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Abstract. We describe a simple and efficient algorithm for proving the termination of a class of loops with
nonlinear assignments to variables. The method is based on divergence testing for each variable in the cone-
of-influence of the loop’s condition. The analysis allows us to automatically prove the termination of loops
that cannot be handled using previous techniques. We also describe a method for integrating our nonlinear
termination proving technique into a larger termination proving framework that depends on linear reasoning.
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1. Introduction

Throughout the history of program verification (e.g., [30, 16, 18]) the task of proving a program correct has
been decomposed into the tasks of proving correctness if the program terminates, and separately proving
termination. Proving termination is clearly undecidable, but thanks to considerable research progress, a
variety of practical techniques can now automatically prove termination of many loops that occur in practice.
These automatic techniques, however, are temperamental. While most provers can, for example, prove the
termination of

if (x > 3) {
while (x < y) {

x = x + x;
}

}

until now, no automatic tool could prove the termination of a nonlinear example like
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if (x > 3) {
while (x < y) {

x = pow(x,3) - 2*pow(x,2) - x + 2;
}

}

This paper outlines a proof procedure for cases of this sort. Our intention for this proposed procedure is for
it to be combined with existing termination analysis techniques—thus leading to more robust termination
provers.

The failure of previous automated tools to handle the above example is somewhat surprising, as a human
can quickly see that for large enough x, repeated iteration of the loop will make x diverge to infinity, thus
guaranteeing loop termination. Exactly how large an initial value of x is large enough, though, requires a bit
of thought and some algebra. But if we have a method to quickly prove that loop variables diverge, we can
harness that fact to help prove termination.

Our proposed technique is based on such divergence testing: the transition system of each program
variable is independently examined for divergence to plus- or minus-infinity. The approach is limited to loops
containing only polynomial update expressions with finite degree, allowing highly efficient computation of
certain regions that guarantee divergence. Like any automated termination prover, our technique cannot
handle all loops. However, it is fast, it is sound, and it can prove termination in cases that previously could
not be handled or could be handled only by a much more expensive analysis. Our hope is that, in practice,
this restricted analysis (and some extensions) will handle the termination of the majority of loops in which
a nonlinear analysis is required. In our investigations, we have found that this simple type of nonlinear loop
appears in industrial numerical computations and nonlinear digital filters. Such loops can also be found in
the code that handles multi-dimensional matrices and nonlinear time-outs.

2. Termination by Divergence

This section starts with some basic definitions. Then, we proceed with the definition and examples of regions
of guaranteed divergence, a key concept in the paper. Section 2.3 explains how we test for divergence.
Section 2.4 presents how we use the divergence information to prove termination, and gives the overall
algorithm.

2.1. Basic Definitions

Two types of variables are differentiated by our analysis — symbolic constants and induction variables. The
symbolic constants are not modified in the loop body and the set of symbolic constants will be denoted
as S. Individual symbolic constants will be represented with capital letters X,Y, Z and are assumed to be
bounded on both sides (e.g. −32 ≤ X ≤ 32). The set of variables V that are modified within the loop body
will be called the set of induction variables. The induction variables will be denoted by lower-case letters
x, y, z. Both types of variables are considered to be rationals. We will assume that the loop condition is a
conjunction of a finite number of (in)equality relations of the form ϕ ◃▹ 0, where ◃▹∈ {<,>,≤,≥,=}, and
the constraints on ϕ are given below. Each induction variable x is updated within the loop. The update
expression is of the form x = f(x) + X, where f(x) is a univariate finite degree polynomial with constant
rational coefficients and X is a symbolic constant that represents the cumulative effect of all the symbolic
constants in the expression. The polynomial f(x) will be called an update function. The initial value of x,
before entering the loop, will be denoted as x0. Let x

+ stands for the result (e.g., ±∞, some constant, a
cycle, etc.) obtained by applying f infinitely many times to x (informally, · · · f ◦ f ◦ f(x)). Let f2 = f ◦ f be
a composition of f with itself. The value obtained by applying f2 to x infinitely many times will be denoted
as x++. The set of univariate polynomials with constant coefficients over Q (the set of rationals) will be
denoted as Q[x], while the set of multivariate polynomials over Q as Q[V]. Let support of an expression,
denoted supp (ψ), be the finite set of names in a logical expression ψ, e.g. supp (x · y + z > 0) = {x, y, z}.

The algorithm described in this paper is designed such that it can be used as a sub-procedure within a
larger termination proving framework, such as Berdine et al. [2]’s or that of Cook et al. [11]. These termination
provers convert the termination problem for a program with an arbitrary control-flow graph into a sequence
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of well-foundedness queries for relations composed as the conjunction of inequalities, or simple loops. These
tools then find a termination argument for the whole program based on the arguments drawn from these
simple loops. Numerous techniques can be used to prove the well-foundedness of these simple loops. Our
goal in this paper is to provide support for nonlinear reasoning when trying to prove the well-foundedness
of these simple loops. Our technique handles simple loops with the following properties:

1. A set of bound constraints B ⊆ {v ◃▹ q | v ∈ V ∪ S ∧ q ∈ Q} over symbolic constants and induction vari-
ables represents the initial conditions. Symbolic constants must be from a closed finite interval. These
restrictions make it easy to check for intersection between the initial conditions and a region that guar-
antees loop divergence, computed in Section 2.2. Relaxing these restrictions is possible if using a more
expressive representation of the set of possible initial states, e.g., if we allowed ̸=, the algorithm could
track a finite disjunction of convex regions to represent the initial conditions.

2. There are no data or control dependencies between induction variables, i.e., the dependency relation is
an antichain. In other words, all update statements within the loop body must be executable in parallel.
(Symbolic execution and other analysis/optimization techniques can, of course, be used to eliminate false
dependencies between induction variables.) This restriction allows our technique to analyze the divergence
each induction variable separately, greatly simplifying the analysis.

3. The loop condition is a relation of the form ϕ ◃▹ 0 such that each ϕ is a finite degree multivariate
polynomial from Q[V ∪ S]. Only the constant term (i.e. the one associated with the exponent zero) is
allowed to be a symbolic constant (or a linear function of symbolic constants). This restriction is for
expository convenience. In Section 2.4, we present an extremely simple algorithm for safely determining
termination under this restriction. If more sophisticated computer algebra software is available, then this
restriction can be relaxed (as we will see in our experimental results). Also, in practice, loop conditions
are often conjunctions of multiple relations; if any conjunct can be proven to be eventually false, the loop
must terminate. (Disjunction is more difficult, which is why we disallow ̸= in loop tests.)

4. Update functions fi are univariate polynomials of finite degree from Q[xi]. This restriction is needed
because our technique uses algebraic properties of polynomials. If some numerical imprecision is accept-
able, we could generalize our method to non-polynomial update functions by using numerical root-finding
techniques in Section 2.2.

5. Given a linear function g : Sn → Q of symbolic and numeric constants, each assignment can have the
form xi ← fi(xi) + gi(Y1, Y2, . . . ). The second term can be represented with a single symbolic constant
Xi because symbolic constants do not change within the loop. It is assumed that the symbolic constant
Xi can take any value between the worst case min and max values of the replaced symbolic constant
expression gi(Y1, Y2, . . . ). This restriction allows efficient computation of a safe termination test for all
possible values of the symbolic constant.

If a loop in the sequence does not fit into this criteria, then other techniques must be used in order to
establish well-foundedness.

A loop with such properties will be called a NAW (Nonlinear Antichain While) loop. The properties of
the NAW loop enable us to analyze the limit behavior of each induction variable independently. Given the
limit behavior of each induction variable v ∈ supp (ϕ), we try to prove that the left-hand side value of the
loop condition will eventually cross the given bound, terminating the loop. Obviously, it suffices to consider
only the variables that are in the cone-of-influence of the loop condition. Standard slicing techniques [28]
can be used to remove the unnecessary code. We will assume that the NAW loops have been preprocessed
so as to eliminate assignments to variables that are not in the cone-of-influence of the loop condition.

Several examples are given in Figure 1. The generic form of the NAW loop 1(a) starts with range
constraints for induction variables and symbolic constants. The range constraints can be computed by range
analysis, which is a simple forward dataflow analysis [13]. The left column (Figures 1(b),1(d),1(f)) contains
examples of loops that are not NAW loops. The loop condition of 1(b) does not fit the NAW loop requirements
because the symbolic constant Y is from a half-open interval. The other two loops in the same column are
not NAW loops either, as the symbolic constant B is used in a non-constant term (Figure 1(d)) and the
induction variable x (Figure 1(f)) depends on the induction variable n. The right column contains three
examples of NAW loops. Examples 1(c) and 1(e) are adapted from previous work [12].

The overall divergence analysis algorithm takes a loop condition ϕ, a set of bound constraints B, and
a set of update functions fi, and indicates either that it cannot prove termination, or that it can prove
termination, with a mapping from induction variables to limits that demonstrates that the loop condition
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Range constraints
while ϕ ◃▹ 0, ◃▹∈ {<,>,≤,≥,=} do

x1 ← f1(x1) +X1;
x2 ← f2(x2) +X2;
x3 ← f3(x3) +X3;
· · ·
xn ← fn(xn) +Xn;

end while
(a) Generic form of NAW loops

x < −17;−32 < Y ;
while x ̸= Y do

x← 3x− 1
end while

(b) Non-NAW loop – Symbolic constant Y is
only single-side bounded

e← 0.00001; a← 1− e;x← 0.5;
while e ≤ x ∧ x ≤ 1 do

x← −a · x2 + a · x;
end while

(c) Terminating NAW loop

x← 5;−10 < B < 10;
while x < 1000 do

x← x2 −B · x− 7
end while

(d) Non-NAW loop – Symbolic constant B is
used in a non-constant term

q ← 0; r ≥ 0; 1 ≤ Y ≤ 65535;
while y ≤ r do

r ← r − Y
q ← q + 1

end while

(e) Terminating NAW loop

n← 0;x← 1; 1 < N < 1000;
while x ≤ N do

n← n+ 1
x← n · x

end while

(f) Non-NAW loop – Dependency between in-
duction variables

x < −2;
while x < 10 do

x← x3 − 2x2 − x+ 2;
end while

(g) Non-terminating NAW loop

Fig. 1. General NAW-form together with some examples

must eventually become false. The algorithm has three main steps. The first task is a fast analysis to find
regions where iterated application of the update functions fi can easily be proven to diverge. Once some
“regions of guaranteed divergence” have been found, the next task, divergence analysis, tries to find the limit
behavior of each induction variable. Finally, termination analysis conservatively uses the limit behaviors to
prove that the loop condition must be violated eventually, which proves termination.

2.2. Regions of Guaranteed Divergence

Definition 1 (Stable Point). A value x is a stable point if x = f(x). If x0 is a stable point, then x = x0
is a loop invariant.

Definition 2 (Region of Guaranteed Divergence (RGD)). A region of guaranteed divergence of an
update function f is a (possibly unbounded) interval such that iterated application of f to any element from
the interval diverges.

A brief synopsis of our approach is as follows. We use a fast polynomial factoring algorithm [19, 21] to
compute the stable points of the update function. Let rmin and rmax denote the minimal and maximal stable
points. Then, depending on characteristics of the update function, we conclude that (−∞, rmin) and/or
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f(x)=x

Fig. 2. f(x) = x3 − 2x2 − x+ 2. Quadrants are denoted by the Roman numerals I,II,. . .

(rmax,∞) (subject to some side conditions) are RGDs.1 We can strengthen the analysis by applying the
update function a finite number of times (currently exactly once in certain cases) before checking to see if
the induction variable has entered an RGD. We now present the details.

The shape of the update function determines how the RGD is computed. Update functions are univari-
ate polynomials that can be drawn in the two-dimensional Cartesian coordinate system, which has four
quadrants, numbered counter-clockwise from the top right (Figure 2). In the limit, finite degree polynomials
diverge in two out of four quadrants. The pair of quadrants in which the function diverges determines the
shape of the curve. Our analysis case splits on the four possible shapes:

Case 1: Divergence in Quadrants I and III The update function must have odd degree and positive
leading coefficient. This is the most straightforward case. If the degree is greater than 1, then (−∞, rmin)
and (rmax,∞) are both RGDs, because the update function must have a slope greater than 1 in those
regions (Figure 2). If the degree of the update function is 1 (linear), then the key is the leading coefficient
(the slope) of the update function. If the slope is strictly greater than 1, we have the same RGDs as above
(with rmin = rmax). If the slope is strictly less than 1 (and it must be greater or equal to 0), then there is
no RGD — the iteration converges to the stable point. If the slope is exactly 1, then all of (−∞,∞) is
an RGD (except in the degenerate case when the update function is the identity function).

Case 2: Divergence in Quadrants I and II The update function must have even degree and positive
leading coefficient. If there are no stable points, all of (−∞,∞) is an RGD. Otherwise, as in Case 1,
(rmax,∞) is an RGD. Unlike Case 1, we cannot say anything about (−∞, rmin). However, because f
diverges in quadrant II, if we know there exist sufficiently small values x0, such that f(x0) > rmax, and
hence in an RGD. In particular, let r′min be the smallest solution of f(x) = rmax. Then for all x < r′min,
we know that f(x) > rmax, so (−∞, r′min) is also an RGD.

Case 3: Divergence in Quadrants III and IV The update function must have even degree and negative
leading coefficient. This is the dual of Case 2. If there are no stable points, (−∞,∞) is an RGD. Otherwise,
the region (−∞, rmin) is an RGD, as is the region (r′max,∞), where r′max is the largest solution of f(x) =
rmin.

Case 4: Divergence in Quadrants II and IV The update function must have odd degree and negative
leading coefficient. This is the most complex case because when iterated application of the update function
diverges, it will alternate sign on each iteration. Happily, in this case, f2 = f ◦ f is an update function
that follows Case 1. So, we compute the stable points of x = f2(x) instead, and analyze f2 as in Case 1.

In this paper, we prove termination by divergence of induction variables. In general, the termination analysis
can be much smarter. For example, if an induction variable always cycles or converges to a constant, the
termination analysis might exploit that knowledge for the termination proof.

1 In floating-point arithmetic, the RGDs must be safely under-approximated. This is done by rounding the computed stable
points to reduce the size of the RGD, i.e., rounding rmax toward ∞, and rmin toward −∞.
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Equations Roots Quadrants

x = x3 − 2x2 − x+ 2 −1.170086 . . ., 0.688892 . . ., 2.481194 . . . I,III

Table 1. Real roots of the update function f(x) = x

Example: The polynomial plotted in Figure 2 will serve as our working example. Since the update function
has degree 3 and positive leading coefficient, it diverges in the quadrants I and III. Therefore, we compute
the stable points from x = f(x). By solving x = x3 − 2x2 − x + 2, we get rmin = −1.1700086 . . . and
rmax = 2.481194 . . ., which we can round conservatively (for brevity here, to two decimal places) to get RGDs
of (−∞,−1.18), where iterated function application diverges towards −∞, and (2.49,∞), where iteration
diverges towards ∞. If range analysis tells us that x0 > 2.49 in the loop below:

while (x < 10) {
x = pow(x,3) - 2*pow(x,2) - x + 2;

}

then the induction variable x diverges towards +∞ and therefore will eventually overshoot the given bound
in the loop condition. Alternatively, if x0 < −1.18, then x diverges towards −∞ and the loop certainly
doesn’t terminate. For x0 ∈ (−1.18, 2.49), our analysis makes no attempt to determine the outcome. Indeed,
if x0 = 0, x will cycle through the set {0, 2} taking values {0, 2, 0, 2, 0, 2, · · · }.

An important question is what happens when the constant term2 in the polynomial f(x) is a symbolic
constant. Let’s assume a symbolic constant 0 ≤ Z ≤ 30, the previously given loop condition, and the
assignment x = pow(x,3) - 2*pow(x,2) - x + 2 + Z. The entire curve in Figure 2 can shift upwards by
Z. The divergence analysis is the same, but the shift caused by symbolic constants must be taken into
account.

Definition 3 (Safe Region of Guaranteed Divergence (SRGD)). A safe region of guaranteed diver-
gence of an update function f with symbolic constant Z from a closed finite interval is a (possibly unbounded)
interval such that iterated application of f + Z to any element from the interval diverges for all possible
values of Z.

Because this definition quantifies over all possible values of Z, it takes into account the effect of worst-case
shifts of the polynomial caused by the symbolic constant. Fortunately, because we restrict symbolic constants
to closed finite intervals, it is easy to compute SRGDs:

Lemma 1. Let f be any legal update function, except that f must not be of the form f(x) = x+ c for some
constant c. Let Z be a symbolic constant from a closed finite interval [Zmin, Zmax]. The intersection of the
corresponding RGDs of f + Zmin and of f + Zmax are SRGDs.

Proof. The result follows immediately from the fact that the values of largest and smallest roots change
monotonically with Z, so we need compute RGDs for only the endpoint values of the interval bounding Z.
For example, if f falls under Case 1 (odd degree with positive leading coefficient), then increasing Z will
decrease the value of rmax, the largest root of f(x)+Z = x. The other cases are similar. (The only exception
to this reasoning is when f(x) = x + c for some constant c. In this case, if Z can be equal to −c, then
all values are roots and there is no RGD or SRGD; otherwise, there are no roots, and the entire interval
(−∞,+∞) is an SRGD.)

Going back to our working example, Z can shift the entire curve by Z ∈ [0, 30]. If the shift is equal to
30, by solving x3− 2x2− 2x+32 = 0, we get a single real root −2.7990 . . ., yielding RGDs (−∞,−2.80) and
(−2.79,∞). From the previous analysis, we know that (−∞,−1.18) and (2.49,∞) were RGDs when Z = 0.
Thus, the safe RGDs are the intersection of these two shifts, yielding (−∞,−2.80) and (2.49,∞) as safe
RGDs.

Computing safe RGDs doubles the amount of work. However, due to the efficiency of our algorithm,
the computational overhead is negligible compared to the benefits of being able to handle some degree of
non-determinism. In order to keep the exposition simple, in the rest of the paper, we will not explicitly
discuss the safe regions. The algorithm and the proofs can be trivially extended to handle them.

2 By definition of NAW loops, only the constant term of the update function is allowed to be a symbolic constant.
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2.3. Divergence Analysis

Once we have RGDs, if any, for all update functions, we can test whether we can easily prove divergence
for each induction variable. The basic computation is whether the range bound on the initial value of some
induction variable x0 is wholly contained in an RGD. If so, the induction variable must diverge eventually.

In a general, more elaborate computation of RGDs, in which we apply the update function a bounded
number of times in order to compute more RGDs, we would tag each RGD with whether it leads to divergence
to +∞, −∞, or alternating ±∞. In our current, fast-and-lightweight implementation, however, we determine
the direction of divergence easily by checking, for an arbitrarily chosen point x in the RGD, whether f(x) > x,
which gives divergence to +∞, or f(x) < x, which gives divergence to −∞:

Case 1 (Quadrants I,III) We label an induction variable as diverging if the bound constraints of the
initial value of the induction variable are contained in an RGD. We determine the direction of divergence
by checking whether f(x) < x or f(x) > x for an arbitrarily chosen point x in the RGD.

Case 2 (Quadrants I,II) We label an induction variable as diverging if the bound constraints of the initial
value of the induction variable are contained in an RGD. Divergence is always to +∞.

Case 3 (Quadrants III,IV) We label an induction variable as diverging if the bound constraints of the
initial value of the induction variable are contained in an RGD. Divergence is always to −∞.

Case 4 (Quadrants II,IV) We label an induction variable as diverging if the bound constraints of the
initial value of the induction variable are contained in an RGD. Divergence is always to alternately ±∞.

2.4. Termination Analysis

Once we have determined the divergence behavior of the induction variables, the remaining task is to compute
a limit of the multivariate polynomial in the loop condition. Note that we cannot compute this limit by
haphazardly applying the limits computed for each variable independently, or by focusing only on the highest-
degree terms in the polynomial. For example, consider the loop in which one induction variable (y) changes
much faster than the others:

while (y - pow(x,2) > 100) {
y = pow(y,10) + 1000;
x--;

}

Obviously, x→ −∞ and y → +∞. Considering only the highest-degree term −x2 in the loop condition would
incorrectly compute that the left side of the condition diverges towards −∞ and that the loop terminates.

However, given the restrictions on the loop condition we imposed in Section 2.1, it is easy to compute a
safe, conservative evaluation of the loop condition given the information we have. Essentially, the computation
is a trivial abstract interpretation [13] of the loop condition, where the induction variables have values in the
abstract domain {−∞,+∞,±∞,⊥}, depending on the result of the divergence analysis (where the abstract
value ⊥ denotes no information about the divergence behavior; and ±∞ denotes that the induction variable
diverges, with alternating sign on each iteration). For example, for the preceding loop, we would assign
x = −∞ and y = +∞ based on the divergence analysis in Section 2.3. Then, we would evaluate x2 = +∞,
and y − x2 = +∞ − (+∞) = ⊥. Since ⊥ > 100 is not provably false, we do not claim termination. By
expanding the abstract domain (e.g., to indicate different growth rates, convergence to constants, etc.), we
could improve the accuracy of the termination analysis.

Conveniently, in our prototype implementation, none of this was needed. Symbolic algebra packages are
readily available, and computing the limit behavior of a multivariate polynomial is a commonly supported
operation. Our prototype implementation used Maple [24], and we simply fed the result of our divergence
analysis to the package and asked it to try to evaluate the limit behavior of the loop condition. The additional
power of Maple also allowed us to handle an example (Figure 3(c)) whose termination condition did not
obey the restrictions in Section 2.1. (This example could also have been handled correctly by the abstract
interpretation described above. It is difficult to characterize precisely the limitations of Maple or other
computer algebra packages, so in this paper, we have kept our presentation to a more restricted formalization.)
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2.5. Algorithm Summary, Soundness, and Efficiency

The outline of the overall algorithm is given in Algorithm 1.

Algorithm 1 ZigZag

Find the RGDs for each induction variable ◃ Section 2.2
For each induction variable determine its divergence behavior ◃ Section 2.3
if the loop condition is

ϕ < 0 and ϕ evaluates to +∞, or ◃ “evaluates” as in Section 2.4

ϕ ≤ 0 and ϕ evaluates to +∞, or

ϕ ≥ 0 and ϕ evaluates to −∞, or

ϕ > 0 and ϕ evaluates to −∞, or

ϕ = 0 and ϕ evaluates to −∞ or +∞, or

ϕ ◃▹ 0 and ϕ evaluates to ±∞
then
return TRUE ◃ The loop terminates

else
return FALSE ◃ Can’t prove termination

end if

Note that the algorithm does not execute the loop, but soundly abstracts the limit behavior of the induc-
tion variables, substitutes the computed limits in the loop condition expressions, and determines whether
the loop condition is TRUE or FALSE. The TRUE outcome implies that the loop terminates.

Lemma 2. If the initial value of an induction variable x0 is in an RGD, and f(x0) > x0, then x
+ diverges

to +∞. (For a Quadrant II,IV update function f , the lemma checks f2(x0) > x0 instead, and concludes x++

diverges to +∞.)

Proof. As usual, we case-split on the shape of the update function f :

Case 1 (Quadrants I,III) When there are two RGDs, they are (−∞, rmin) and (rmax,+∞). Only in the
latter region is f(x) > x, and the inequality holds throughout the region. Since rmax is the largest stable
point, and f(x) is always greater than x, we have x+ diverging to +∞. When all of (−∞,∞) is the
RGD, then f(x) is linear with leading coefficient 1 and a non-zero additive constant, so if f(x) > x, then
divergence to +∞ is obvious.

Case 2 (Quadrants I,II) When there are two RGDs, they are (−∞, r′min) and (rmax,+∞). For the RGD
(rmax,+∞), the same argument as in Case 1 applies. For the RGD (−∞, r′min), we recall that r′min was
the smallest solution of f(x) = rmax. Since in this case, limx→−∞ f(x) = +∞, we know that ∀x ∈
(−∞, r′min) .f(x) > rmax. Therefore, after one iteration, the induction variable will map to the (rmax,+∞)
RGD, and hence diverge to +∞ as well.
When there is only the single RGD (−∞,∞), then f(x) > x for all x. Furthermore, since f is a finite-
degree polynomial, f(x)−x ≥ ϵ for some ϵ > 0. So, on each iteration, the induction variable must increase
by at least ϵ, and hence diverges to +∞.

Case 3 (Quadrants III,IV) This is analogous to Case 2.

Case 4 (Quadrants II,IV) In this case, f is an odd-degree polynomial with a negative leading coefficient.
Therefore, f2 = f ◦ f will have odd degree as well, but with a positive leading coefficient, which means
f2 falls under Case 1.

Lemma 3. If the initial value of an induction variable x0 is in an RGD, and f(x0) < x0, then x
+ diverges

to −∞. (For a Quadrant II,IV update function f , the lemma checks f2(x0) < x0 instead, and concludes x++

diverges to −∞.)

Proof. The proof is the same (mutatis mutandis) as for Lemma 2.
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Loop a b c d e f

Time (s) 0.03 0.03 0.02 0.03 0.03 0.03
Result X X X X X ⊘

Table 2. Results of experiments using ZigZag on both hand-crafted and Terminator-produced NAW-loops. The symbol X
indicates that ZigZag was able to prove the loop terminates. The symbol ⊘ means that ZigZag hasn’t been able to prove
termination.

Lemma 4. If the abstract evaluation of the loop condition, performed as described in Section 2.4, evaluates
to FALSE, the loop must terminate.

Proof. The loop condition is a conjunction of comparisons of the form ϕ ◃▹ 0, where ◃▹∈ {<,>,≤,≥,=}.
Only if some conjunct provably must become false does the overall condition abstractly evaluate to FALSE.
In that case, during program execution, that conjunct in the loop condition must eventually become false at
some iteration, making the loop terminate.

We assume standard, conservative evaluation with the abstract domain. Therefore, if we conclude ϕ
evaluates to +∞, −∞, or ±∞, we know that ϕ must diverge in the positive direction, negative direction, or
alternating sign on each iteration, respectively. We evaluate the loop condition to be FALSE only when the
condition is of the form:

ϕ < 0 and ϕ evaluates to +∞, or

ϕ ≤ 0 and ϕ evaluates to +∞, or

ϕ ≥ 0 and ϕ evaluates to −∞, or

ϕ > 0 and ϕ evaluates to −∞, or

ϕ = 0 and ϕ evaluates to −∞ or +∞, or

ϕ ◃▹ 0 and ϕ evaluates to ±∞.

In each case, the divergence of ϕ forces the condition to eventually be false at some iteration.

Theorem 1. From Lemmas 2, 3 and 4, it follows that the proposed algorithm is sound, i.e., it will never
falsely report that a loop terminates if it doesn’t.

Complexity. Univariate (and multivariate) polynomials with rational coefficients can be factored in poly-

nomial time O(n12 + n9(log |f |3)), where n is the degree of the polynomial f and
∣∣∑

i aiX
i
∣∣ = √

(
∑

i a
2
i )

using a well-known LLL algorithm [19, 21]. Each additional test can be performed by evaluating the update
function at specific points, hence these tests are performed in time linear with the size of the update poly-
nomial. The simple, abstract evaluation of a multivariate polynomial f ∈ Q[V] over our abstract domain
can also be computed in linear time. Therefore, the overall complexity of the analysis is polynomial. The
number of induction variables is in general small and the experiments confirm that the computational cost
of the approach is negligible.

Experiments. To test our approach, we have prototyped our analysis in Maple [24]. Our prototype, called
ZigZag, is designed to accept inputs of the form described in Figure 1(a). We ran ZigZag on both hand-
crafted and real-life examples of linear and nonlinear NAW loops given in Figure 3. Because of nonlinearity,
tools which are restricted to linear cases, such as RankFinder, can’t handle most of these loops.

Our initial results are encouraging (see Table 2). Note that performance is currently not an issue— all
examples are handled in less than 0.03 seconds. ZigZag was able to prove that all the loops, except for the
last one, terminate. The last loop does not terminate because the induction variable x diverges towards −∞,
and therefore the loop condition never evaluates to FALSE.

3. Progress Measure Abstractions

Our goal is to integrate the procedure proposed in the previous section, ZigZag, within a larger termination
proving framework, such as Terminator [11]. The difficulty here is that tools such as Terminator use
explicit ranking functions (i.e. maps from the program state space into a well-ordered set) found from
analyzing simple loops when constructing termination arguments for the whole program. This whole-program
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x← 1;
−32768 ≤ LIMIT ≤ 32767;
while x > 0 ∧ x < LIMIT do

. . .
x← 5x;

end while

(a) Linear walking of an array

i← 0; j ← 0;
−32768 ≤ MAX ≤ 32767;
while i · j ≤ MAX do

. . .
i← i+ 1;
. . .
j ← j + 1;

end while
(b) Walking the diagonal of a 2D array

place ← 1;
base ← 10;
−32768 ≤ SRC ≤ 32767;
while −baseplace + SRC ≥ 0 do

. . .
place ← place + 1;
. . .

end while
(c) Finding maximal exponent

60 ≤ TOUT ≤ 300;
rto ← 3;
while rto < TOUT do

. . .
rto ← 2rto;

end while

(d) Model of TCP’s retransmission timer

x← 4; 2 ≤ Y ≤ 1024
while x ≥ −264 do

x← −2x5 + 4x4 − 8x+ Y ;
end while

(e) Hand-crafted example

x < −2;
while x < 10 do

x← x3 − 2x2 − x+ 2;
end while

(f) Hand-crafted example

Fig. 3. Examples of NAW loops used for testing our approach. The symbol “· · · ” indicates where program slicing has been
performed. For the examples 3(a), 3(b), 3(c), 3(d), and 3(e) our algorithm reported TRUE (i.e., the loop provably terminates),
whereas for the example 3(f) the algorithm reported FALSE(i.e., could not prove termination).

termination argument is then checked using other static analysis techniques. But ZigZag does not produce an
explicit ranking function. Furthermore, tools like Terminator do not support nonlinear program commands
and thus convert them into coarse linear abstractions. Thus, even if we find a ranking function, the whole-
program check will likely still fail due to the coarse abstractions used for nonlinear commands.

In this section, we describe a method for producing additional linear measures based on our termination
analysis that can be used as annotations in the original program. The idea is to annotate the program with
progress measures proved to exist. These progress measures are updated using only linear commands. Our
procedure is called αZigZag. The procedure, when passed a path π and a program P attempts to prove the
path π to be terminating, and then produces a new program that is an abstraction of P , which can be
used to prove properties such as safety and termination. This new program contains fresh variables used as
progress measures. The control flow graphs of the two programs are identical. The resulting abstraction can
then be passed directly to a tool like Terminator.

Consider any finite path segment through the control-flow graph G of a program, which — when unrolled,
interpreted in G, and converted into static single assignment form [14] — can be represented as a conjunction
of inequalities. Tools such as RankFinder [26], PolyRank [4, 5, 6], and ZigZag can be used to prove that
relations like these are well-founded, meaning that a progress measure can be tracked on each execution of
the path segment.

We assume a set Cmd of syntactic commands (assignments, assumptions, etc.), which are interpreted as
relations between program states before and after execution of a command. Hence, a command c ∈ Cmd
denotes a relation from 2St×St, where St is the set of states.

Programs are viewed as control-flow graphs (CFG, e.g., [25]) where the vertices are program locations la-
beled with commands. Our formulation of a CFG slightly differs from the standard representation to simplify
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the presentation: all control-flow is achieved by nondeterministic jumps, and branch guards are represented
with assumptions. Thus, control-flow statements (if, while, . . . ) are represented with non-deterministic edges
and assume statements, instead of branch statements and deterministic edges used in the standard definition
of CFGs.

We will assume that a program G is a rooted vertex-labeled directed graph (L,LG,E), where L is the set of
program locations, LG is the labelling function of type L→ Cmd, and E ∈ 2L×L is the set of nondeterministic
jump edges between program locations. We assume that 1 ∈ L is the start location of the CFG. A path π is a
possibly infinite sequence of program locations π = ℓ0 → ℓ1 → · · · , such that (ℓi, ℓi+1) ∈ E. For such a path
π, we write πi for ℓi. Path segments are contiguous subsequences of paths. Let π be a finite path segment
of G that forms the cycle in a lasso candidate counterexample to termination, and let ρπ be the binary
relation on states which is the composition of the statements at vertex: ρπ = LG (π0) ;LG (π1) ; · · · ;LG (πn) .
Suppose that ZigZag has proved the well-foundedness of ρπ. In this case we can construct an abstraction
of G in which a progress measure decreases on each pass over π, and in which the progress measure is
nondeterministically assigned to a new value whenever the program executes a statement not in π that
modifies a variable of the ranking function found by our well-foundedness checker.

Let fv (c) be the set of free (program) variables occurring in the command c. Then, letW be the variables
the ranking function depends on — if we only know of the existence of a ranking function then it is sound
to assume that W depends on all the variables in the path: W = fv (π) =

∪
i fv (LG (πi)). We will model the

ranking function with a fresh variable m. Given the path π = π0 −→ · · ·πn we can construct a new linear
abstraction in which the progress measure m has been instrumented in along that path. This abstraction
uses a fresh variable a to track where the execution has been. Values of a are pairs of a location and an index
into the path where a = (−1,−1) indicates that execution has strayed from the path. Since paths may visit
a particular location more than once, the index part of a is necessary to uniquely identify points on the path.
The construction of the abstraction is found in Algorithm 2. In essence, the abstraction that is constructed
represents an automaton that accepts contiguous sub-executions that follow π. Each time π is followed, the
progress measure m is decremented. If the execution leaves the path π and enters a program location that
could affect the value of the ranking function, the progress measure’s value is lost. The procedure constructs
a new control-flow graph with labeling function LA which annotated at locations ℓ with update relations
where variables with a s suffix are used to represent the previous state. We assume fresh variables i and m.
The variable Ψ is used to construct the new relation which is eventually stored in LA (ℓ).

Proposition 1 (Soundness). If π is a finite path segment of G then αZigZag(G, π) is a sound abstraction
with respect to termination of G.

Proof. (Sketch) The abstraction produces a program with an identical control-flow graph in which only new
variables are read/written. The only relation introduced that could potentially remove executions allowed
by the original program is introduced by this case (due to the inequality m > 0):
Ψ← Ψ ∨ (as = (πn, n) ∧ a = (−1,−1) ∧m > 0 ∧m = ms − 1)

This clause could only remove transitions in the case where π is executed infinitely often and in which the
paths followed between passes through π have no effect on the ranking function proving π’s well-foundedness.
Thus these executions would not exist in G (due to the fact that ρπ is well-founded).

Example. Consider the example in Figure 4, and the path through this loop that goes repeatedly into the
if branch with the nonlinear assignment (ignoring the line numbers that do not have assignment statements
or assume statements): π = 3 → 5. In this case, ρπ is the binary relation on states (where y is used as
the mathematical variable representing the value stored in n and y′ represents the new value of n after the
assignment): ρπ = (y′ = y2∧1 < y′∧y′ < b). ZigZag can prove the well-foundedness of ρπ, meaning that we
can construct a transition relation which monitors G’s execution and decrements a progress measure m when
the path is executed. Figure 5 illustrates how this is done. Note that a standard termination prover—such
as Terminator—can then prove the termination of the resulting program.

4. Related Work

A number of techniques are available for proving termination of programs (e.g., [12, 26, 8, 29, 4, 9, 17, 7, 20,
22, 27, 11, 10]). With the exception of a few cases [1, 4, 12], these tools are all limited to linear arithmetic.
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Algorithm 2 αZigZag: ZigZag-based path abstraction procedure. The procedure constructs a control-flow
graph annotated with update relations where variables with a s suffix are used to represent the previous
state. We assume fresh variables i and m.
input: a program G
input: finite path segment π = π0 −→ · · ·πn

A := G ◃ Initialize A

if ¬ZigZag(π) then ◃ Try to prove ρπ well-founded using nonlinear well-foundedness prover
return A

end if

W := support of ranking function or fv (π) if the support is not known

for all ℓ ∈ L do
if ∃i. ℓ = πi ∧ 0 ≤ i ≤ n then

for all i s.t. ℓ = πi ∧ 0 ≤ i ≤ n do
Ψ← FALSE
if ℓ = πi ∧ i > 0 then

Ψ← as ̸= (πi, i) ∧ a = (−1,−1)
end if
if ℓ = π0 then

Ψ← Ψ ∨ (a = (π1, 1) ∧m = ms)
end if
if ℓ = πi ∧ 0 < i < n then

Ψ← Ψ ∨ (as = (πi, i) ∧ a = (πi+1, i+ 1) ∧m = ms)
end if
if ℓ = πn then

Ψ← Ψ ∨ (as = (πn, n) ∧ a = (−1,−1) ∧m > 0 ∧m = ms − 1)
end if

end for
else

Ψ← a = (−1,−1)
if LG (ℓ) does not modify a variable in W then

Ψ← Ψ ∧m = ms

end if
end if
LA (ℓ)← LA (ℓ) ∧Ψ

end for
return A

1 j = 0;
2 while (nondet()) {
3 assume(1 < n && n < b);
4 if (nondet()) {
5 n = n * n;
6 } else {
7 j = j + 1;
8 n = j;
9 }
10 }

Fig. 4. An example while loop. As explained earlier, the assumption on line 3 represents the loop guard. Each iteration of
the loop either squares the contents of n or increments the counter j. The termination condition of the loop obviously involves
reasoning about non-linearities. The function nondet() is assumed to be nondeterministic value introduction (i.e. a proof of
correctness will have to consider all possible cases of nondet()’s result).
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1 j = 0;
1 a s=a; m s=m;
1 a=nondet(); m=nondet();
1 assume(a==(-1,-1) && m==m s);
2 while(nondet()) {
3 assume(1 < n && n < b);
3 a s=a; m s=m;
3 a=nondet(); m=nondet();
3 assume(a==(5,1) && m==m s);
4 if(nondet()) {
5 n = n * n;
5 a s=a; m s=m;
5 a=nondet(); m=nondet();
5 assume((a s!=(5,1) && a==(-1,-1)) || (a s==(5,1) && a==(-1,-1) && m>0 && m==m s-1));
6 } else {
7 j = j+1;
7 a s=a; m s=m;
7 a=nondet(); m=nondet();
7 assume(a==(-1,-1) && m==m s);
8 n = j;
8 a s=a; m s=m;
8 a=nondet(); m=nondet();
8 assume(a==(-1,-1));
9 }
10 }

Fig. 5. Output of αZigZag πG (Algorithm 2) where the program G is from Figure 4 and π = 3 → 5. Variables with the s suffix
store the previous state.

This paper extends our previous work [1] with a more in-depth algorithmic description, together with
new details on how ZigZag can be combined within a larger termination proving framework.

Bradley et al. [4]’s analysis supports nonlinear multipath polynomial programs. Their algorithm is based
on building finite difference trees for expressions. In some cases that we can handle (see Figures 3(a), 3(c),
3(d), and 3(e) for examples) this can’t be done as the trees are infinite.

Cousot [12]’s general framework for termination proving supports the synthesis of ranking functions from
nonlinear loops. First, the standard Floyd-style verification conditions are abstracted into a (user-chosen)
parametric form. If it is still possible to prove termination within the parametric abstraction, then verifica-
tion reduces to solving for the parameters. The constraints on the parameters are then further abstracted
to a conjunction of inequalities by Lagrangian relaxation, which can in turn be solved using semidefinite
programming, if the constraints are quadratic. The framework is general and can handle interactions between
variables that our analysis cannot. On the other hand, semi-definite programming is limited to quadratic
functions, so the framework can handle polynomial updates of higher degree only if they can be expressed (or
further conservatively approximated) by a sum of squares. Furthermore, the framework depends on exten-
sive numerical computation, making it vulnerable to numerical errors and complicating its use in practice.
(For example, a synthesized rank function in Cousot’s paper [12] is actually non-monotonic when n is large,
apparently due to numerical errors in the solver, or perhaps a transcription error somewhere in the process.3)

In Section 3, we proposed a method of adding new variables which track facts proved by ZigZag. The

3 The error occurs in Example 9, where the synthesized rank function is reported as r(n, i, j) = (7.024176 × 10−4)n2 +
(4.394909× 10−5)ni− (2.809222× 10−3)nj + (1.533829× 10−2)n+ (1.569773× 10−3)i2 + (7.077127× 10−5)ij + (3.093629×
101)i− (7.021870× 10−4)j2 + (9.940151× 10−1)j + (4.237694). This is for a nested loop:

for (i=n; i>=0; i--) for (j=n; j>=0; j--) /* skip */;

and the rank function should decrease with every iteration. The paper shows a well-behaved plot when n = 10. However, an
examination of the purported ranking function suggests that when n is somewhat larger and the inner loop terminates, the
effect of i decrementing by 1 will not overcome j increasing back to n. For example, using arbitrary precision rationals, we can
compute r(100, 1, 0) = 43.737953682, whereas r(100, 0, 100) = 77.083119. As n grows larger, other non-monotonicities emerge.
For example, r(1000, 0, 1000) = −1795.400316, but r(1000, 0, 999) = −1792.181437287.
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idea of tracking additional information with new variables for the purpose of proving termination is not new
(e.g. [3, 23] ). The difference here is in what is tracked: we are using new variables to track if specific paths
are taken, whereas previous techniques have been used to track artifacts such as the sizes of lists.

5. Conclusion

We have described an automatic tool, called ZigZag, that can be used to prove the termination of loops
with nonlinear assignments to variables. ZigZag uses divergence testing on variables that are relevant for
proving loop’s termination. ZigZag can automatically prove the termination of loops that are not supported
with previously reported techniques.

Future work. ZigZag could be extended in several directions. In addition to divergence, x+ might also
converge to a stable point. The analysis can be extended to handle such cases, for example:

while (x > 0.5) {
x = 0.8 * x;

}

This is just an application of the Banach fixed point theorem [15]. Since this is a well-known result, we do
not consider it explicitly in our approach.

For low-order polynomials (which have only a small number of real roots) with only constant coefficients,
the analysis could search for RGDs (or regions of guaranteed convergence) in an iterated application of the
update function fk = f ◦ · · · ◦ f , which is simply a higher-order polynomial. This extension would make
the analysis much more powerful, as currently our analysis only finds the most apparent RGDs. Since most
of the nonlinear functions that appear in practice are low-order polynomials, this might be an interesting
direction for the future research.

We are currently investigating methods for supporting interdependent induction variables. Another pos-
sible extension is to allow nonlinear functions of symbolic constants in update functions. Finding minimums
and maximums of such functions is NP-complete in general.
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