer
primitive type that was stored there earlier, is going to return the incorrect
4-byte value.

Here is a short example illustrating how such memory accesses break the
soundness of our memory models:

int x = 0;

char y[] = &x;

y[1] = 1;

assert x == 0;

If we translate this example using, for instance, the monolithic memory
model:

var x:ptr, y:ptr;

Mem[x] := Ptr(null, 0);

y := x;

Mem[PLUS(y,Ptr(null,1))] := 1;

assert Mem[x] == Ptr(null, 0);

it is easy to see that although the assertion in the original example should
clearly fail because of the use of the unaligned pointer y, it actually doesn’t
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in the given translation.
Note that not supporting byte-level memory accesses is not a serious is-

sue in practice. Typically, casts don’t reinterpret memory at the byte level,
but are used to simulate object-oriented language features, such as subtyp-
ing, that are not supported directly in C. In fact, according to empirical
studies [SCB+99, CHM+03], more than 90% of the structure casts in C fall
into that category.

Whole Program Analysis. In theory, our approach is modular and
doesn’t require a whole program to be present: the behavior of external
functions whose source code is not available can be specified using user-
provided annotations in the form of pre- and postconditions. DSA also
correctly handles incomplete programs: at the end of the analysis, a node in
a DS graph that is reachable from unavailable external functions is marked
as Incomplete and all information associated with it is partial and has to be
treated conservatively. However, such incomplete nodes can substantially
decrease the precision of our analysis, and therefore currently we require a
whole program to be available. How to enable precise modular analysis by
making DSA understand annotations provided for missing external functions
is an open research question not addressed in this thesis.

Mathematical Integers. The operational semantics of C and memory
are modeled using mathematical integers. Therefore, the effects of arith-
metic operations that require precise reasoning about bit-vectors, such as
overflows, are not going to be captured correctly. While I was working on
the thesis, Boogie and Z3 added support for bit-vectors, but at the time
the efficiency was poor. As the research on bit-vector decision procedures
progresses, the modular architecture of the thesis tool flows (see Section 2.2)
will enable an easy upgrade to using bit-vectors.

3.4 Comparing the Two Memory Models

This section gives empirical results on using the models to verify a number of
Linux device drivers. We have implemented the preceding memory models
as part of our tool Smack (Static Modular Assertion ChecKer [RH08]),
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which is a modular, annotation-based, extended static property checker of
C programs. In the spirit of modular verification, Smack verifies programs
annotated with procedure specifications and loop invariants. It uses the
LLVM compiler framework [LA04] to parse input programs and annotations.
The LLVM output is translated by Smack into a BoogiePL [DL05] program
based on the operational semantics of C memory accesses according to the
selected memory model. BoogiePL is the input language of the Boogie

verifier [BCD+05], which, in turn, generates a verification condition (VC)
from the input program whose validity implies partial correctness of the
input. The VC generation in Boogie is performed using a variation [BL05]
of the standard weakest precondition transformer [Dij75]. We check the
generated VC using the accompanying Z3 theorem prover [dMB08]. We
report only the runtimes of Boogie required to verify the examples since
the transformation Smack performs takes only a small fraction of that time.

We applied Smack to check correct locking behavior of several device
drivers from the Linux kernel. The source code of the examples, the models
and stubs of the relevant kernel routines, and the test harness are taken
from the DDVerify suite [WBKW07, DDV07]. Ensuring correct lock-
ing behavior amounts to checking that locks are initialized before they are
used and that locks are alternately acquired and released. Table 3.1 lists
the drivers and gives the runtimes for the verification using the monolithic
and Burstall’s memory models. All experiments were executed on an Intel
Core2Duo at 1.6GHz.

Seven of the drivers were arbitrarily picked character device drivers that
contain spinlocks, usually as one or two global variables. In addition, we
handpicked the applicom driver, since this driver has a global array of struc-
tures where each structure is protected by its own spinlock. This makes it
much more interesting and challenging to verify, requiring from a tool the
ability to reason precisely about such unbounded data structures. Figure 3.5
illustrates the complexity of checking locking behavior in the applicom driver.
Current tools that are typically used in the verification of device drivers
(e.g., [BMMR01, HJMS02, ISG+05, CCG+03, CKSY04, CKL04]) have trou-
ble handling unbounded data structures. One of the goals of Smack is to
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Driver LOC
Memory Model

Speedup
Monolithic (s) Burstall (s)

ib700wd 346 25.3 12.3 2.1
w83877f wdt 421 27.1 13.6 2.0
sc520 wdt 443 27.7 13.4 2.1
machzwd 494 34.9 15.5 2.3
wdt977 519 30.7 15.4 2.0
ds1286 633 61.0 16.6 3.7
efirtc 815 22.1 12.7 1.7
applicom 934 470.7 55.5 8.5

Table 3.1: Checking Correct Locking Behavior in Linux Device Drivers. The
column “LOC” given the number of lines of code; “Monolithic” gives the
total runtime of Boogie using the monolithic memory model; “Burstall”
gives the total runtime of Boogie using Burstall’s memory model with
assumed types; “Speedup” compares the runtimes.

address that weakness.
The runtimes in Table 3.1 show that Burstall’s memory model is the

clear winner. It always outperforms the monolithic memory model — the
speedup factor is from 1.7 to 3.7 on easier examples, and 8.5 on the more
complex applicom example. As pointed out, the applicom example requires
proving complex quantified invariants over fields from an array of structures.
For example, the loop invariant on line 10 in Figure 3.5 states that for all
pointers x pointing to an applicom board structure belonging to the array
apbs either x→RamIO == NULL or x→mutex == UNLOCKED. The key
to fast verification of this example is structure field disambiguation (e.g.,
between fields RamIO and mutex): Burstall’s memory model provides this
for free, whereas in the monolithic model, it requires reasoning about offsets
and pointer arithmetic, which is further exacerbated by the presence of
quantifiers.

However, the much better runtimes of Burstall’s memory model come
at a price: it relies on the additional assumption that memory is strongly
typed. In the examples, when we use Burstall’s model, we are assuming the
type of a memory location before each memory access, which is unsound
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1 struct applicom_board {
2 unsigned long PhysIO;
3 void __iomem *RamIO;
4 wait_queue_head_t FlagSleepSend;
5 long irq;
6 spinlock_t mutex;
7 } apbs[MAX_BOARD];
8

9 irqreturn_t ac_interrupt(int vec, void *dev_instance) {
10 invariant Forall(x, Array(apbs, sizeof(struct applicom_board),
11 MAX_BOARD),
12 x→RamIO == NULL || x→mutex == UNLOCKED);
13 for (i = 0; i < MAX_BOARD; i++) {
14 if (!apbs[i].RamIO) continue;
15 spin_lock(&apbs[i].mutex);
16 if(readb(apbs[i].RamIO + RAM_IT_TO_PC)) {
17 spin_unlock(&apbs[i].mutex);
18 i--;
19 } else {
20 spin_unlock(&apbs[i].mutex);
21 }
22 }

Figure 3.5: Simplified Code Excerpt from the applicom Linux Device Driver.
The code illustrates the complexity of checking correct locking behavior.
The loop on line 13 iterates over array elements. If the field RamIO of the
element at index i is not null (line 14), the lock (field mutex) is acquired on
line 15 and then later released. The verification requires checking complex
invariants (e.g., line 10) over all elements of the array (i.e. quantified) that
involve values of the RamIO fields as well as the status of locks (initialized,
locked, unlocked).

and can cause bugs to be missed in a type-unsafe setting such as C. The
next section describes how to deal with this problem.

3.5 Ensuring Soundness with Burstall’s Memory

Model

Burstall’s memory model relies on the additional assumption that mem-
ory is strongly typed, as in type-safe languages such as Java. That means
that a type of the object is established when it is created, via a call to
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1 typedef struct {
2 int x;
3 } S1;
4

5 typedef struct {
6 int a;
7 int b;
8 } S2;
9

10 void main() {
11 S2* s2 =
12 (S2*)malloc(sizeof(S2));
13 S1* s1 = (S1*)s2;
14

15 s2->a = 3;
16 s1->x = 4;
17

18 assert(s2->a == 3);
19 }

1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 s1 := s2;
9

10 Mem[$S2#a][s2] := Ptr(null,3);
11 Mem[$S1#x][s1] := Ptr(null,4);
12

13 assert(Mem[$S2#a][s2] ==
14 Ptr(null,3));
15 }

Figure 3.6: Unsoundness in Burstall’s Memory Model. Example illustrat-
ing a simple upcasting in C that causes unsoundness in Burstall’s memory
model. The right column shows simplified BoogiePL code of the translation
of the function main, assuming Burstall’s model. Because of the assump-
tion of type-safety, the two assignments on BoogiePL lines 10 and 11 do not
alias, resulting in the assertion incorrectly passing.

new, and the object is always accessed using that original type. However,
low-level languages like C allow reinterpretation of the original type and
therefore type-unsafe memory accesses. Such operations are not uncommon
in systems code and are typically done in C using casts or unions10. Often,
casts don’t reinterpret memory at the byte level, but are used to simulate
object-oriented language features, such as subtyping, that are not supported
directly in C. In fact, according to empirical studies [SCB+99, CHM+03],
more than 90% of the structure casts in C fall into that category.

Figure 3.6 gives a simple example illustrating “upcasting” in C. The
structure S2 is a subtype of the structure S1, and the cast on line 13 rep-
resents an upcast. The example shows how such a simple cast can cause

10We can consider unions a special case of casts since a union can be compiled away
by splitting into separate structures and introducing appropriate cast operations where
needed.
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Burstall’s memory model to become unsound: the field update on line 16
overwrites the value that was written to the same memory location on
line 15, and the assertion on line 18 fails. However, in Burstall’s model
this overwrite does not happen, since different field names (i.e. different
unique types) denote different memory locations in the model: the write
to s2->a is translated as the write to Mem[$S2#a][s2] on line 10 of the
BoogiePL translation in the right column, while the write to s1->x is trans-
lated at the write to Mem[$S1#x][s1] on line 11, and doesn’t overwrite
the location Mem[$S2#a][s2] although the pointers s1 and s2 are equal.

In a type-safe program, Burstall’s memory model captures the same
non-aliasing constraints as the monolithic memory model. Therefore, in a
type-safe setting, the two memory models have equivalent behavior during
program analysis. In a type-unsafe program, Burstall’s memory model gen-
erates spurious non-aliasing constraints (see Figure 3.6). Hence, Burstall’s
memory model yields different, incorrect behaviors during program analy-
sis. These incorrect behaviors can easily break the soundness of program
analysis using Burstall’s memory model.

A simple way of ensuring soundness in the presence of such casts is to
syntactically analyze the source code and just give up on the verification if
we find one (e.g., [FM04]). Our goal is to go a step further and verify the
code even in the presence of type-unsafe structure casts, while preserving
soundness. The following sections describe three different techniques of how
to achieve that goal.

3.5.1 Guarding Memory Accesses with Type Assertions

Our initial attempt to prevent unsoundness described in the previous section
from happening in Burstall’s memory model is to add type checks before
each memory access. The checks are added in the form of assertions on
the Type map. Every access to a memory location x with type τ is going
to be preceded with the assertion assert(Type(x) == τ) that will have
to be discharged. Note that, as explained earlier in Section 3.3.2, type τ

incorporates structure field names.
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1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;
10

11 assert(Type[s2] == $S2#a);
12 Mem[$S2#a][s2] := Ptr(null,3);
13 assert(Type[s1] == $S1#x); // Fails!
14 Mem[$S1#x][s1] := Ptr(null,4);
15

16 assert(Type[s2] == $S2#a);
17 assert(Mem[$S2#a][s2] == Ptr(null,3));
18 }

Figure 3.7: Adding Type-check Assertions. Translation of the example from
Fig. 3.6 with type-check assertions added before each memory access (lines
11, 13, and 16). The type-check assertion on line 13 will fail, indicating a
violation of the assumption of type-safety.

Figure 3.7 shows the translation of the example in Figure 3.6 with the
inserted type checks before each memory access (lines 11, 13, and 16).
The map Type represents the compile-time allocation type of memory lo-
cations. Therefore, the correct allocation type has to be assumed on line 8
in Figure 3.7 just after the allocation. The type returned by the procedure
malloc11 is just (void*). However, right after the call to malloc, the
(void*) type will typically get cast down into the type of the pointer the
allocated object is assigned to. This forms the basis for assuming the allo-
cation type on line 8. If there is no such cast after malloc, the allocation
type is simply assumed to be (void*), in which case manual annotations
equating (void*) with the actual allocation type will have to be provided.

The type check assertion on line 13 will clearly fail: s1 = s2, and the
type of s2 is $S2#a, not $S1#x. Whenever a memory location is accessed

11Apart from malloc, our memory model allows for a user to specify a list of additional
custom allocators.
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through a type that is not the allocation type of the memory location (i.e.,
whenever two pointers to different types alias), the added type check asser-
tion will fail. This preserves the soundness of the verification in Burstall’s
model.

However, proving such type check assertions for each memory access
in the program is a big overhead, as the experiments in Section 3.6 show.
Furthermore, discharging those assertions often requires adding more man-
ual annotations to the code which poses an additional burden on the user.
Both of these drawbacks are an unacceptable burden that is not justified
since most parts of the code usually obey the type restrictions imposed
by Burstall’s memory model. Therefore, the next section introduces a
lightweight static analysis that eagerly removes most of the required type-
check assertions by conservatively guaranteeing that those memory accesses
safely respect the assumptions of the model.

3.5.2 Eagerly Eliminating Type Check Assertions

This section introduces our algorithm for eagerly eliminating type check
assertions. The algorithm is relatively simple and straightforward, but as
the experiments in Section 3.6 show, extremely effective. First, we run DSA
(pointer analysis introduced in Section 2.1) on the code we are analyzing,
outputting a DS graph for each procedure and the globals graph. Then, for
each memory read or write through a pointer, we find the type of the memory
location it points to using the appropriate DS graph. If the computed type is
the same as the actual type of the pointer, we omit the type check (assertion)
that would be otherwise generated. If the types are not the same or if the
type of the node the pointer points to is Unknown, we will generate the type
check assertion to preserve soundness.

Figure 3.8 illustrates the benefits of our technique, removing two type-
check assertions compared to the code in Figure 3.7. However, the soundness
is preserved, since the assertion on line 12 couldn’t be safely eliminated and
is going to fail again: According to DSA, pointer s1 is going to point to the
field a of structure S2, and therefore its type is going to be $S2#a and not
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1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;
10

11 Mem[$S2#a][s2] := Ptr(null,3);
12 assert(Type[s1] == $S1#x); // Fails!
13 Mem[$S1#x][s1] := Ptr(null,4);
14

15 assert(Mem[$S2#a][s2] == Ptr(null,3));
16 }

Figure 3.8: Using the Eager Type Check Elimination Algorithm. Transla-
tion of Fig. 3.6 using the eager type check elimination algorithm. Compared
to Fig. 3.7, the unneeded type checks have been eliminated, but the type-
safety violation will still be caught.

$S1#x as expected by the memory access.
The algorithm essentially compares compile-time pointer types used by

Burstall’s memory model with the sound over-approximation of the run-
time types that DSA generates: if the two agree, we can safely omit the
type check; if not, which could happen either because of actual type-unsafe
casts or because of the imprecision of DSA, the type check stays. To sum up,
using the extremely fast, cheap, and yet relatively precise pointer analysis,
the algorithm eagerly gets rid of most of the type checks that are usually
hard and expensive to prove later on.

In order for the remaining assertions to be discharged, either the user
has to provide additional manual annotations that will essentially unify the
types, which is the approach taken in some related work [Moy07, CHLQ09],
or such types can be unified automatically, which is our approach described
in the next section.
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3.5.3 Eager Type Unification

The type check elimination algorithm from the previous section doesn’t re-
move the type check assertion for which the compile-time type of a pointer
and the one computed by DSA don’t agree. Proving those leftover assertions
might still require the addition of manual annotations by a user. Instead, we
describe a simple, completely automatic technique that will soundly remove
the leftover assertions.

For each memory access for which the type check elimination algorithm
couldn’t agree on types, we unify the two types. Unification simply means
that the type constants are not unique anymore, which is in BoogiePL
achieved by removing the keyword unique. There is an obvious trade-
off between the type check elimination algorithm and the type unification
algorithm: the first one might require additional runtime and manual an-
notations from a user to discharge the leftover assertions; the second one
is completely automatic, but with each unification, the memory model is
closer to the monolithic one and the performance might suffer (in the worst
case, all types are unified and we essentially have the monolithic model).
Another side-effect of using the type unification based memory model is
that the map constant Type used to track types of memory locations is not
needed anymore. Therefore, the type unification based memory model has
only three maps:

Mem : (type× ptr)→ ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

Figure 3.9 shows the translation using the eager type unification algo-
rithm. Instead of the type-check assertion on line 12 in Figure 3.8, the types
$S1#x and $S2#a are unified and are not unique constants any more (lines
1 and 2). Now, Mem[$S2#a][s2] and Mem[$S1#x][s1] possibly refer
to the same location, which is sound, and therefore the assertion on line 13
will fail. Note that only the types $S1#x and $S2#a involved in the ac-
tual type-unsafe access got unified, while the type $S2#b not involved in
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1 const $S1#x:type;
2 const $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 s1 := s2;
9

10 Mem[$S2#a][s2] := Ptr(null,3);
11 Mem[$S1#x][s1] := Ptr(null,4);
12

13 assert(Mem[$S2#a][s2] == Ptr(null,3));
14 }

Figure 3.9: Using the Eager Type Unification Algorithm. Translation of
Fig. 3.6 using the eager type unification algorithm. Instead of flagging
the type-safety violation, this translation handles type-unsafety by allow-
ing $S1#x and $S2#a to be possibly the same type. Thus, the verifier will
correctly catch the assertion violation on line 13.

type-unsafe operations didn’t. Therefore, the over-approximation caused by
unification is localized only to the places that actually need it in order to
preserve soundness. In the limit, eager type unification degenerates into the
monolithic memory model, but for code that is mostly type-safe, it should
have most of the efficiency of Burstall’s model and the soundness of the
monolithic model.

3.6 Comparing the Three Approaches

The results in Table 3.2 compare the runtimes for checking correct lock-
ing behavior while ensuring soundness using the three different approaches:
guarding memory accesses with type assertions, eagerly eliminating type
check assertions, and eagerly unifying types. We report only Boogie run-
times. This is because total runtimes are dominated by the verification done
by Boogie. The algorithm that inserts type checks for each memory access
is a simple linear scan of the code and is extremely fast. Also, DSA scales
to hundreds of thousands of lines of code in less than 4s [LLA07].
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Driver
Assuring Soundness

Every Eager Eager Speedup Speedup
Acc. (s) Elim. (s) Unif. (s) EA/EE EA/EU

ib700wd 57.9 23.6 11.6 2.5 5.0
w83877f wdt 68.4 24.9 13.1 2.8 5.2
sc520 wdt 80.4 25.3 13.5 3.2 6.0
machzwd 92.5 28.1 15.3 3.3 6.1
wdt977 92.5 33.7 14.7 2.8 6.3
ds1286 88.4 35.7 15.9 2.5 5.6
efirtc 68.1 22.8 12.0 3.0 5.7
applicom 549.9 155.1 68.4 3.6 8.0

Table 3.2: Soundly Checking Correct Locking Behavior in Linux Device
Drivers. The column “Every Acc.” gives the total runtime of Boogie
when checking type assertions on every access; “Eager Elim.” gives the
total runtime of Boogie when our eager elimination technique is used to
soundly remove most of the required type checks; “Eager Unif.” gives the
total runtime of Boogie when our eager unification technique is used to en-
sure soundness; “Speedup EA/EE” compares the runtimes of Every Access
vs Eager Elimination; “Speedup EA/EU” compares the runtimes of Every
Access vs Eager Unification.

As expected, blindly generating type check assertions for each memory
access does not scale well — verification times after using both eager tech-
niques are roughly 3-8 times faster. Furthermore, the verification times
using eager unification are roughly 2 times faster than the ones using ea-
ger elimination because of the type-check assertions that eager elimination
couldn’t eliminate. Based on these experimental results the eager unification
technique is the clear winner.

To sum up, our new memory models can completely automatically en-
sure, rather than assume, type-safety, and yet the experiments prove they
are still scalable enough to handle real, complex code.
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3.7 Alias-Analysis-Based Memory Model

As we discussed previously, Burstall’s memory model nicely captures the
fact that memory locations of different types typically don’t alias, even in a
type-unsafe language such as C. Our experiments also showed that having
the type-based, non-alias information explicit in a memory model, such as
in Burstall’s, simplifies the theorem prover’s task and substantially speeds
up proving many interesting assertions. In this section, we explore if we
can benefit from adding even more explicit non-aliasing information into a
memory model using results of an alias analysis.

Alias analysis divides the program’s memory into alias classes. Alias
classes are disjoint sets of memory locations, i.e. memory locations from two
alias classes cannot alias each other. Therefore, instead of having memory
map Mem that maps type-pointer pairs to pointers, as in Burstall’s memory
model from Section 3.3.2, here we define memory map Mem that maps (alias
class)-pointer pairs to pointers:

Mem : (aliasclass× ptr)→ ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

Each alias class in the memory model is a unique constant of type aliasclass
distinct from all other alias class constants. We call such a memory model
that uses the results of an alias analysis to explicitly capture non-aliasing
information an alias-analysis-based memory model.

Figure 3.10 gives a simple example illustrating the translation of C into
BoogiePL using the alias-analysis-based memory model. Note that we mod-
ified the example slightly to illustrate the potential advantage of using the
results of an alias analysis when modeling memory (the previously used
example would behave exactly the same as when using eager unification).
Based on the results of the alias analysis (e.g., DSA), we can easily infer
that pointers s1 and s2 point to memory locations belonging to different
alias classes. Therefore, the translation introduces two unique constants
$ac1 and $ac2 of type aliasclass on lines B1 and B2. Then, the in-
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C1 typedef struct {
C2 int a;
C3 int b;
C4 } S;
C5

C6 void main() {
C7 S* s1, s2;
C8 s1 = (S*)malloc(sizeof(S));
C9 s2 = (S*)malloc(sizeof(S));
C10

C11 s1->a = 3;
C12 s2->a = 4;
C13

C14 assert(s1->a == 3);
C15

C16 }

B1 const unique $ac1:aliasclass;
B2 const unique $ac2:aliasclass;
B3

B4

B5

B6 procedure main() {
B7 var s1:ptr, s2:ptr;
B8 call s1 := malloc(Ptr(null,8));
B9 call s2 := malloc(Ptr(null,8));
B10

B11 Mem[$ac1][s1] := Ptr(null,3);
B12 Mem[$ac2][s2] := Ptr(null,4);
B13

B14 assert(Mem[$ac1][s1] ==
B15 Ptr(null,3));
B16 }

Figure 3.10: Alias Analysis Based Memory Model. This example illustrates
translation of the simple C program on the left into the BoogiePL program
on the right using the alias-analysis-based memory model.

troduced constants are used as the first index into memory map Mem on
lines B11, B12, and B14. Note that by explicitly introducing alias classes
into the memory model, one can conclude that memory updates on lines
B11 and B12 are independent without reasoning about memory allocation,
although the types of the respective memory locations are the same. This
should further simplify reasoning about memory and therefore speed up the
verification process.

The results in Table 3.3 compare the Boogie runtimes using the eager
unification and alias-analysis-based memory models. While there is not a
significant difference in the verification runtimes on the easier examples,
on the harder applicom example the alias-analysis-based memory model is
roughly 15% faster than the eager unification one. This suggests that the
alias-analysis-based memory model has an advantage over eager unification
on the more complex examples that generate more objects on the heap.
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Driver Eager Unification (s) Alias Analysis (s)
ib700wd 11.6 11.4
w83877f wdt 13.1 12.9
sc520 wdt 13.5 14.5
machzwd 15.3 15.5
wdt977 14.7 15.5
ds1286 15.9 17.1
efirtc 12.0 13.8
applicom 68.4 58.0

Table 3.3: Comparison of Eager Unification and Alias Analysis Based Mem-
ory Models. The column “Eager Unification” gives the total runtime of
Boogie using the eager unification based memory model; “Alias Analysis”
gives the total runtime of Boogie using the alias-analysis-based memory
model.

3.8 Related Work

All software verification tools must model memory in some way. Therefore,
there are a large number of different approaches to this problem and covering
all of them is beyond the scope of this thesis. This section focuses on modular
deductive verification tools similar to Smack and their memory models.

Burstall’s memory model [Bur72] has been successfully employed by
many modular software verification tools for type-safe languages. For in-
stance, ESC/Java [FLL+02] and Boogie [BLS05], as modular verification
tools for Java and Spec# respectively, use Burstall’s memory model. The
monolithic memory model was initially appealing to verifiers for type-unsafe
languages such as C, and therefore memory models similar to the monolithic
were used in early versions of Havoc [CLQR07] and also in the first incar-
nation of VCC [SXSP07]. Caduceus [FM04] is a verification tools for C that
is based on Burstall’s memory model, but doesn’t have a clean solution for
type-unsafe operations — it gives up in the presence of type-unsafe casts. In
the Caduceus framework, Moy [Moy07] introduced an approach for handling
unions and casts that requires user-provided annotations as a guidance.

Havoc recently moved away from the monolithic memory model by
switching to a novel memory model for low-level code that includes type
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information [CHLQ09]. Types can be checked using an SMT solver, and
they also provide a decision procedure for checking type-safety. Using these
techniques, they type-checked a number of Windows device drivers. Their
work is complementary to ours: we conservatively and eagerly remove as
many type checks as possible using a cheap pointer analysis, whereas they
provide an efficient technique to prove the inserted type checks using a much
more heavyweight SMT solver. Also, while our type unification approach is
completely automatic, they require manual annotations for merging types.

The authors of VCC also independently confirmed benefits of having a
typed memory model as opposed to the monolithic one, and very recently
published their work on a novel memory model for C [CMST09]. VCC relies
heavily on user-provided specifications and is targeting completely sound
functional verification of C code. Therefore, their memory model supports
precise byte-level reasoning reasoning as well as partial object overlaps, while
the focus of ours is on scalability. A direct performance comparison would
therefore be somewhat unfair. As well as Havoc, VCC could also benefit
from the approach described in this section of automatically and conserva-
tively splitting memory based on results of a static pointer analysis.

This thesis concentrates on using completely automatic SMT solvers for
discharging verification conditions, and therefore proposes memory models
suitable for that task. Alternatively, there has been some work on more ex-
pressive and powerful memory modeling and, in turn, using interactive the-
orem proving when discharging generated formulas [TKN07, Tuc09]. How-
ever, such approaches put a substantial burden on a user to guide theorem
proving, which is something we cannot accept.

3.9 Summary

Modeling memory in a verification tool for low-level system software is a
challenging problem. On one hand, we showed that using type information
from the source code in a memory model greatly improves scalability. On the
other hand, we illustrated how a memory model that blindly relies on such
type information is potentially unsound since low-level code must sometimes
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make type-unsafe memory accesses. In this chapter, we developed an accu-
rate, sound, and scalable memory models suitable for verification of low-level
code. The memory models are based on a lightweight static analysis that
enables them to safely use type and alias information even in the presence
of type-unsafe operations. On a number of benchmarks, we clearly showed
advantages of using our novel memory models in the verification-condition-
checking paradigm. Furthermore, the benefits of the memory models are
increasing as our verification problem becomes more involved (e.g., bigger
code, more complex properties and invariants). In addition, we believe that
other software verification methods for low-level code that aspire to model
memory at this level would benefit from our approach.

41



Chapter 4

Automatic Frame Axiom

Generation

This chapter presents a method for automatic inference of frame axioms
in the context of modular software verification. The material presented in
this chapter is mostly based on my published work [RH08]. The chapter
starts with a short introduction in Section 4.1 and then gives an illustrative
running example in Section 4.2. Section 4.3 informally introduces parts of
the specification language required for understanding the material of this
chapter. Section 4.4 describes the algorithm for fast automatic inference of
frame axioms that is based on a light-weight pointer analysis. Section 4.5
gives experimental results, while Section 4.6 presents related work. Finally,
Section 4.7 briefly summarizes the chapter by listing main contributions.

4.1 Introduction

The goal of this thesis is sound and scalable verification of system software.
To this end, the previous chapter introduced a sound and scalable memory
model for low-level code, which is an important first step since modeling
memory is at the foundation of every software verifier. This chapter con-
centrates on modularity, which is the key to sound and scalable software
verification.

Good programming practice is to construct large software systems from
smaller, manageable functional units or modules. Many software verifica-
tion tools exploit this natural software modularity for scalability, either by
computing procedure summaries (e.g., [BH08, BMMR01, HJMS02, ISG+05,
BCC+03]), or by relying on user-provided procedure contracts (e.g., [FLL+02,
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Bar03, FM04, BLS05, CLQR07, SXSP07]). There is a trade-off between the
two approaches: the first approach offers more automation, but the com-
puted summaries are usually not very precise, especially in the presence of
unbounded data structures; the second approach requires user input and is
less automatic, but can give much more precision. One of the goals of this
thesis is to make the approach based on user-provided contracts more au-
tomatic while preserving scalability and precision. Typically, user-provided
contracts include procedure pre- and postconditions, loop invariants, and
frame axioms.

This chapter focuses on frame axioms. Formal analysis of software always
confronts some version of the frame problem [MH69]: knowing what is not
changed by a piece of code is necessary for correct and efficient verification.
For straight-line code and scalar variables, computing what changes and
what does not is straightforward. In the presence of pointers, unbounded
arrays, and heap-allocated data structures, however, with the correspond-
ing looping/recursive code to manipulate them, computing precisely what
changes is exceedingly difficult (undecidable in general). Frame axioms allow
the user to aid this computation by suggesting candidate logical formulas
that delimit what memory locations can be modified by a loop or procedure
body; if the verification tool can prove these formulas to be inductive in-
variants, then it can use them as assumptions during verification of other
assertions. Because frame axioms are so helpful to the verification process,
many tools and specification styles support them, e.g.: modifies clauses in
Spec# [BLS05] and HAVOC [CLQR07], assignable clauses in JML [LBR06],
and assigns clauses in Caduceus [FM04]. Unfortunately, these frame axioms
are often very complex and difficult to write, as they must carefully balance
between looseness and tightness in order to be inductive, as well as being
strong enough to prove desired properties of the program. We have found
writing frame axioms to be the most tedious part of annotating a program’s
procedures and loops.

This chapter presents a novel, automatic method to infer candidate
frame axioms. Our two main goals are scalability to non-trivial code bases
and sufficient precision to replace most or all manual annotation of frame
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axioms. We are targeting lightweight verification of simpler data-oriented
safety properties (e.g., buffer-overflows), which are the most common prop-
erties users are typically interested in. Because of the scalability issues with
full functional verification of complex shape-sensitive properties (e.g., red-
black tree rotation), those are not the focus of our method.

The method starts from a recent shallow shape analysis approach that
was introduced in Section 2.1. This analysis summarizes the points-to re-
lation as a graph; our algorithm performs a graph traversal to create a
logical formula characterizing what could be modified via any sequence of
pointer-chasing. This formula is the candidate frame axiom. The worst-
case complexity of the algorithm is exponential in the size of a graph, so
we must evaluate our approach empirically. We have implemented the algo-
rithm in our modular extended static checker Smack (see Section 3.4). To
evaluate scalability, we ran our tool on several medium-sized open-source C
programs and had no difficulty scaling to several tens of thousands of lines
of code. To evaluate the precision of our analysis, we tested our tool on a
benchmark suite of challenging buffer-overflow examples proposed at ASE
2007 [KHCL07]. With manually provided specifications (pre- and postcon-
ditions, loop invariants, and frame axioms), our tool could verify/falsify 226
of the 289 benchmarks. Using our new automatic inference approach we
replaced manually provided frame axioms, which amount to more than half
of the total annotation burden, with the automatically generated ones. We
showed that the completely automatically inferred frame axioms are pre-
cise enough to verify/falsify 203 of the 226 benchmarks, demonstrating the
effectiveness of our inference approach.

4.2 Illustrative Example

Throughout this chapter, we will use a simple running example to illus-
trate the basic concepts as well as our new automatic inference approach.
The code of the example is presented in Figure 4.1. First, we define type
Elem that is a structure consisting of two integer fields f1 and f2. The ex-
ample has two procedures called alloc and init. The procedure alloc
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1 typedef struct {int f1;
2 int f2;} Elem;
3

4 Elem* alloc(int size) {
5 return (Elem*)malloc(size * sizeof(Elem));
6 }
7

8 void init(int size) {
9 Elem *a1 = alloc(size), *a2 = alloc(size);
10

11 // set fields f1 of a1 to 1
12 for (int i = 0; i < size; i++) {
13 a1[i].f1 = 1;
14 }
15

16 // set fields f1 of a2 and
17 // fields f2 of a1 to 0
18 for (int i = 0; i < size; i++) {
19 a2[i].f1 = 0;
20 a1[i].f2 = 0;
21 }
22

23 // check if fields f1 of a1 are set to 1
24 for (int i = 0; i < size; i++) {
25 assert(a1[i].f1 == 1);
26 }
27 }

Figure 4.1: Example Illustrating Frame Problem.

allocates an array of size elements of type Elem. The procedure init

starts by allocating arrays a1 and a2 by calling procedure alloc on line 9.
Both arrays have an unspecified size size. Then, two loops are executed:

1. The loop on line 12 sets field f1 of all elements in a1 to 1.

2. The loop on line 18 sets field f1 of all elements in a2 to 0, and also
field f2 of all elements in a1 to 0.

In the end, we check whether field f1 of all elements in a1 is set to
1 using the assertion on line 25. Obviously, the assertion is not going to
fail: First of all, it is clear that fields f1 of a1 are set to 1 in the first
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loop on line 13. Second, the loop on line 18 does not change those fields: it
updates fields f1 of different array a2 and also different fields f2 of array
a1. Precisely such important facts about preservation of values of memory
locations are necessary for verification of this example. We capture them
using modifies clauses (i.e. frame axioms). As we’ll see in the next section,
it is often tedious to specify the modifies clauses manually. Therefore, the
goal of this work is to infer as much as possible, completely automatically.

4.3 Specification Language

The modular style of verification we are employing requires a speci-
fication language for program annotations, in the form of invariants and
procedure pre- and postconditions. The specification language of Smack is
the same as the one used by Havoc [CLQR07]. It allows succinct expres-
sion of many interesting properties of low-level programs that manipulate
unbounded data structures.

In this section, we will informally introduce the specification language
on our illustrative example from Figure 4.1. The example with manually
provided annotations required for the verification to go through is given in
Figure 4.2.12 As usual, we denote preconditions with requires, postcondi-
tions with ensures, loop invariants with invariant, and modifies clauses
with modifies.

The procedure alloc has one precondition, size>0, requiring that its
integer parameter size be greater than 0 at every call. Furthermore, it
ensures that the heap object pointed to by the return pointer (denoted with
$return) is allocated, its size is equal to size*sizeof(Elem), and also
that the offset component of $return is 0.

In procedure init, all three loops had to be annotated with loop in-
variants and modifies clauses to be able to prove the assertion on line 38.
Each loop has a necessary invariant 0<=i<=size that bounds the counter
i. Apart from the usual basic expressions, such as 0<=i<=size, the spec-

12For better readability, we omit the syntactic clutter that pushes the annotations
through the C front-end of Smack.
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1 typedef struct {int f1;
2 int f2;} Elem;
3

4 requires size > 0;
5 ensures Allocates($return);
6 ensures Size($return) == size*sizeof(Elem);
7 ensures OffsetOf($return) == 0;
8 Elem* alloc(int size) {
9 return (Elem*)malloc(size * sizeof(Elem));
10 }
11

12 requires size > 0;
13 void init(int size) {
14 Elem *a1 = alloc(size), *a2 = alloc(size);
15

16 invariant 0 <= i <= size;
17 invariant Forall(x, Array(a1, sizeof(Elem), i), x→f1 == 1);
18 modifies Incr(Array(a1, sizeof(Elem), New(i)),
19 OFFSET(Elem, f1));
20 // set fields f1 of a1 to 1
21 for (int i = 0; i < size; i++) {
22 a1[i].f1 = 1;
23 }
24

25 invariant 0 <= i <= size;
26 modifies Union(
27 Incr(Array(a2, sizeof(Elem), New(i)), OFFSET(Elem, f1)),
28 Incr(Array(a1, sizeof(Elem), New(i)), OFFSET(Elem, f2)));
29 // set fields f1 of a2 and fields f2 of a1 to 0
30 for (int i = 0; i < size; i++) {
31 a2[i].f1 = 0;
32 a1[i].f2 = 0;
33 }
34

35 invariant 0 <= i <= size;
36 // check if fields f1 of a1 are set to 1
37 for (int i = 0; i < size; i++) {
38 assert(a1[i].f1 == 1);
39 }
40 }

Figure 4.2: Example Annotated Using our Specification Language. The
example is annotated with necessary preconditions, postconditions, loop in-
variants, and modifies clauses.
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ification language also supports annotations, again borrowed from Havoc,
convenient for constructing potentially unbounded sets of pointers (such as
Array) and for manipulating those sets (such as Incr and Union).

The expression Array(p, size, idx ), where p is a pointer and size and idx
are integers, refers to the unbounded set of pointers

{p, p + size, p + 2 ∗ size, . . . , p + (idx − 1) ∗ size}.

We use it to specify a set of memory locations up to index idx belonging
to an array whose element size is size. For instance, in the invariant on
line 17, the expression Array(a1,sizeof(Elem),i) captures elements of
the array a1 up to index i.

The set expression Incr(C, n) increments each element of the set of
pointers C by the offset n. On line 18, it is used to increment all pointers
in the set defined with Array by the offset of field f1 in the structure type
Elem. Similarly, the set expression Decr(C, n) decrements each element of
the set of pointers C by the offset n.

To be able to reason about sets of pointers, we use the expression
Forall(x, S, φ), which says that for all elements x of some set of point-
ers S, formula φ has to hold. For example, on line 17, we use Forall to say
that fields f1 of all elements in a1 up to index i are set to 1.

Each modifies clause modifies C refers to a set of pointers C in the
pre-state of the respective procedure or loop. It specifies which memory
locations get modified by the procedure/loop. The set C has to be carefully
specified. If the set is a subset of the memory locations that actually get
modified, the frame axiom generated from the modifies clause will fail when
the verifier checks it. If the set is too coarse of an over-approximation,
the verifier will not be able to prove many interesting properties later on.
Modifies clauses are therefore often complex, as can be seen from the one
on line 26, which says that the loop modifies only fields f1 of the array a2

(first Incr expression of the Union) and fields f2 or the array a1 (second
Incr expression). Note that in the loop modifies clauses, New(i) indicates
that we are not referring to the value of i in the pre-state, but to the value
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of i being changed by the loop (i.e. in the post-state).
Smack needs two important facts to be able to discharge the assertion

on line 38. This facts are captured by the annotations on line 17 and 26
we just explained. First, the invariant on line 17 ensures that after the
loop, the field f1 of all elements in a1 is set to 1. In addition, the modifies
annotation on line 26 ensures that the second loop does not modify the f1
fields of a1 that the first loop just set. The modifies clause says that the
loop modifies f1 fields of elements of array a2 and f2 fields of elements of
a1, leaving therefore f1 fields of a1 unchanged. In order to generate these
modifies sets automatically, we have to be able to distinguish a1 from a2

although they are allocated using the same malloc instruction on line 9
called from different contexts, as well as to conclude which fields (offsets) of
array elements are being modified.

4.4 Automatic Frame Axiom Generation

Algorithm

Given the DS graphs generated by DSA (see Section 2.1), our tool chain
creates candidate frame axioms for the verifier via a three-step process.
First, we process the DS graph to compute an over-approximation of the set
of memory locations that can be modified by each function or loop body,
which we call the modifies set. Next, we encode this set into a typical
program specification logic, for use as a modifies clause annotation. The
final step is the standard conversion of the modifies clauses into frame axioms
used internally by the verification tool.

4.4.1 From DS Graphs to Modifies Sets

The goal of the first step is to compute an over-approximation of the set
of memory locations that can be modified by parts of the program code.
Because we intend to generate annotations for loops and procedures (for use
inductively as frame axioms), our analysis centers on characterizing what
memory locations can be modified by a given procedure or loop body.
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The algorithm is a straightforward traversal and marking of the DS
graphs. The analysis is ordered by a bottom-up traversal of the program’s
call graph (cycles in the call graph are broken arbitrarily). For each proce-
dure or loop body, we can identify all store operations and mark the target
address’s corresponding location, which is defined by its node and offset, in
the procedure’s or globals DS graph as (potentially) modified. In addition,
for any procedures called from this procedure or loop body, we copy the
markings from the callee’s DS graphs to the corresponding node in the cur-
rent DS graph, if any. In other words, we mark any changes made by the
current procedure/loop body, as well as copying over any changes made by
any callee that is visible to the current procedure/loop body. Note that all
modified locations marked in the globals graph do not have to be copied over
since the globals graph is shared by all procedures. Therefore, the globals
graph is always searched first when marking modified locations.

The result is that we compute the following sets of 〈DSnode, offset〉 pairs:

• For each procedure, we find a set of 〈DSnode, offset〉 pairs (i.e. memory
locations) in the respective DS graph that are being modified by that
procedure or its callees, and that are visible to its callers, i.e. nodes
reachable from globals or procedure parameters.

• For each loop, we find a set of 〈DSnode, offset〉 pairs modified by that
loop or by procedures called from the loop, and that are visible outside
the loop, i.e. nodes reachable from globals or loop variables that are
live at the loop header.

Note that each 〈DSnode, offset〉 pair can represent an unbounded set of
memory locations.

A cycle in the call graph indicates recursive procedure calls. The modi-
fies set we compute might not be guaranteed to be an over-approximation,
because when we break cycles of recursion in the call graph, we may lose be-
haviors of the original program. Fortunately, this localized unsoundness in
our analysis does not compromise the overall soundness of the verification,
because the candidate frame axioms (like any other annotation) are checked
when they are used during the verification process.
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4.4.2 Modifies Sets to Modifies Clauses

The modifies sets are then passed to the second stage of our algorithm,
which tries to characterize these sets of memory locations as formulas in
a logic for program specification and verification, such as was presented in
Section 4.3. One issue is that our specification language, like most others,
does not currently have constructs for describing unbounded recursive data
structures. Accordingly, the second stage starts by breaking any cycles in
the DS graphs, which can represent such data structures, yielding directed
acyclic graphs (DAGs). As before, this localized potential unsoundness does
not compromise the overall soundness of the verification process.

For each node in the DS graph, we generate a logic formula that tries
to over-approximate the set of memory locations that the pair 〈DSnode, 0〉
represents. The formulas are generated by walking over the topologically
sorted (each node before all nodes to which it has outbound edges) nodes of
a DS graph (DAG) starting from variables that can appear in the respective
modifies clause. We call such variables root variables. The root variables for
modifies clauses for procedures are the globals and the procedure parame-
ters; the root variables for loops are globals and variables live at the loop
header. A path in a DS graph to a node represented as a formula will be a
sequence of pointer arithmetic operations, memory dereferences, and Array

set constructors. The pseudocode of the algorithm is given in Figure 4.3.
The input of the algorithm is a set of root nodes R and a DS graph.

For each node in the graph reachable from the root nodes, the algorithm
generates a list of expressions, each expression representing one path to the
〈DSnode, 0〉 pair from a root node. We call such expressions path expressions.
If a node n is a pointer variable node and its outgoing edge is e, the path
expression to the beginning of the object the edge e points to is simply

Decr(n.varName, e.endOffset)

and is generated on line 6. Note that while n.varName and e.endOffset
are actually evaluated by our algorithm, Decr becomes a part of the path
expression we are recursively constructing and is not evaluated. Before we
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1: Q ← nodes with no predecessor
2: while Q is non-empty do
3: pop node n from Q
4: if n is a pointer variable node and n in R then
5: e← n.edge
6: path ← Decr(n.varName, e.endOffset)
7: if e.endNode is array node then
8: path ←

Array(path, sizeof(e.endNode),
Size(path))

9: end if
10: e.endNode.addPath(path)
11: else if n is a heap node then
12: for all edges e of n do
13: for all paths p of n do
14: path← Decr(Deref(

Incr(p, e.startOffset)), e.endOffset)
15: if e.endNode is array node then
16: path ←

Array(path, sizeof(e.endNode),
Size(path))

17: end if
18: e.endNode.addPath(path)
19: end for
20: end for
21: end if
22: for all edges e of n do
23: remove edge e from graph
24: if e.endNode has no other incoming edges then
25: push e.endNode into Q
26: end if
27: end for
28: end while

Figure 4.3: Automatic Frame Axiom Generation Algorithm. The algorithm
generates formulas that describe DS graph nodes reachable from a set of root
nodes R.
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add the path expression to the e.endNode, we always have to case-split on
whether the e.endNode represents an array or not. If a node n is a heap
node, the algorithm iterates through all of its outgoing edges on line 12. For
each edge e, it loops on line 13 through all path expression to the current
node n. Then, for each path p, the path expression

Decr(Deref(Incr(p, e.startOffset)), e.endOffset)

to the beginning of the object the edge points to is generated on line 14.
The path expression captures the fact that each outgoing edge from a heap
node represents a memory dereference, which is represented by the Deref

expression. Again, before adding the newly generated path expression to
the end node, we have to case-split on whether the e.endNode represents an
array or not on line 15.

An array heap node represents an array of unbounded number of ele-
ments that the algorithm captures using the Array expression introduced in
Section 4.3. The algorithm generates array expressions

Array(path, sizeof(e.endNode), Size(path))

on lines 8 and 16. Note that while the size of each array element denoted
sizeof(e.endNode) can be known at compile time, the total size of the
array is usually not known since arrays tend to be dynamically allocated.
However, because our memory model described in Chapter 3 has the map
Size where size of each object is stored during allocation, with the expression
Size(path) we are referring to this map when looking for a dynamic size
of the array object path points to. The ability of the DSA to recognize
array heap nodes, and the ability of our algorithm to precisely express the
potentially unbounded set of memory locations the array nodes represent,
is crucial for the precision of the generated modifies sets.

In the end, because the generated path expressions point to the beginning
of an object, we have to offset them to point exactly to the modified memory
location inside the object. The modifies set for the respective procedure or
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loop is then the union of such path expressions.

4.4.3 Modifies Clauses to Frame Axioms

Finally, frame axioms are constructed from the modifies clauses in the stan-
dard manner of the many tools that support modifies clauses. Formally, the
modifies clause modifies C, where C is a set of pointers, is translated into
the following frame axiom: 13

∀x : ptr




Old(Alloc)[Obj(x)] == UNALLOCATED

|| (x ∈ Old(C) && Obj(x)!=null)
|| Old(Mem)[x] == Mem[x]


 .

Informally, the axiom states that the contents of Mem remains unchanged
at each pointer that is allocated and both not a member of C and not null
in the pre-state of the procedure/loop. Because of the flow-insensitivity of
DSA and also of our algorithm (i.e. flow-insensitive marking of modified
locations even if they had not been allocated), a loop frame axiom might
contain memory locations that are allocated only later on. Such locations are
uninitialized and can point to essentially anything. Therefore, leaving them
in the frame axioms would mean that anything could be modified, which
is highly imprecise and would prevent proving many interesting properties.
We prevent this by adding path-sensitivity by restricting the set of modified
locations just to the ones that have been allocated (i.e. not equal to null)
at the point where frame axiom had been asserted (procedure or loop entry).

The automatically generated frame axioms are our best effort to be as
precise as possible, and in general do not have to be sound. However, as
mentioned already, this does not affect the soundness of the verification,
since all of the generated frame axioms are checked during verification.

4.4.4 Example Run

We now illustrate how the presented algorithm generates path formulas on
the DS graph of our illustrative example given in Figure 4.4. The root nodes

13The expression Old(φ) denotes the value of φ in the pre-state of the procedure/loop.
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%struct.Elem array: A1

0:f1 4:f2

%struct.Elem array: A2

0:f1 4:f2

 $loop2a a1  $loop2b $loop1  a2

Figure 4.4: Simplified Data Structure Graph of our Illustrative Example.
The graph is for procedure init. The nodes $loop1, $loop2a, and $loop2b
are temporary helper pointer variable nodes not visible in the source code;
%struct.Elem denotes the type of a node; flag array marks array nodes; f1
and f2 are fields at offsets 0 and 4, respectively. The fields f1 and f2 are
integer and not pointer fields, and therefore have no outgoing edges.

for the second loop in the example are a1 and a2. The algorithm starts by
putting all pointer variable nodes (i.e. nodes with no predecessor) into Q.
Nodes $loop1, $loop2a, and $loop2b are just going to be popped on line 3
and their edges removed in the loop on line 22 since these pointer variable
nodes are not in root nodes. Node a1 is a root node. It has one edge whose
end node is the array heap node A1. Therefore, the path

Array(Decr(a1, 0), sizeof(A1), Size(Decr(a1, 0)))

will be added to the paths of node A1. Also, in the loop on line 22, the node
A1 will be pushed onto Q since it has no more incoming edges. The same
thing will happen with a2 in the next iteration of the while loop. Then,
A1 and A2 will be removed from Q since they have no outgoing edges, Q is
empty, and we are done.

The paths generated by the algorithm are

Array(Decr(a1, 0), sizeof(A1), Size(Decr(a1, 0)))
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to the memory location 〈A1 , 0〉, and

Array(Decr(a2, 0), sizeof(A2), Size(Decr(a2, 0)))

to the memory location 〈A2 , 0〉. The loop modifies memory locations pointed
by $loop2a and $loop2b, which correspond to pairs 〈A2 , 0〉 and 〈A1 , 4〉.
Therefore, the expression

Incr(Array(Decr(a2, 0),
sizeof(A2), Size(Decr(a2, 0))), 0)

represents the first set of modified memory locations, while the expression
that offsets all pointers by 4

Incr(Array(Decr(a1, 0),
sizeof(A1), Size(Decr(a1, 0))), 4)

represents the second set. The final modifies set for the second loop is the
union of these two sets, which corresponds to the modifies set we provided
manually on line 26 in Figure 4.2.

4.5 Experimental Results

We have implemented the inference algorithm in Smack. We assessed the
usability of our technique and the precision of the generated modifies clauses
on the buffer-overflow benchmark suite proposed at ASE 2007, containing
testcases derived from a number of buffer-overflow vulnerabilities in open-
source programs [KHCL07].14 The suite has 22 vulnerabilities from 12 pro-
grams, totaling 289 testcases (faulty and patched versions) with different dif-
ficulty levels and around 18000 LOC. First, we manually annotated most of
the benchmarks with pre- and postconditions, loop invariants, and modifies

14For easier exposition, we presented the work on memory models in the previous chap-
ter, although chronologically it comes after this work. Using improved memory modeling
Smack could handle real-life device drivers from Section 3.6 as opposed to smaller buffer-
overflow benchmarks from this section.
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Program #TCs #Annot #Mod #Infer
apache 24 24/24 90 9/24
bind 20 4/20 8 4/4
edbrowse 6 6/6 14 6/6
gxine 2 2/2 0 2/2
libgd 8 4/8 4 4/4
MADWiFi 6 6/6 8 2/6
NetBSD-libc 24 24/24 72 20/24
OpenSER 102 102/102 204 102/102
samba 4 4/4 2 4/4
sendmail 67 46/67 58 46/46
SpamAssassin 2 2/2 4 2/2
wu-ftpd 24 2/24 2 2/2
Total 289 226/289 466 203/226

Table 4.1: Quality of the Generated Modifies Clauses. Results showing the
quality of the automatically generated modifies clauses. “#TCs” is the num-
ber of testcases; “#Annot” is the number of testcases our tool discharged
with the manually provided annotations; “#Mod” is the number of required
modifies clauses; “#Infer” is the number of testcases with the automatically
generated modifies clauses our tool successfully discharged.

clauses necessary for the verification/falsification to go through. We checked
NULL pointer dereference, buffer-overflow, and buffer-underflow properties
for each pointer dereference. Then, we removed all of the manually provided
modifies clauses and, instead, used the ones generated by our automatic ap-
proach. We again ran all of the experiments to measure the quality of the
automatically generated modifies clauses. The results for this set of experi-
ments are presented in Table 4.1 and Table 4.2.

Table 4.1 assesses the quality (i.e., precision) of the automatically gen-
erated modifies clauses. We managed to manually annotate and check with
Smack 226 out of the 289 testcases. We had to skip 63 testcases because
they either require bit-precise reasoning, which our tool currently does not
support, or they were too complex to be completely annotated manually
with the limited time we had. The annotation of these 226 testcases re-
quired 2087 annotations total (i.e., pre- and postconditions, loop invariants,
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and modifies clauses). Modifies clauses alone amounted to 466 annotations
(or 22%), ranging in complexity from simple lists of variables that get mod-
ified to complex expressions involving unions of unbounded sets of pointers
(Array expressions) and pointer arithmetic. Furthemore, modifies clauses
were usually the most complex annotations and were hard to come up with
even when other annotations were already written down.

After removing all of the manually provided modifies clauses and replac-
ing them with the automatically generated ones, Smack discharged success-
fully 203/226 testcases (or 90%). This clearly shows the effectiveness of our
technique: in most cases, the automatically generated modifies clauses are
precise enough for the verification to succeed, or for finding a bug without
introducing false errors.

We analyzed the 23 testcases for which the automatically generated mod-
ifies clauses are not good enough. In all cases, the problems are loop modifies
clauses, in particular, certain idioms of loops iterating over arrays. The root
cause is the loss of precision because DSA conservatively over-approximates
an unbounded array by a single element. The resulting overly conservative
modifies clauses can cause either verification complexity to blow-up or some
annotation to fail erroneously. Typically, in these 23 testcases, a loop modi-
fies clause that is too conservative causes the proof of some other needed loop
invariant (on the same loop) to fail. Therefore, Smack never erroneously
reported a violation of the overall correctness properties, but instead marked
the loop invariants it couldn’t prove; the failure was manifestly a failure of
the analysis, not a false bug report.

Table 4.2 gives cumulative execution times of Smack for the 203 test-
cases that Smack could discharge with automatically generated modifies
clauses. The results again support our automatic inference technique —
the performance penalty we paid for using automatically generated modifies
clauses is negligible compared to the effort needed for manually specifying
them when the technique was not available.

Because the size of the testcases in the buffer-overflow benchmark suite is
relatively small, the runtimes of DSA and our automatic inference algorithm
are just a few milliseconds. Therefore, although annotating and checking
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Program MTime(s) ITime(s)
apache 42.5 44.1
bind 11.5 11.5
edbrowse 14.5 13.6
gxine 3.8 3.8
libgd 13.3 13.3
MADWiFi 3.9 3.9
NetBSD-libc 61.6 94.5
OpenSER 275.3 276.4
samba 7.7 7.8
sendmail 120.4 120.9
SpamAssassin 4.3 4.3
wu-ftpd 3.9 3.9
Total 559.1 585.1

Table 4.2: Comparison of Manually Provided and Automatically Inferred
Modifies Clauses. “MTime” is the verification time for testcases with manu-
ally provided modifies clauses; “ITime” is the verification time for testcases
with automatically inferred modifies clauses. Verification was run on an
Intel Pentium D at 2.8GHz.

these programs using Smack is beyond the scope of this thesis, we assessed
the scalability of the inference algorithm on a number of open-source appli-
cations: the bftpd FTP server, the muh irc-bouncer, the gzip compression
utility, the Pure-FTPd FTP server, the CUDD decision diagram package
(we actually run the analysis on nanotrav — a simple reachability analy-
sis program included with the CUDD package), and the Spin explicit-state
model-checker.

The runtimes are in Table 4.3 and clearly show the scalability of the
prototype implementation of our approach. Our biggest example, CUDD,
took only 61s. We believe the runtime for Spin is the longest because it has
an unusually big DS graph of around 2500 nodes for global storage. Since the
complexity of our expression generator algorithm is worst-case exponential
in the size of a DS graph, it is understandable that slowdown of the analysis
is possible on big graphs, which is confirmed by the Spin example. However,
as can be seen from the published DSA results [LLA07], the usual maximal
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Benchmark LOC Time(s)
bftpd 2.0 3843 2.5
gzip 1.2.4 5809 2.9
muh 2.2a 6294 2.7
Pure-FTPd 1.0.21 26320 3.8
Spin 5.1.4 29672 122.5
CUDD/nanotrav 2.4.1 67578 61.0
Total 139516 195.4

Table 4.3: Results of the Automatic Inference Algorithm. Total runtimes
of DSA and our automatic inference algorithm on a number of open-source
benchmarks. These experiments were executed on an AMD Opteron 254 at
2.8GHz.

graph size is only a couple hundred of nodes and such big graphs do not
occur often in practice.

4.6 Related Work

There has been lots of previous work on automatic inference of data-oriented
procedure preconditions, postconditions, and loop invariants (e.g., [CC77,
FL01, BMMR01, FQ02, HJMM04, LL05, EPG+07]). For example, the Hou-
dini algorithm [FL01] is a simple and yet effective approach to automatic
inference of module annotations in the extended static checking framework.
The algorithm starts with a set of (relatively simple) candidate annotations.
The set is generated from program source using simple heuristics about
which annotations might be useful. Then, the algorithm iteratively removes
candidate annotations that don’t hold until it reaches a consistent set of
annotations. However, no heuristics are provided for generating candidate
modifies clauses, which is exactly what our automatic inference algorithm
provides. Our work shares the same motivation with these works: making
semi-automatic program verification more automatic. However, we address
the different problem of inferring frame axioms, so this body of work is
complementary to ours.

Separation logic [Rey02] is an extension of Floyd-Hoare logic [Flo67,
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Hoa69] that facilitates reasoning about programs that manipulate pointers.
It allows for succinct specifications of procedures (pre- and postconditions)
and loops (loop invariants) since it avoids the need to explicitly state frame
axioms [ORY01]. Separation logic makes such succinct specification pos-
sible using a proof rule called the frame rule. However, automatic appli-
cation of the frame rule often requires inference of frame axioms. Berdine
et al. [BCO05b] present an automatic method for extracting frame axioms
from incomplete proofs. They implemented the method in their tool for sym-
bolic execution with separation logic called Smallfoot [BCO05a] and used it
on a few small examples. This work was followed by approaches based on
an automatic fixed-point computation over an abstract domain built from
assertions expressed in separation logic (e.g., [GBC06, DOY06, YLB+08]).
Such a fix-point computation also automatically infers frames. Recently,
Calcagno et al. [CDOY09] showed how to do compositional shape analysis
that scales to very large programs (e.g., Linux kernel) and also infers frames.

Note that the separation-logic-based approaches focus almost exclusively
on the verification of program’s memory safety (i.e., no double frees, mem-
ory leaks, dereferences of dangling pointers). On the other hand, the goal
of Smack is to be able to check any user-provided assertions, which typi-
cally talk about program data and not heap. Discharging such assertions
requires reasoning about program data using theories such as the theory
of linear arithmetic, which can’t be done using separation logic exclusively.
Furthermore, combinations of separation logic with other theories required
for reasoning about program data are not readily available. The algorithm
described in this chapter makes this connection possible: It essentially moves
frame axioms generated in frameworks suitable for reasoning about the heap
into the extended static checking environment supported by SMT solvers
suitable for reasoning about program data. Therefore, the approaches based
on separation logic are orthogonal to the results presented in this chapter,
and as such could potentially be used instead of the pointer analysis we
are currently employing in the initial step of our algorithm. For instance,
if we would need frame axioms that talk about complex linked data struc-
tures, it might be promising to use separation-logic-based pointer analy-

61



4.7. Summary

sis to generate frame axioms in expressive logics for linked data structures
(e.g., [KMS02, BPZ05, BR06, RZ06, CLQR07]).

Separation-logic-based approaches to shape analysis are just one portion
of the vast literature on shape analysis (and the related analysis of side-
effects, pointers, etc.). We believe our automatic inference method could be
adapted to other pointer and shape analyses that produce similar summary
graphs of the data structures in the program to what DSA does (e.g., [LAS00,
FRD00, LH01, HR05]).

Like our work, Taghdiri et al. [TSJ06] check data-oriented properties
of programs. However, they attack the more difficult problem of inferring
procedure summaries that are sufficiently precise to prove verification condi-
tions. Frame axioms form part of these procedure summaries. Because they
are attempting a more ambitious objective, they created their own static
analysis, which is more precise (flow-sensitive as well as context-sensitive),
and is therefore by design more expensive and less scalable. We cannot
compare results directly, because their tool is for Java, whereas ours is for
C, but we report results on more and larger examples. Our tool also can
analyze the much more complicated pointer manipulation that occurs in C
programs, which theirs cannot. On the other hand, for small Java proce-
dures, their tool infers usable, complete procedure summaries, whereas our
goal is only to infer frame axioms.

4.7 Summary

This chapter describes a technique for automatically inferring frame axioms
of procedures and loops using static analysis. Our inference technique auto-
matically generates frame axioms of sufficient quality to discharge approxi-
mately 90% of the benchmark examples that we could solve with manually
provided frame axioms. In no cases did the automatic frame axioms produce
false error reports or fail to falsify the buggy examples in the benchmark
suite. The inference algorithm is also very fast. We have demonstrated
scalability to several tens of thousands of lines of code.

The soundness of the verification process using the automatic frame ax-
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iom inference technique described in this chaper doesn’t rely on the gen-
erated frame axioms being conservative — the axioms are still going to be
discharged as part of proving the program correct. However, the underlying
assumptions that memory models rely on (see Section 3.3.3) apply to this
chapter as well.
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Chapter 5

Verification of

Shared-Memory Concurrent

Programs

This chapter introduces a completely automatic approach to context-bounded
analysis of concurrent programs. The material presented in this chapter is
largely based on my published work [LQR09]. Our approach starts with a
bug-preserving encoding of concurrent programs written in C into sequen-
tial programs. The approach handles the heap and accompanying low-level
operations such as pointer arithmetic and casts. Then, it applies traditional
verification techniques on the resulting sequential programs: correctness of
the sequential program implies correctness of its concurrent counterpart un-
der the given context-bound.

Section 5.1 introduces the related background work and contributions
of this chapter. Section 5.2 gives the translation of concurrent C programs
under the given context-bound into sequential ones. Section 5.3 presents the
field abstraction algorithm that is crucial for the scalability of the transla-
tion. Section 5.4 describes the implementation of the approach, the bench-
marks, and the experimental results. Section 5.5 presents related work.
Finally, Section 5.6 briefly summarizes the chapter by listing main contri-
butions and underlying assumptions.
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5.1 Introduction

Context-bounded analysis is an attractive approach to verification of con-
current programs. This approach advocates analyzing all executions of a
concurrent program in which the number of contexts executed per thread
is bounded by a given constant K. Bounding the number of contexts exe-
cuted per thread reduces the asymptotic complexity of checking concurrent
programs: while reachability analysis of concurrent boolean programs is un-
decidable, the same analysis under a context-bound is NP-complete [QR05,
LTKR08]. Moreover, there is ample empirical evidence that synchroniza-
tion errors, such as data races and atomicity violations, are manifested
in concurrent executions with small number of context switches [QW04,
MQ07]. These two properties together make context-bounded analysis an
effective approach for finding concurrency errors. At the same time, context-
bounding provides for a useful trade-off between the cost and coverage of
verification.

In this chapter, we apply context-bounded verification to concurrent C
programs such as those found in low-level systems code. In order to deal
with the complexity of low-level concurrent C programs, we take a three-
step approach. First, we eliminate all the complexities of C (e.g., dynamic
memory allocation, pointer arithmetic, casts) by compiling into the Boogie
programming language (BoogiePL) [DL05] using the techniques described
in Chapter 3. Thus, we obtain a concurrent BoogiePL program from a con-
current C program. Second, we eliminate the complexity of concurrency
by appealing to the recent method of Lal and Reps [LR08] for reducing
context-bounded verification of a concurrent boolean program to the veri-
fication of a sequential boolean program. By adapting this method to the
setting of concurrent BoogiePL programs, we are able to construct a se-
quential BoogiePL program that captures all behaviors of the concurrent
BoogiePL program (and therefore of the original C program as well) up to
the context-bound. Third, we generate a verification condition from the
sequential BoogiePL program and check it using a Satisfiability Modulo
Theories (SMT) solver [dMB08].
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In order to scale our verification to realistic C programs, we introduce the
idea of field abstraction. The main insight is that the verification of a given
property typically depends only on a small number of fields in the data struc-
tures of the program. Our algorithm partitions the set of fields into tracked
and untracked fields; we only track accesses to the tracked fields and abstract
away accesses to the untracked fields. This approach not only reduces the
complexity of sequential code being checked, but also allows us to soundly
drop context-switches from the program points where only untracked fields
are accessed. Our approach is similar to localization-reduction [Kur95], but
adapted to work with arrays. We present an algorithm for refining the set
of tracked fields based on the counterexample-guided-abstraction-refinement
(CEGAR) loop, starting with the fields in the property of interest. Our re-
finement algorithm is effective; on a number of examples it discovered the
field abstraction that was carefully picked by a manual inspection of the
program.

We implemented our ideas in a prototype tool called Storm. We applied
Storm on several real-life Windows device drivers that operate in a highly
concurrent setting. Storm has the ability to check any safety property spec-
ified by a user in the form of assertions in the code. In our experiments, we
checked the use-after-free property for one of the main data structures used
by device drivers. Typically, multiple driver routines, which are executing
concurrently, access and may complete this data structure. To satisfy our
property, the code must follow the proper and often complex synchroniza-
tion protocol. Therefore, the property violations will often occur only in
highly concurrent scenarios, which makes this property a natural target for
Storm.

The experiments clearly demonstrate Storm’s usability and scalability.
Furthermore, we assess its performance with respect to code size, number
of contexts, and number of places where a context-switch could happen. In
the process, we found a bug in one of the drivers that could not be detected
by extensive application of previous tools. The bug was confirmed and fixed
by the driver developers.
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5.2 Translation

In earlier work, Lal and Reps [LR08] presented a mechanism for transform-
ing a multithreaded program operating on scalar variables into a sequential
program, with a fixed context-bound. In this section, we show the main
steps to transform a multithreaded program written in C into a sequen-
tial program, using Lal and Reps’ method. The input C programs support
pointers, dynamic memory allocation, unbounded arrays, and low-level op-
erations such as casts and pointer arithmetic that are prevalent in system
software. Our translation is performed in two steps:

1. Translate a multithreaded C program into a multithreaded BoogiePL
program using the Havoc tool [CLQR07]15. The resultant BoogiePL
program contains scalars and maps, and operations on them. The
translation compiles away the complexities of C programs related to
pointers, dynamic memory allocation, casts, and pointer arithmetic.
It is very similar to the one described in Chapter 3.

2. Translate the multithreaded BoogiePL program into a sequential Boo-
giePL program, for a fixed context-bound. We show how to extend
Lal and Reps method to deal with programs with maps or arrays.

In the next two subsections, we describe these two steps in details.

5.2.1 Translating from C into BoogiePL

This section presents a translation of C into BoogiePL programs. The trans-
lation is used by Havoc and very similar to the one described in Chapter 3
that is used by Smack. In particular, Havoc’s translation uses a variation
of Burstall’s memory model described in Section 3.3.2:

E(e→ f) = Memf [E(e) + Offset(f)]
E(∗(e : τ)) = Memτ [E(e)]

15Havoc is the tool I was working on during my first internship at Microsoft Research in
2006, and was later on the inspiration for writing Smack. The details explaining different
tool flows and how they are related can be found in Section 2.2.
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Here, instead of having one Mem map, the Mem map is split into a set of
maps where there is a map Memf for each (word-valued) field f and Memτ

for each pointer type τ . We use e : τ to denote that τ is the static type of
e. Then, a dereference is translated as a lookup into the appropriate Mem

map. Soundness of such a memory model in the presence of type-unsafe C
operations can be assured using the techniques described in Chapter 3.

5.2.2 Eliminating Concurrency Under a Context-Bound

The previous section showed how to convert a concurrent C program into
a concurrent BoogiePL program. In this section, we show how to reduce
a concurrent BoogiePL program into a sequential BoogiePL program while
capturing all behaviors within a context-bound, i.e. within a certain number
of contexts per thread [LR08].

For the rest of this section, we fix the number of threads in the in-
put program to a positive number n and the context-bound to a positive
number K. Without loss of generality, we assume that the input concur-
rent program is provided as a collection of procedures containing n + 1
distinguished procedures Init , T1, . . ., Tn, each of which takes no pa-
rameters and returns no value. The concurrent program is then given by
P , Init(); (T1()|| · · · ||Tn()). Our goal is to create a sequential program Q

that captures all behaviors of P up to the context-bound K. More precisely,
Q will capture all round-robin schedules of P starting from thread T1 in
which each thread can execute at most K times. Each thread is allowed to
stutter in each turn, thereby enabling Q to model even those schedules that
are not round-robin.

The global store of the concurrent C program is captured in the Boo-
giePL program as a collection of global maps from integers to integers, as
described in the previous section. We assume that the program has been
transformed so that every statement either reads (into a local variable) or
writes (from a local variable) a global map at a single index, and that the
condition for every branch depends entirely on local variables. We will also
assume that each such read or write to the global memory executes atom-
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ically. To model synchronization constructs, the grain of atomicity can be
explicitly increased by encapsulating statements inside an atomic block. For
example, the acquire operation on a lock stored at the address a is modeled
using a global map variable Lock and a local scalar variable tmp as follows:

atomic { tmp := Lock [a]; assume tmp = 0; Lock [a] := 1; }

Finally, we assume that assertions in the program are modeled using a special
global boolean variable error that is set to true whenever the condition in
the assert statement evaluates to false.

To convert the concurrent program P into the semantically-equivalent
sequential program Q, we introduce several extra global variables. First,
we introduce a global variable k to keep track of the number of contexts
executed by each thread. Second, for each global map G, we introduce
K − 1 new symbolic map constants named V G

2 to V G
K . Finally, we replace

each global map G with K new global maps named G1 to GK . Intuitively,
the sequential program Q mimics a concurrent execution of P as follows.
First, each map Gi is initialized to the arbitrary symbolic constant V G

i for
all 2 ≤ i ≤ K. The initialization procedure Init runs using the global map
G1 (with an arbitrary initial value) and initializes it. Then, the procedure
T1 starts executing using the global map G1. Context switches in T1 are
simulated by a sequence of K − 1 nondeterministic choices using calls to
procedure Schedule defined below. The i-th such choice enforces that the
program stops using the map Gi and starts using the map Gi+1. Then,
each of T2 to Tn is executed sequentially one after another under the same
policy. Note that when Tj+1 starts executing on the map Gi, the value of
this map is not arbitrary; rather, its value is left there by Tj when it made
its i-th context switch. Finally, when Tn has finished executing, we ensure
that the final value of map Gi is equated to V G

i+1, which was the arbitrary
initial value of the map Gi+1 at the beginning of the i + 1-th context of T1.

We capture the intuition described above by performing the following
transformations in sequence:
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1. Replace each statement of the form tmp := G[a] with

atomic {
if (k = 1) tmp := G1[a]
elsif (k = 2) tmp := G2[a]
. . .

else tmp := GK [a]
}

and each statement of the form G[a] := tmp with

atomic {
if (k = 1) G1[a] := tmp
elsif (k = 2) G2[a] := tmp
. . .

else GK [a] := tmp
}

2. After each atomic statement that is not within the lexical scope of
another atomic statement, insert a call to procedure Schedule that
simulates an effect of a context switch happening nondeterministically.
Schedule has the following specification:

modifies k

ensures old(k) ≤ k ∧ k ≤ K

exsures true

void Schedule(void);

Here, exsures true means that Schedule may terminate either normally
or exceptionally; under normal termination, k is incremented by an
arbitrary amount but remains within the context-bound K. The pos-
sibility of incrementing k by more than one allows the introduction
of stuttering into the round-robin schedules. The possibility of excep-
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tional termination allows a thread to stop executing at any point. The
raised exception is caught by handlers (as shown below) that wrap the
invocation of each Ti. We assume that Init does not share any code
with the threads and we do not add a call to Schedule to any of the
procedures called from Init .

For each procedure f , let the procedure obtained by the transformation
above be denoted by f ′. Let us assume that there is a single map variable
G in the original program. The sequential program Q is then defined to be
as follows:

G2 := V G
2 ; . . . ; GK := V G

K ;
Init();
error := false; k := 1;
try { Schedule(); T ′

1() } finally k := 1;
. . .

try { Schedule(); T ′
n() } finally k := 1;

assume G1 = V G
2 ; . . . ; assume GK−1 = V G

K ;
assert ¬error

Note that all constraints involving the symbolic map constants are as-
sumed equalities. These equalities can be handled by the select-update the-
ory of arrays without requiring the axiom of extensionality. Consequently,
these constraints do not present any impediment to the use of an off-the-
shelf SMT solver. The transformed program contains control flow due to
exceptions which can be easily compiled away if the underlying verification-
condition generator does not understand it. Furthermore, since the trans-
formed program is sequential, the verification-condition generator can ignore
the atomic annotations in the code.

5.3 Field Abstraction

Once we have the sequential BoogiePL program generated from the mul-
tithreaded C program, the next step is to try to verify the program using
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Boogie. Boogie performs precise reasoning across loop-free and call-free
code, but needs loop invariants and procedure contracts to deal with loops
and procedure calls modularly. In order to have an automatic tool, we in-
line procedures and unroll loops (with some exception discussed later). Since
recursion is rare in system programs, inlining procedures is acceptable; how-
ever, the size of inlined procedures can be very large. Our initial attempt
at verifying these inlined programs did not succeed. On the other hand,
we may lose coverage when we unroll loops a fixed number of times. In
this section, we illustrate the use of a field abstraction technique to achieve
scalability when checking large inlined call-free programs without sacrificing
precision; in some cases, our method enables us to avoid unrolling loops and
therefore obtain greater coverage.

5.3.1 Abstraction with Tracked Fields

The high-level idea of this section is fairly simple: our translation of C
programs described in Section 5.2.1 uses a map Memf for dereferencing a
field f , and a map Memτ for dereferencing pointers of type τ . We assume
that the input C program has been proven field-safe for this split, i.e. the
type checker has verified the assertions about the Type map as described
earlier. We guess a subset of these fields and types as relevant and abstract
the program with respect to these fields. If the abstracted program can
be proved correct, then we have proved the correctness of the sequential
BoogiePL program. Otherwise, we have to refine the set of relevant fields
and try again. While proving the abstracted program, we can skip loops
(without the need to unroll them) that do not modify any of the relevant
fields.

In this section, we formalize how we perform the abstraction with respect
to a set of fields, while in the next section we show how to refine the set of
fields we track. Let us define the operation Abstract(P, F ) that takes a
BoogiePL program P generated in the last section and a set of fields F , and
performs the following operations:

1. For any field g 6∈ F , translate the writes Memg
i [e] := tmp for all 1 ≤
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i ≤ K as skip.

2. For any field g 6∈ F , translate the reads tmp := Memg
i [e] for all 1 ≤

i ≤ K as havoc tmp, which scrambles the value of tmp.

3. Finally, remove the call to Schedule that was inserted after the atomic
section for a read or write from a field g 6∈ F .

It is easy to see that the first two steps are property-preserving, i.e. they
do not result in missed bugs. Since statements such as havoc tmp and skip

do not access any global state, context switches after them will not intro-
duce any extra behavior. Consequently, the trailing calls to Schedule can
be removed, thereby eliminating a significant number of redundant context
switches.

In addition to reducing code size and eliminating context switches, check-
ing the abstraction Abstract(P, F ) has another benefit: It enables us to
create a simple summary for a loop whose body does not contain any reads
or writes from F . The summary leaves the memory maps unchanged and
puts nondeterministic values into the local variables modified by the loop.
This simple heuristic for creating loop summaries is applicable in practice:
it could be applied on 5 out of a total of 15 loops in our benchmarks from
Section 5.4.1. Note that such summaries are further over-approximations,
and therefore are sound but not complete — if program correctness depends
on local state that is modified by a summarized loop, the abstraction will
generate a spurious counterexample. However, although one can always
construct an artificial example leading to such behavior, we haven’t seen
spurious counterexamples of this form in practice.

Both of these factors improve the scalability of our approach and improve
coverage by not requiring every loop to be unrolled. In particular, we can
avoid the problem with unrolling loops whose exit condition does not depend
on any input values (e.g., a loop that goes from 1 to 100) — for such loops
any unrolling less than 100 times would block the execution after the loop.
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5.3.2 Refining Tracked Fields

In this section, we provide an algorithm for inferring the set of relevant
fields that affect the property being checked. Our inference algorithm is
a variant of the counterexample-guided abstraction refinement (CEGAR)
framework [CGJ+00, Kur95]. Figure 5.1 gives the pseudo-code for the algo-
rithm. The algorithm takes a program P and checks if the assertion in the
program holds. We start with initializing trackedFields with an empty set,
and then we add fields to the set based on the analysis of counterexamples.
The outer loop in lines 3 to 26 refines trackedFields from a single abstract
counterexample absErrTrace obtained by checking the abstract program A.
If the abstract program A is not correct, we concretize the abstract coun-
terexample trace absErrTrace and check if the trace is spurious. If the
trace is not spurious, then we have a true error in line 23. The operation
Concretize simply restores the reads and writes of fields that were ab-
stracted away (we do not add the context switches back, although adding
them would not break the algorithm). The inner loop in lines 13 to 21
greedily finds a minimal set of fields from allFields such that abstracting
them would result in a spurious counterexample. Those fields are added to
trackedFields and the outer loop is iterated again. Since each iteration of
the inner loop increases the size of trackedFields and the total number of
fields is finite, the algorithm terminates.

5.4 Experimental Results

In this section, we describe our prototype implementation Storm, and our
experience with applying the tool on several real-life benchmarks. As de-
scribed earlier, Storm first uses Havoc to translate a multithreaded C
program along with a set of relevant fields into a multithreaded BoogiePL
program (Section 5.2.1), then reduces it to a sequential BoogiePL program
(Section 5.2.2), and finally uses Boogie and the SMT solver Z3 to check
the sequential program.
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Input: Program P
Output: Program P checked or error trace
1: allFields ← all fields in P
2: trackedFields ← ∅
3: loop
4: A← Abstract(P, trackedFields)
5: (checked , absErrTrace)← Check(A)
6: if checked = true then
7: return CHECKED
8: else
9: concTrace ← Concretize(P, absErrTrace)

10: checked ← Check(concTrace)
11: if checked = true then
12: F ← allFields
13: for all f ∈ allFields do
14: absTrace ← Abstract(concTrace, trackedFields ∪ F \ {f})
15: checked ← Check(absTrace)
16: if checked = true then
17: F ← F \ {f}
18: else
19: trackedFields ← trackedFields ∪ {f}
20: end if
21: end for
22: else
23: return BUG(concTrace)
24: end if
25: end if
26: end loop

Figure 5.1: Algorithm for Tracked Fields Refinement. The algorithm is
based on the CEGAR loop.
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Driver LOC TLOC Routine #F #T Scenario
daytona 105 21720 ioctl 53 2 D | CA

mqueue 494 14075
read

72 4 D |CA |CP |DPCwrite
ioctl

usbsamp 644 4040
read

113 3 D | CA | CPwrite
ioctl

usbsamp fix 643 4040
read

113 3 D | CA | CPwrite
ioctl

serial 1089 32560
read

214 3 D | CA | DPC
write

Table 5.1: Windows Device Drivers Used in the Experiments. “LOC” is
the bare number of lines of code in the checked scenarios that the harness
we wrote executes. It excludes whitespaces, comments, variable and func-
tion declarations, etc.; “TLOC” is the total number of lines of code in the
checked driver. This is the number of lines that usually gets reported. How-
ever, it can be very misleading since a tool is usually checking only the code
executed by a harness, and therefore it is very hard to achieve high cover-
age. “Routine” lists the dispatch routines we checked; “#F” gives the total
number of fields; “#T” is the number of threads in the checked scenario;
“Scenario” shows the concurrent scenario being checked, i.e. which driver
routines are executed concurrently as threads by our harness (D – dispatch
routine, CA – cancel routine, CP – completion routine, DPC – deferred
procedure call).

5.4.1 Benchmarks

We evaluated Storm on a set of real-world Windows device driver bench-
marks.16 Table 5.1 lists the device drivers used in our experiments and
the corresponding driver dispatch routines we checked. It also provides
their size, total number of fields, number of threads, and the scenario in
which they are checked. Storm found a bug in the usbsamp driver (see
Section 5.4.3) and usbsamp fix is the fixed version of the example.

16Storm is in the branch of the tool flows (see Section 2.2) whose front-end can’t process
gcc-based Linux device drivers we used previously in the experiments in Section 3.6.

76



5.4. Experimental Results

We implemented a common harness for putting device drivers through
different concurrent scenarios. Each driver is checked in a scenario possi-
bly involving concurrently executing driver dispatch routines, driver request
cancellation and completion routines, and deferred procedure calls (column
“Scenario” in Table 5.1). The number of threads and the complexity of
a scenario depend on the given driver’s capabilities. For example, for the
usbsamp driver, the harness executes a dispatch, cancel, and completion
routine in three threads. Apart from providing a particular scenario, our
harness also models synchronization provided by the device driver frame-
work, as well as synchronization primitives, such as locks, that are used for
driver-specific synchronization.

Storm has the ability to check any user-specified safety property. In
our experiments, we checked the use-after-free property for the IRP (IO
Request Packet) data structure used by the device drivers. A driver may
complete and free an IRP it receives by calling a request completion routine
(e.g., WdfRequestComplete in Figure 5.2), and must not access an IRP

object once it has been completed. To check this property, we introduced as-
sertions via automatic instrumentation before each access to an IRP object;
our examples have up to a hundred of such assertions. Typically, drivers
access and may complete the same request in multiple routines executing
concurrently. To satisfy our crucial use-after-free property, the code must
follow the proper and often complex synchronization protocol. Bugs often
manifest only in highly concurrent scenarios; consequently, this property is
difficult to check with static analysis tools for sequential programs.

5.4.2 Evaluation

Our empirical evaluation of Storm consists of two sets of experiments. In
the first one (Table 5.2 and Table 5.3), we run Storm on the benchmarks
described in the previous section using a manually provided, fixed set of
tracked fields. We assess the scalability of Storm with respect to code size,
number of threads, number of contexts, and number of locations where a
context switch could potentially happen. In the second set of experiments
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Example Routine
# of contexts per thread (K)

1 2 3 4 5
daytona ioctl 3.4 3.8 4.2 4.5 5.6

mqueue
read 62.1 161.5 236.2 173.0 212.4
write 48.6 113.4 171.2 177.4 192.3
ioctl 120.6 198.6 204.7 176.1 199.9

usbsamp
read 17.9 37.7 65.8 66.8 85.2
write 17.8 48.8 52.3 74.3 109.7
ioctl 4.4 5.0 5.1 5.3 5.4

usbsamp fix
read 16.9 28.2 38.6 46.7 47.5
write 18.1 32.2 46.9 52.5 63.6
ioctl 4.8 4.7 5.1 5.1 5.2

serial
read 36.5 95.4 103.4 240.5 281.4
write 37.3 164.3 100.8 233.0 649.8

Table 5.2: Results When Varying the Number of Contexts per Thread. Note
that if the number of threads is n and the number of contexts per thread is
K, then the number of possible context-switches is n ∗K − 1. For instance,
in the mqueue example with 4 threads and 5 contexts per thread, Storm
checked all behaviors with up to 19 context switches assuming round-robin
schedule.

(Table 5.4), instead of using manually provided tracked fields, we determine
the usability of our tracked fields refinement algorithm by using it to com-
pletely automatically check our benchmark drivers. All experiments were
conducted on an Intel Pentium D at 2.8GHz running Windows XP, and all
runtimes are in seconds.

Table 5.2 shows the result of varying the number of contexts per thread
from 1 (sequential case) to 5. We managed to successfully check all of our
benchmarks with up to 5 contexts per thread, which clearly demonstrates
the scalability of our approach. In the process, our tool discovered a bug in
the usbsamp driver (details can be found in Section 5.4.3).

Table 5.3 demonstrates how the runtimes vary with the number of places
in the code where a context switch can be introduced. For the usbsamp

example that has a bug, removing the context switches results in the bug
not being discovered. The runtime decreases as the number of context-
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Example Routine #CS
% of switches removed

0 40 80 100
daytona ioctl 26 3.9 3.7 3.6 3.5

mqueue
read 201 161.1 121.3 112.1 57.8
write 198 112.7 101.5 100.6 25.2
ioctl 202 197.7 192.8 168.5 73.1

usbsamp
read 90 37.7 42.2 *22.6 *17.9
write 90 48.9 37.7 *22.7 *18.9
ioctl 22 5.0 4.8 4.5 4.4

usbsamp fix
read 89 28.2 25.9 22.6 17.0
write 89 32.2 28.2 22.5 16.5
ioctl 21 4.7 4.7 4.5 4.3

serial
read 307 95.4 92.7 66.3 47.6
write 309 164.8 120.2 94.3 29.7

Table 5.3: Results When Varying the Number of Locations Where a Con-
text Switch Could Happen. The number of contexts per thread is fixed
to 2. “CS” represents the total number of places where a context switch
could happen. The examples where we missed the usbsamp bug because of
randomly (unsoundly) removing context switch locations are marked with *.

switch locations decreases. This observation justifies that removing context
switches during field abstraction is important for scalability.

Table 5.4 describes the results of applying the abstraction-refinement al-
gorithm from Section 5.3 to discover the set of relevant fields and completely
automatically check the examples. Using the refinement algorithm, we were
always able to obtain a set of relevant fields that is just a small fraction of
the set of all fields and that closely matches the set of manual fields that we
used previously. Most of the runtime is actually spent in scripts to perform
the abstraction, and can be significantly reduced. Without the use of field
abstraction, Storm was unable to run on large examples. For example, even
checking the mqueue read routine with only two contexts does not terminate
in one hour if we do not use field abstraction.
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Example Routine #F #MF #AF #IT Time(s)
daytona ioctl 53 3 3 3 244.3

mqueue
read

72 7
9 9 3446.3

write 8 8 3010.0
ioctl 9 9 3635.6

usbsamp fix
read

113 1
3 3 4382.4

write 4 4 2079.2
ioctl 0 0 21.7

serial
read

214 5
5 5 3013.7

write 4 3 1729.4

Table 5.4: Results of the Tracked Fields Refinement Algorithm. “#F” gives
the total number of fields; “#MF” is the number of manually provided
tracked fields; “#AF” denotes the number of tracked fields generated by
the refinement algorithm; “#IT” is the number of CEGAR loop iterations;
“Time” is the total runtime.

5.4.3 Bug Found

By applying Storm on the Windows device drivers listed in Table 5.1, we
found a concurrency bug in the usbsamp driver. We reported the bug,
and the driver developers confirmed and fixed it. Figure 5.2 illustrates
the bug with a simplified code excerpt from the driver. The code excerpt
contains two routines, the UsbSamp EvtIoRead dispatch routine and the
UsbSamp EvtRequestCancel cancellation routine. The routines get exe-
cuted by threads T1 and T2, respectively. The example proceeds as follows:

1. Thread T1 starts executing on a request Request, while thread T2 is
blocked since cancellation for Request has not been enabled.

2. T1 enables cancellation and sets the cancellation routine with the call
to the driver framework routine WdfRequestMarkCancelable on
line 8. Then the context switch on line 10 occurs.

3. T2 can now start executing UsbSamp EvtRequestCancel, and an-
other context switch happens on line 20 of T2.

4. T1 completes Request on line 11 and context switches again on
line 12.
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5. On line 21, T2 tries to access Request that has been completed in
the previous step, which is an error.

It is important to note that although the scenario leading to this bug
might seem simple, the bug had not been found before by extensively apply-
ing other software checkers on usbsamp. For instance, SLAM [BMMR01]
failed to discover this bug since SLAM can check only sequential code.
KISS [QW04], on the other hand, can check concurrent code, but only up
to 2 context switches, and would therefore also miss this bug since the bug
occurs only after at least 3 context switches.

5.5 Related Work

We roughly divide the related work into two areas — bounded approaches
to concurrency and other techniques for analysis of concurrent C programs.

Bounded approaches to concurrency. The idea of context-bounded
analysis of concurrent programs was proposed by Qadeer and Wu and im-
plemented in their tool called KISS [QW04]. KISS transforms a concurrent
program with up to two context switches into a sequential one by mimicking
context switches using procedure calls. However, restricting the number of
context switches can be limiting, as evidenced by the bug in Section 5.4.3
that Storm discovered. From the theoretical perspective, context-bounded
reachability analysis for concurrent boolean programs was shown to be de-
cidable [QR05].

Rabinovitz and Grumberg [RG05] propose a context bounded verifica-
tion technique for concurrent C programs based on bounded model checking
and SAT solving. Their algorithm applies traditional BMC on each thread
separately and generates sets of constraints for each. The constraints are in-
strumented to account for concurrency, by introducing copies of global vari-
ables and additional constraints for context switches. The resulting formula
is solved by a SAT solver. Our work offers several important advantages:
we support memory maps to deal with a possibly unbounded heap17; our

17Granted, our current implementation unrolls loops and recursion and therefore the
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1 // Thread T1
2 VOID UsbSamp_EvtIoRead(
3 WDFQUEUE Queue,
4 WDFREQUEST Request,
5 size_t Length
6 ) {
7 ...
8 WdfRequestMarkCancelable(
9 Request, UsbSamp_EvtRequestCancel);
10 ... // SWITCH 1: T1->T2
11 WdfRequestComplete(Request, status);
12 ... // SWITCH 3: T1->T2
13 }
14

15 // Thread T2
16 VOID UsbSamp_EvtRequestCancel(
17 WDFREQUEST Request
18 ) {
19 PREQUEST_CONTEXT rwContext;
20 ... // SWITCH 2: T2->T1
21 rwContext = GetRequestContext(Request);
22 ...
23 }

Figure 5.2: Discovered Concurrency Bug. Simplified version of the code
illustrating the concurrency bug Storm found in the usbsamp example.
Places where context switches happen when the bug occurs are marked with
SWITCH.
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source-to-source program transformation allows us to leverage any sequen-
tial verification technique, including annotation-based modular reasoning;
our experiments are performed on real-world benchmarks, whereas they ap-
ply their technique to handcrafted microbenchmarks. Finally, it is unclear
how to exploit techniques such as field abstraction using their method.

CHESS [MQ07] is a tool for testing multithreaded programs that dy-
namically explores thread interleavings by iteratively bounding the number
of contexts. In contrast, Storm is a static analysis tool and therefore does
not have to execute the code using tests and offers more coverage since it
explores all possible paths in a program up to a given context bound.

Bounded model checking of concurrent programs was also explored by
Ganai and Gupta [GG08], where concurrency constraints are added lazily
and incrementally during bounded unrolling of programs. The number of
context switches is not bounded a priori, but the heap and stack are, and
the number of program steps the bounded model checker explores is limited
by the available resources.

Suwimonteerabuth et al. [SES08] present a context-bounded analysis of
multithreaded Java programs. Their approach is different from ours because
it translates a multithreaded Java program to a concurrent pushdown sys-
tem by bounding the size of the program heap and using finite bit-vector
encoding for integers.

Similarly to the method of Lal and Reps, very recently La Torre et
al. [LMP09] proposed another method for reducing context-bounded reach-
ability of a concurrent boolean program to the reachability of a sequential
boolean program. Their method permits lazy analysis: Whereas Lal and
Reps’ eager analysis guesses the values of shared variables and therefore
also explores unreachable states, La Torre et al.’s lazy analysis recomputes
the values of shared variables when needed and hence only explores reachable
states. They show performance benefits of having lazy analysis by model-
checking manually generated boolean program microbenchmarks. On the
other hand, we are automatically checking real-life Windows device drivers

heap is not unbounded. However, preventing unrolling by doing modular verification, in
which case the heap becomes unbounded, is an area of future work (see Section 6.2).

83



5.5. Related Work

using a verification-condition generator and SMT solvers. Therefore, in my
recent work [GHR10], we do an extensive empirical comparison of different
context-bounded translations in a verification-condition-checking paradigm.
Our comparison clearly shows that La Torre et al.’s lazy approach does not
benefit in the VC-checking paradigm. The main reason behind this result
is the power of today’s state-of-the-art SMT solvers to quickly prune away
irrelevant parts of the search space and to propagate relevant information
in any direction.

Analysis of concurrent C programs. Witkowski et al. [WBKW07]
describe their experience with applying CEGAR-based predicate abstraction
on concurrent Linux device drivers. Their results indicate that concurrency
rapidly increases the number of predicates inferred by the refinement loop,
which in turn causes a fast blow-up in the model checker. Before we de-
rived our current technique based on SMT solvers, we attempted a similar
approach where we used the Lal-Reps method to create a source-to-source
transformation from a multithreaded to a sequential C program, which is
then analyzed by the SLAM [BMMR01] verifier. Our experience was similar
as we could not scale this approach beyond even simple microbenchmarks.
Henzinger et al. [HJM04] present a more scalable approach for CEGAR-
based predicate abstraction of concurrent programs; their method checks
each thread separately in an abstract stateful context that is iteratively
constructed by a refinement loop.

Gotsman et al. [GBCS07] construct a thread-modular shape analysis that
avoids explicitly exploring thread interleavings. The analysis automatically
infers a resource invariant associated with each lock: the invariant describes
the part of the help protected by the lock and preserved across threads.
This enables sequential analysis to be used on each thread. Their prototype
implementation was used to prove memory safety of concurrent C programs
operating on doubly-linked lists and ranging from 50 to 300 LOC. While
our approach cannot soundly analyze unbounded linked data structures, it
is much more scalable. Furthermore, while they require concurrent programs
to be properly locked and data-race free, our approach is more general and
handles data-races.
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Chugh et al. [CVJL08] introduce a framework for converting a sequential
dataflow analysis into a concurrent one using a race detection engine. The
race detection engine is used to ensure soundness of the sequential analysis
by invalidating the dataflow facts influenced by concurrent writes. The
analysis is scalable, but yields many false positives; our approach is much
more precise, but not as scalable.

Kahlon et al. [KSG09] focus their efforts on iteratively reducing the
number of thread interleavings using invariants generated by abstract in-
terpretation. The described techniques are complementary to our approach,
since we could also use them to reduce the number of interleavings in our
instrumented program. The authors then apply model checking, but only
on program slices in order to resolve data-race warnings, and therefore fair
comparison with our experiments would be hard.

There also exists work that targets analysis of concurrent boolean pro-
gram models [CKS05, PST07]. However, these approaches do not clarify
how to obtain these models from real-world programs, while our approach
can automatically analyze C programs.

5.6 Summary

In this chapter, we introduced an encoding of context-bounded verification
of a concurrent C program into the verification of a sequential program.
The encoding works for system software written in C with the heap and ac-
companying low-level operations such as pointer arithmetic and casts. Our
approach is completely automatic: we use a verification-condition genera-
tor and SMT solvers, instead of a boolean model checker used by previous
similar techniques, in order to avoid manual extraction of boolean programs
and false alarms introduced by the abstraction. We demonstrated the use of
field abstraction for improving the scalability and (in some cases) coverage
of our checking. We evaluated our tool Storm on a set of real-world Win-
dows device drivers, and we discovered a bug that could not be detected by
extensive application of other software verification tools.

This chapter, apart from relying on the assumptions from Section 3.3.3
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for memory models, has additional potential sources of unsoundness that
were purposely introduced in order to improve scalability and precision.

Context-Bounding. Using context-bounded analysis to check concur-
rent programs means that the analysis is going to miss bugs that require
more than the given bound of context switches to be discovered. For exam-
ple, bounding the number of context switches to only 2 wouldn’t allow us
to find the concurrency bug described in Section 5.4.3 that needs at least 3
context switched to be discovered. Our technique can increment the context-
bound, and therefore also improve coverage, until it runs out of resources.
We showed that Storm easily scales to 5 contexts per thread (see Table 5.2),
and there is also ample empirical evidence that bugs are manifested in con-
current executions with small number of context switches [QW04, MQ07].
Supporting unbounded number of contexts is an area of future work (see
Section 6.2).

Type-Safety. As illustrated in Section 3.5, the variation of Burstall’s
memory model used by Storm (see Section 5.2.1) is potentially unsound in
the presence of type-unsafe memory accesses. Soundness of such a memory
model can be assured using the techniques described in Chapter 3. Since
the DSA pointer analysis is sound under concurrency (see Section 2.1), the
described DSA-based approaches in theory trivially extend to concurrent
programs. However, this extension hasn’t been implemented due to prac-
tical issues related to different tool flows (see Section 2.2). In particular,
DSA is a part of the open-source LLVM compiler infrastructure and as such
it is not readily available in Havoc, which uses Microsoft’s infrastructure.
On the other hand, Havoc’s approach to assuring memory model sound-
ness [CHLQ09] wasn’t turned on in our experiments of Section 5.4 because
of the negative impact it would have on the performance of Storm.

Loops and Recursion. As currently implemented, Storm is unrolling
loops and inlining recursive calls a bounded number of times. This is another
potential source of unsoundness. For example, if the loop test cannot fail
before the unrolling bound is reached, all assertions after the loop will be
unreachable and therefore trivially satisfiable. Similarly, if the recursive
call condition cannot fail before the inlining bound is reached, all assertions
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after the call will be unreachable. This coverage problem typically occurs
when code contains loops that iterate a fixed, constant number of times.
Obviously, one of the future work directions is addressing this issue (see
Section 6.2).

Sequential Consistency. In the context of concurrent program veri-
fication, note that Havoc’s memory model from Section 5.2.1 assumes se-
quential consistency [Lam79]. Therefore, Storm will miss bugs that man-
ifest only in non-sequentially-consistent executions. This is justified since
our target programs are typically properly synchronized and have no data
races, and therefore have only sequentially consistent executions [SJMvP07].
If necessary, data race freedom, and therefore also the soundness of Storm,
can be assured using a lightweight static analysis (e.g., [KYSG07, EA03,
PFH06]).
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Chapter 6

Conclusions and Future

Work

6.1 Conclusions

This thesis improves the current state-of-the-art in the area of verification
of low-level shared-memory concurrent system software. The main contri-
butions are motivated by practical problems related to memory, modularity,
and concurrency, and boost precision, scalability, and automation of software
verification tools. We have implemented the contributions in the verification
tools Smack and Storm developed as part of this thesis. We have applied
the tools on real-life system software, and we are already finding critical,
previously undiscovered bugs.

Chapter 3 is motivated by issues related to memory modeling in the pres-
ence of pointers and low-level memory operations. In the first part of the
chapter, we investigated the usage of two previously known memory models
for verification of low-level software. We showed on a number of experiments
that the less accurate memory model heavily outperforms the more accurate
one. Then, in the second part of the chapter, we investigated how to im-
prove the soundness of the less accurate, but scalable, model. We developed
a lightweight static analysis and used it to automatically create memory
models that combine the more scalable memory model (used for most of
memory) with the more accurate one (used only when additional precision
is needed). Experimental results proved the scalability and precision of the
novel memory modeling approach.

Chapter 4 is motivated by the need for more automation in modular

88



6.2. Future Work

software verification. In this chapter, we developed an automatic technique
for inferring frame axioms. The technique uses pointer analysis to approxi-
mate a set of memory locations possibly modified by each procedure/loop,
which is then turned into a candidate frame axiom. Experimental results
demonstrated the precision and effectiveness of this technique.

Chapter 5 is motivated by the need for practical approaches to veri-
fication of concurrent system programs. Concurrent system programs are
typically written in C, perform low-level memory operations, and use shared-
memory communication, and as such are particularly challenging to verify.
In this chapter, we introduced an approach to context-bounded verifica-
tion of concurrent system programs by translating them into sequential pro-
grams. The approach is completely automatic and extremely appealing since
it leverages the mature verification techniques for sequential programs. We
have implemented the approach in Storm. Experimental results on a set of
real-world Windows device drivers showed Storm can be used in practice to
find important concurrency bugs. In follow-up work at Microsoft Research,
Storm has been applied on many additional device drivers and has found
more critical concurrency bugs. The Storm project is ongoing at Microsoft.

6.2 Future Work

Using Must-Alias Information in Memory Models. The alias-analysis-
based memory model (see Section 3.7) leverages may-alias information re-
turned by an alias analysis in order to split the program’s memory into dis-
joint alias classes. Each alias class then gets its own memory map (i.e. array)
in the memory model. Ken McMillan suggested that in addition to using
may-alias information, we could further improve the alias-analysis-based
memory model by relying on must-alias information as well. For example,
if all of the pointers belonging to an alias class must alias, then they point
to a single object. This object can then be modeled as a scalar variable in
the memory model and not turned into an array. This would likely further
improve the performance since discarging the generated verification condi-
tion would be easier without the need to reason about arrays when dealing
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with such scalar objects. The increase in the performance would depend on
the number of opportunities in real code to perform this optimization and
would have to be determined experimentaly.

Optimizing Frame Axioms. As already mentioned, the algorithm for
generating modifies clauses described in Section 4.4.2 is exponential in the
size of the input DS graph: the algorithm walks over a potentially expo-
nential number of paths through the DS graph, and therefore generates a
potentially exponential number of path expressions for each modified mem-
ory location. As we showed in the experiments (see Section 4.5), this ex-
ponential behavior rarely occurs in practice. However, pruning unfeasible
or extraneous path expressions would still make the inferred frame axioms
smaller; having smaller frame axioms would likely improve performance since
smaller verification conditions are typically easier to discharge. Therefore,
exploring different heuristics for pruning path expressions is a promising fu-
ture work direction. For example, one simple heuristics would be to drop
path expressions that dereference variables or structure fields that are never
dereferenced in the source code. Thorough empirical comparison of such
different heuristics would have to be done to assess what works well in prac-
tice.

Modular Verification and Concurrency. The first step towards
modular verification of concurrent programs using the translation described
in Chapter 5 is deriving an approach for handling loops with provided loop
invariants. Therefore, we briefly introduce an initial idea of how to do the
translation in the presence of loops and loop invariants.

In the weakest-precondition-based verification-condition generation, loops
are usually first expanded into loop-free pieces of code, and then a traditional
weakest precondition computation can be applied. The while loop:

invariant I

while(C) {B}

where I is the loop invariant, C is the loop condition, and B is the loop
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body, is expanded as follows:

assert I;
havoc Modified(B);
assume I;
goto body, exit;
body : assume C; {B} assert I; assume false;
exit : assume ¬C;

The code first checks whether the loop invariant holds before entering the
loop. Then, an arbitrary loop iteration is created by “havocking” (i.e. as-
signing to nondeterministic values) all variables that are modified by the
loop body and assuming the loop invariant. After that, either one more
loop iteration is performed, in which case the loop condition is assumed, or
the loop is terminated, in which case the negated loop condition is assumed.
The inductive step of loop verification is checked after executing B using
the asserted loop invariant.

The crucial problem with such loop expansion in the context of our
translation from Chapter 5 is in the way we translate assertions. Because
the translation introduces unconstrained symbolic global variables, asser-
tions in general cannot be proven before the introduced unconstrained val-
ues are constrained with the assumes in the end of the translated program.
Therefore, we introduce the notion of delayed asserts. An assertion

assert F ;

is translated as an if statement

if (¬F ) error := true;

which delays checking the assertion to checking if the error bit has been
set after the constraints on the shared globals have been assumed (see Sec-
tion 5.2.2).
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Therefore, applying our translation transforms the expansion as follows:

delayed assert I;
havoc Modified(B);
assume I;
goto body, exit;
body : assume C; {B} delayed assert I; assume false;
exit : assume ¬C;

The key unresolved problem is proving that applying our translation on the
expansion and introducing delayed assertions in the process is sound.

Unbounded Number of Contexts. Another exciting research direc-
tion would be generalizing our translation for a fixed number of contexts
from Chapter 5 to an unbounded number of contexts. We roughly sketch
the initial idea next.

First, instead of predefining a bounded number of contexts K as in Sec-
tion 5.2.2, in the generalized translation, K is a symbolic value representing
the unbounded number of contexts. Then, instead of splitting each global
map into a bounded number of new global maps (one for each context), we
extend each global map with an additional dimension that is indexed using
our context counter k. Therefore, instead of case-splitting on k as in

atomic {
if (k = 1) tmp := G1[a]
elsif (k = 2) tmp := G2[a]
. . .

else tmp := GK [a]
}

the generalized translation uses k to index into the global maps

atomic {
tmp := G[k][a]

}
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Since both Boogie and Z3 support quantifiers, the final assumes for
constraining the introduced symbolic values are translated as

assume ∀i : 1 ≤ i ≤ K ⇒ G[i] = V [i + 1]G;

Note that introducing quantifiers usually leads to incompleteness issues.
However, we still might be able to prove some interesting properties of con-
current programs with unbounded numbers of contexts.
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and Program Development. Coq’Art: The Calculus of Induc-
tive Constructions. Texts in Theoretical Computer Science.
Springer Verlag, 2004.

[BCC+03] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérome Feret,
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Xavier Rival. A static analyzer for large safety-critical soft-
ware. In Conference on Programming Language Design and
Implementation (PLDI), pages 196–207, 2003.

[BCD+05] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Ja-
cobs, and K. Rustan M. Leino. Boogie: A modular reusable ver-
ifier for object-oriented programs. In International Symposium
on Formal Methods for Components and Objects (FMCO),
pages 364–387, 2005.

[BCF+08] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,
Alberto Griggio, and Roberto Sebastiani. The MathSAT 4
SMT solver. In International Conference on Computer Aided
Verification (CAV), pages 299–303, 2008.

[BCO05a] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn.
Smallfoot: Modular automatic assertion checking with sepa-
ration logic. In International Symposium on Formal Methods
for Components and Objects (FMCO), pages 115–137, 2005.

94



Bibliography

[BCO05b] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Sym-
bolic execution with separation logic. In Asian Symposium on
Programming Languages and Systems (APLAS), pages 52–68,
2005.
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