
Systematic Debugging Methods for Large Scale
HPC Computational Frameworks
Alan Humphrey,
Qingyu Meng,
Martin Berzins

School of Computing and SCI Institute
University of Utah, USA

{ahumphre,qymeng,mb}@cs.utah.edu

Diego Caminha B. de Oliveira,
Zvonimir Rakamarić,

Ganesh Gopalakrishnan
School of Computing

University of Utah, USA
{caminha,zvonimir,ganesh}@cs.utah.edu

Abstract—Parallel computational frameworks for high perfor-
mance computing (HPC) are central to the advancement of sim-
ulation based studies in science and engineering. Unfortunately,
finding and fixing bugs in these frameworks can be extremely
time consuming. Left unchecked, these bugs can drastically
diminish the amount of new science that can be performed. This
paper presents our systematic study of the Uintah Computational
Framework, and our approaches to debug it more incisively.
Our key insight is to leverage the modular structure of Uintah
which lends itself to systematic debugging. In particular, we
have developed a new approach based on Coalesced Stack Trace
Graphs (CSTGs) that summarize the system behavior in terms of
key control flows manifested through function invocation chains.
We illustrate several scenarios how CSTGs could help efficiently
localize bugs, and present a case study of how we found and
fixed a real Uintah bug using CSTGs.

Index Terms—Computational Modeling and Frameworks, Par-
allel Programming, Reliability, Debugging Aids.

I. INTRODUCTION

Computational frameworks for high performance computing
(HPC) are central to the advancement of simulation based
studies in science and engineering. With the growing scale of
problems and the growing need to simulate problems at higher
resolutions, modern computational frameworks continue to
escalate in scale, now approaching a million cores in their
current deployments and consisting of as much as a million
lines of code.

The prevalence of software bugs in such large codes and the
difficulty of debugging are well known. In the case of large
parallel frameworks, finding and fixing bugs can be an order of
magnitude more time consuming, particularly for those bugs
that arise from the parallel nature of the code and for which
testing may only be done through infrequently scheduled batch
runs, possibly at large core counts.

This lengthy debugging process can arise even though the
creators of computational frameworks put in considerable
effort and thought into carefully structuring them, while users
of these frameworks also write a non-trivial number of tests
as well as assertions in their code. Part of the challenge in
debugging HPC frameworks is that the styles of concurrency
present in HPC qualitatively differ from well-studied situations
in rigorous software engineering. For instance, in rigorous

software engineering, considerable attention has been paid to
device drivers, operating systems, and transactional systems.
In contrast, in HPC, typical computations are based upon
large coupled systems of partial differential equations, run
for days (if not months), and are orchestrated around time-
stepped activities. Significant usage is made of infrastructural
components (e.g., schedulers), adaptive mesh refinement algo-
rithms, as well as third-party libraries (e.g., iterative solvers
for large systems of linear equations). Compared to “traditional
software systems,” there has, historically, been relatively less
attention paid to bugs occurring within HPC in general and
computational frameworks in particular. However, this situ-
ation is rapidly changing. Recently, the authors provided a
perspective on this issue for message passing parallel pro-
grams [1]. In further considering large software frameworks
we need steady progress to be made in systematic testing meth-
ods that help trigger deeply hidden bugs, and also systematic
debugging methods that help observe these bugs as well as
root-cause them. This paper presents our systematic study of a
computational framework under development at the University
of Utah called the Uintah Computational Framework [2] (or
just Uintah), and the efforts we are putting into Uintah in
order to debug its bugs quickly and effectively.

In particular, we summarize preliminary results [3] from
an ongoing collaboration between a subset of its authors
interested in building a high-end problem solving framework,
and a subset interested in developing formal software testing
approaches that can help eliminate code-level bugs, hence
enhancing the value offered by the framework. Our observation
is that collaboration between HPC and core CS researchers is
crucial in developing suitable rigorous software engineering
approaches to modern computational frameworks. In this
spirit we are developing Uintah system Runtime Verification
(URV) techniques that can be deployed in field-debugging
situations. We aim to make our results broadly applicable to
other computational frameworks and HPC situations. While
traditional debuggers (e.g., Allinea DDT and Roguewave) are
the mainstay of today’s debugging methods, typically these
tools are good at explaining the execution steps close to the
error site itself—and not at providing high level explanations
of cross-version changes. Our work is aimed at bringing in



VisIT
(Visualization)

ICE MPM ARCHES

Simulation
Controller

Load 
Balancer

Scheduler

t4

t1 t2 t3

t5 t6

t7 t8 t9

t10

t11 t12
t13

Application Packages

Abstract Directed Acyclic Tast Graph

Runtime System

Visualization

Fig. 1. Outline of Uintah Architecture

systematic (formal) techniques for both triggering bugs as well
as debugging, which can be deployed in practice. Our main
contribution is a light-weight technique for comparing two
executions of a system—one typically the working (“golden”)
version and the other the new version being tested—based
on their execution profiles. The key abstraction used in this
approach is that of Coalesced Stack Trace Graphs (CSTGs).
In the rest of this paper, we describe the form and use of
CSTGs in connection with Uintah.

II. THE UINTAH COMPUTATIONAL FRAMEWORK

A proven approach to solving large-scale multi-physics
problems on large-scale parallel machines is to use computa-
tional frameworks such as the Uintah Computational Frame-
work1 which originated in the University of Utah DOE Center
for the Simulation of Accidental Fires and Explosions (C-
SAFE) (9/97-3/08). Uintah was intended to make it possi-
ble to solve complex fluid-structure interaction problems on
parallel computers. In particular, Uintah is designed for full
physics simulations of fluid-structure interactions involving
large deformations and phase change. There may be strong
coupling between the fluid and solid phases with a full Navier-
Stokes representation of fluid phase materials and the transient,
nonlinear response of solid phase materials, which may include
chemical or phase transformation between the solid and fluid
phases. Uintah uses a full multi-material approach in which

1For reasons of space, we cite here an earlier CiSE paper on the applications
of Uintah [4]; we refer the reader to that paper for more information and
references.

each material is given a continuum description and is defined
over the complete computational domain.

Uintah contains four main simulation components: (1) the
ICE code for both low and high-speed compressible flows;
(2) the multi-material particle-based code MPM for struc-
tural mechanics; (3) the combined fluid-structure interaction
(FSI) algorithm MPM-ICE; and (4) the ARCHES turbulent
reacting CFD component that was designed for simulation
of turbulent reacting flows with participating media radiation.
Uintah makes it possible to integrate multiple simulation
components, analyze the dependencies and communication
patterns between these components, and efficiently execute the
resulting multi-physics simulation.

These Uintah components are C++ classes that follow a sim-
ple interface to establish connections with other components
in the system. Uintah then utilizes a task-graph of parallel
computation and communication to express data dependencies
between multiple application components. The task-graph is
a directed acyclic graph (DAG) in which each task reads
inputs from the preceding task and produces outputs for the
subsequent tasks. The task’s inputs and outputs are specified
for a generic patch in a structured adaptive mesh refinement
(SAMR) grid, thus a DAG will be created with tasks of only
local patches. Each task has a C++ method for the actual
computation and each component specifies a list of tasks to
be performed and the data dependencies between them [5].

This design allows the application developer to only be
concerned with solving the partial differential equations on a
local set of block-structured adaptive meshes, without worry-
ing about explicit message passing calls in MPI, or indeed
parallelization in general. This is possible as the parallel
execution of the tasks is handled by a runtime system that
is application-independent. This division of labor between the
application code and the runtime system allows the developers
of the underlying parallel infrastructure to focus on scalability
concerns such as load balancing, task scheduling, communi-
cations, including accelerator or co-processor interaction.

Uintah scales well on a variety of machines at small
to medium scale (typically Intel or AMD processors with
Infiniband interconnects) and on larger Cray machines such as
Kraken and Titan. Uintah also runs on many other NSF and
DOE parallel computers (Stampede, Keeneland, Mira, etc).
Using its novel asynchronous task-based approach with fully
automated load balancing Uintah demonstrates good weak and
strong scalability up to 256K and 512K cores on DOE Titan
and Mira, respectively. Full details of both these machine and
the scalability of Uintah are shown in our previous work [5].

Uintah is used for a broad range of multi-scale multi-physics
problems such as angiogenesis, tissue engineering, green urban
modeling, blast-wave simulation, semi-conductor design and
multi-scale materials research. A recent example is the multi-
scale modeling of accidental explosions and detonations [4].

One of the main approaches suggested for the move to
multi-petaflop architectures (and eventually exascale) is to use
a graph representation of the computation to schedule work, as
opposed to a bulk-synchronous approach in which blocks of



communication follow blocks of computation. The importance
of this approach for exascale computing is expressed by
recent studies [6]. Following this general direction, Uintah
has evolved over the past decade to show promising results on
problems as diverse as fluid-structure interaction and turbulent
combustion at scales of about 500K CPU cores by incorporat-
ing shared memory (thread-based) schedulers as well as GPU-
based schedulers [5]. The broad structure of Uintah is shown in
Fig. 1, where the applications packages give rise to a directed
task-graph which, in turn, is executed by a run-time system.
While this architecture has many advantages for scalability, its
task-graph approach means that execution order varies from
machine to machine, and with this the challenge of debugging
increases [5].

Frameworks such as Uintah aspire to be critically important
components of our national high performance computing in-
frastructure, contributing to the solution of computationally
challenging problems of great national consequence. Being
based on sound and scalable organizational principles, they
lend themselves to easy adaptation. For example, GPU sched-
ulers were incorporated into Uintah in a matter of weeks.
This fundamentally leads to systems such as Uintah being in
a state of perpetual development. Furthermore, end-users are
always trying to solve larger and more challenging problems
as they stay at leading edges of their subjects. There is always
a shortage of CPU cycles, total memory capacity, network
bandwidth, and advanced developer time. Structured software
development and documentation compete for expert designer
time as much as the demands to simulate new problems and
to achieve higher operating efficiencies by switching over to
new machine architectures.

Previously, the formal methods authors of this paper have
explored various scalable formal debugging techniques for
large-scale HPC and thread-based systems (e.g., [1], [7]). The
URV project is different from these efforts since it is an
attempt to integrate light-weight and scalable formal methods
into a problem-solving environment that is undergoing rapid
development and real usage at scale.

There are many active projects in which parallel com-
putation is organized around task-graphs. For example,
Charm++ [8] has pioneered the task-graph approach and finds
applications in high-end molecular dynamics simulations. Our
interest in Uintah stems from two factors: (1) Uintah has scaled
by a factor of 1000 in core-count over a decade and finds
numerous real-world applications; (2) we are able to track
its development and apply and evaluate formal methods in a
judicious manner. We believe that our insights and results will
transfer over to other similar computational frameworks—in
existence or planned.

III. UINTAH RUNTIME VERIFICATION (URV)

The current focus of the Uintah Runtime Verification project
is to help enhance the value of Uintah by eliminating show-
stopper code-level bugs as early as possible. In this connection,
it is too tempting to dismiss the use of light-weight formal
testing methods on account of the fact that many of these

methods do not scale well, and that many interesting field bugs
occur only at scale. While this may be true in general, there
are a number of bugs which are reproducible at lower scales
and can be found by such methods, as presented in this paper.
This observation is supported by error logs from previous
Uintah versions where many of the errors (e.g., double-free
of a lock, mismatched MPI send and receive addresses) were
unrelated to problem scale. Of course, scale-dependent bugs do
exist. According to our experience, such bugs are due to subtle
combinations of code and message passing, and are sometimes
exceptionally challenging to find at very large core counts with
only batch access. Hence, they are clearly important and are
the eventual goal of our future research.

In the URV project, we are motivated by one crucial
observation: the ease with which a system can be downscaled
depends on how well structured it is. There are many poorly
structured systems that allow only certain delicate combina-
tions of their operating parameters; sometimes, these param-
eters are not well documented. Uintah, on the other hand,
follows a fairly modular design, allowing many problems to be
run across a wide range of operating scales—from two to thou-
sands of CPU cores in many cases. There are only relatively
simple and well-documented parameter dependencies (related
to problem sizes and the number of processes and threads) that
must be respected. This gives us a fair amount of confidence
that well-designed formal methods can be applied to Uintah
at lower scales to detect many serious bugs (examples are
provided later in §III).

Our main contribution in this paper is our approach to debug
large-scale parallel systems by highlighting the execution
differences between working and non-working versions of
the system. A straightforward “diff” of these systems (say
by comparing actual temporal traces) has an extremely low
likelihood of root-causing problems. This is because the actual
parallel program schedules of various threads and processes
are likely to differ from run to run—even for just one version
of a system. Our method relies on obtaining Coalesced Stack
Trace Graphs (CSTGs) that tend to forget schedule variations
and highlight the flow of function calls during execution. We
show that collecting CSTGs and diffing them is a practical
approach by demonstrating how we have helped Uintah de-
velopers root-cause a bug caused by switching to a different
Uintah scheduler. While stack trace collection and analysis has
been previously studied in the context of tools and approaches
such as STAT [9], [10] and HPCToolkit [11], their focus has
not been on cross-version (“delta”) debugging as we have
implemented.

A. Coalesced Stack Trace Graphs (CSTG)

A stack trace is a report of the active function calls at
a certain point in time during the execution of a program.
Stack traces are commonly used to observe crashes and to
learn where a program failed, being very helpful in the debug
phase of software development. They are also being used in
more advanced techniques to help find problems in parallel
applications.



void A( ) {
c s t g . a d d S t a c k T r a c e ( ) ;

}

void B ( ) {
A ( ) ;

}

i n t main ( ) {
i n t x = random ( ) ;
i f ( x > 0) B ( ) ;

A ( ) ;
}

Listing 1. Illustrative Example of CSTGs

Collecting stack traces throughout the execution of a pro-
gram may reveal interesting facts about its behavior. For
instance, it can show the number of times a function was
called and the different call paths leading to a function call.
However, the number of stack traces that can be obtained
from an execution may be very large. Therefore, for better
understanding of this data, we use graphs that can compact
several millions of stack traces in one manageable figure.
We call such a graph Coalesced Stack Trace Graph (CSTG),
which is an aggregated view of stack traces recorded during
an execution (see Fig. 4(a) or 4(b)). One may view CSTGs as
a summary of control flow paths (represented as function call
sequences) in an execution.

Spectroscope [12] collects stack traces to diagnose per-
formance changes by comparing request flows. Alternatively,
STAT [9] uses stack traces to present a summary view of
the state of a distributed MPI message-passing program at a
point of interest (often around hangs). STAT works by building
equivalence classes of processes using stack traces, showing
the split of these equivalence classes into divergent flows
using a prefix tree. STAT corresponds well to the needs of
MPI program debugging due to the SPMD (single program,
multiple data) nature of MPI programs resulting in a prefix
tree stem that remains coalesced for the most part. Debugging
is accomplished by users noticing how process equivalence
classes split off, and then understanding why some of the
processes went with a different equivalence class. In our CSTG
approach, we do not rely upon MPI-like SPMD behaviors.
CSTGs detect anomalies based on the general approach of
comparing two different executions.

B. Simple Example Illustrating CSTGs

To illustrate how CSTG instrumentation is done and how
the collected stack traces are visualized as a graph, consider
the simple example in Listing 1 that provides a mock-up
of how we use CSTGs in the large. The random() call
may be thought to be a complex piece of code that non-
deterministically assigns x. Function main() conditionally
calls B() if x > 0. Following this conditional, main() calls
A().

The collection of stack traces is done inside the function
A(): every time addStackTrace() is executed, the nested

main

A

B

main

A

main

A

B

Fig. 2. CSTGs of the illustrative example. The CSTG on the left is obtained
from the full execution of the example when x > 0. The middle CSTG is
obtained when x <= 0. The difference graph on the right helps understand
the execution differences.

A

DCT DCG

CCT CSTG

B C B

D E D D E E

A

A
A:1

C

E

B

D E

B

D E

C

D E

B:1

D:1 E:2

B:2

D:3 E:1

C:1

D:2

B

D

C

E

Fig. 3. Different Stack Trace Viewing Methods

stack of function calls leading to that point is recorded. After
coalescing all the recorded stack traces together in a graph,
there are two CSTGs that can be obtained from the full
execution of this example, as shown in Fig. 2. In the figure, we
also show a third graph that highlights the difference between
the first two CSTGs.

In our actual debugging case studies using CSTGs, we
expressed our knowledge of likely functions of interest in the
Uintah code-base by inserting cstg.addStackTrace()
calls into these functions. The CSTG tool does the rest
automatically; it runs the example under test under different
scenarios (detailed in §III-C), produce CSTGs, and help users
see salient differences between the scenarios. The bug itself
typically gets revealed and confirmed through the use of
a traditional debugger, with the “delta” CSTGs providing
significant focus and guidance in applying the debugger.

C. Stack Trace Viewing Modalities

One can roughly classify previous stack trace viewing meth-
ods [13] into three equivalence classes as illustrated in Fig. 3.
In Dynamic Call Trees (DCT), each node represents a single
function activation. Edges represent calls between individual
function activations. The size of a DCT is proportional to the
number of calls in an execution. In Dynamic Call Graphs
(DCG), each node represents all function activations. Edges
represent calls between functions. The size of a DCG grows
with the number of unique functions invoked in an execution.



In Calling Context Trees (CCT), each node represents a
function activation in a unique call chain. Edges represent calls
between function activations from different call chains. CCT
is a projection of a dynamic call tree that discards redundant
contextual information while preserving unique contexts.

Different from the previously described structures, CSTGs
do not record every function activation, but only the ones in
stack traces leading to the user-chosen function(s) of interest.
Each CSTG node represents all the activations of a particular
function invocation. Hence, in addition to function names,
CSTG nodes are also labeled with unique invocation IDs.
Edges represent calls between functions. The size of a CSTG
is determined by the number of different paths reaching the
observations points (i.e., target functions) of interest; in our
experience, this size has been modest.

CSTG is a very compact and useful way to better understand
a program execution. More importantly, CSTGs have proven
helpful in many realistic bug-hunting scenarios, especially
when we are able to compare different CSTGs. As examples
we can cite:

Working and non working versions. Software projects are
often constantly evolving. New components are devel-
oped to replace the old ones, and sometimes they carry
new bugs. Understanding why a new component is not
doing what it is suppose to do can be easier when com-
paring executions against the older working component.

Symmetric events (e.g., sends/recvs, lock/unlock, new/delete).
Matching events are common in any program. Having a
simple visual representation of such events allows for a
quick identification of potential problems.

Repetitive sets of events (e.g., time-steps). It is common to
find algorithms that behave the same (or very similarly)
through a sequence of steps, such as in simulations
and loop iterations. Noticing that something unusual is
happening at some execution step is often easier when
using CSTGs.

Different processes and threads. In many parallel pro-
grams, the same work is done in different threads or
processes. CSTGs can be used to identify when a thread
or process is not doing its assigned work properly by
comparing it to other threads or processes, respectively.

Non-deterministic execution. We have performed case stud-
ies2 that demonstrate the feasibility of using CSTGs to
locate and help root-cause the onset of nondeterminism.

Different inputs. Sometimes changing the input of a program
may cause a crash. Our studies show the success of
CSTGs in this regard as well.

As we can see, CSTGs can be used in many different
scenarios not limited to the previous list. Clearly, high-level
user insights are important in governing where collection
must occur. The collection itself is initiated by placing a
special function call (such as illustrated in Listing 1 as

2Details at www.cs.utah.edu/fv/CSTG/. For the ease of presentation, we
simplify many of the function and variable names involved, and zoom out
irrelevant parts of the presented CSTGs.

. /sus

AMRSim::run+A

4

AMRSim::run+B

7 0

AMRSim::run+C

1

AMRSim::run+D

1

AMRSim::run+E

1

AMRSim::executeTimestep

4

AMRSim::doInitialTimestep

7 0

DW::override

1 1 1

DW::put

MPIScheduler: :execute+A

1

MPIScheduler: :execute+B

6 9

MPIScheduler::initiateReduction

1

MPIScheduler::runTask

7 3

4

DetailedTask::doit+A

7 3

MPIScheduler::runReductionTask

17 3

DW::reduceMPI+

1

AMRSim::coarsenDelt

1 Arches: :paramInit+A

1

Arches: :paramInit+B

1

BoundaryCondit ion::computeBCArea_new

4 7

ClassicTableInterface::getState

2

CompMooneyRivlin::computeStableTimestep

1

CompMooneyRivlin::initializeCMData

1

Task::doit+G

Action1::doit+B

2

Action2::doit+C

1

Action2::doit+D

4 7

Action4::doit+E

2

Action::doit+F

2 1

ExplicitSolver::computeDensityLag

1

ExplicitSolver::getDensityGuess

1

IntrusionBC::computeBCArea

4

IntrusionBC::gatherReducInfo+A

4

IntrusionBC::gatherReducInfo+B

4

IntrusionBC::gatherReducInfo+C

4Proper t ies : :computeDrhodt

1

SerialMPM::Init+A

1 SerialMPM::Init+B

11 1

1

4 7

2 1

1

1

4

4

4 4

1 1

__libc_start_main

7 7

7 3

(a) CSTG for the Working Version

. /sus

AMRSim::run+A

4

AMRSim::run+B

6 9

AMRSim::run+C

1

AMRSim::run+D

1

AMRSim::run+E

1

AMRSim::executeTimestep

4

AMRSim::doInitialTimestep

6 9

DW::override

1 1 1

DW::put

UnifiedScheduler::execute

6 9

UnifiedScheduler::runTask

7 3

4

DetailedTask::doit

7 3

AMRSim::coarsenDelt

1 Arches::paramInit+A

1

Arches: :paramInit+B

1

BoundaryCondit ion::computeBCArea_new

4 7

ClassicTableInterface::getState

2

CompMooneyRivlin::computeStableTimestep

1

CompMooneyRivlin::initializeCMData

1

Task::doit

Action1::doit+A

2

Action2::doit+B

1

Action2::doit+C

4 7

Action4::doit+D

2

Action::doit+E

2 1

ExplicitSolver::computeDensityLag

1

ExplicitSolver::getDensityGuess

1

IntrusionBC::computeBCArea

4

IntrusionBC::gatherReducInfo+A

4

IntrusionBC::gatherReducInfo+B

4

IntrusionBC::gatherReducInfo+C

4Proper t ies : :computeDrhodt

1

SerialMPM::init+A

1 SerialMPM::init+B

11 1

1

4 7

2 1

1

1

4

4

4 4

1 1

7 3

__libc_start_main

7 6

7 3

(b) CSTG for the Crashing Version

Fig. 4. Using CSTGs to Understand a Bug. The concave (shrinking) lens
abstracts away irrelevant portions of the CSTG

cstg.addStackTrace(), calls to which are recorded).
Users may additionally exercise various conditional collection
features we have provided in our CSTG package, as well as
aggregate by different time periods, processes, or threads.

IV. UNDERSTANDING A REAL BUG USING CSTGS

The case study we detail in this section investigates a real
field bug that was present in an older version of Uintah.
In conjunction with CSTGs, we also employed traditional
techniques, such as the use of prints and a debugger (Allinea
DDT)—albeit to a much reduced extent than in traditional



DW::reduceMPI

MPIScheduler: :execute+A

MPIScheduler::initiateReduction

1

MPIScheduler: :execute+B

MPIScheduler::runTask

7 3

MPIScheduler::runReductionTask

1

1

DetailedTask::doit

7 3

UnifiedScheduler::execute

UnifiedScheduler::runTask

-73

-73

./sus

AMRSim::run+A

0

AMRSim::run+B

1

AMRSim::run+C

0

AMRSim::run+D

0

AMRSim::run+E

0

AMRSim::executeTimestep

0

AMRSim::doInitialTimestep

1

DW::override

0 00

DW::put

16 9 -694 -4

0

Task::doit

AMRSim::coarsenDelt

0

Action1::doit+A

ExplicitSolver::getDensityGuess

0

Proper t ies : :computeDrhodt

0

00

Action2::doit+B

ExplicitSolver::computeDensityLag

0

0

Action2::doit+C

BoundaryCondit ion::computeBCArea_new

0

0

Action4::doit+D

ClassicTableInterface::getState

0

0

Action::doit+E

0

Arches: :paramInit+A

0

Arches: :paramInit+B

0

IntrusionBC::computeBCArea

0

IntrusionBC::gatherReducInfo+A

0

IntrusionBC::gatherReducInfo+B

0

IntrusionBC::gatherReducInfo+C

0 SerialMPM::init+A

0

SerialMPM::init+B

0

0

0

0

0

0 0

CompMooneyRivlin::initializeCMData

0

0

CompMooneyRivlin::computeStableTimestep

0

0

0

0 0 0 0

__libc_start_main

1

0

Fig. 5. Difference Graph. Highlights the differences from Figs. 4(a) and 4(b).

debugging sessions. All the debugging was carried out by
a non-developer of the Uintah code-base who has only a
very limited knowledge of the overall Uintah code. In this
case study CSTGs were used to compare a working and
non working version of Uintah. It is a typical scenario of a
system under constant development in which a new component
replacing an existing one causes a bug. Uintah source code,
CSTG engine source code, presentations and the full graphs of
this and other case studies in different scenarios are available
online.

The Mini Coal Boiler problem is a real-world example
and models a smaller scale version of the PSAAP target
problem in which Uintah will use experimental data provided
by an industrial collaborator Alstom Power to simulate coal
combustion under oxy-coal conditions.

Uintah simulation variables are stored in a data warehouse.
The data warehouse is a dictionary-based hash-map which
maps a variable name and patch id to the memory address
of a variable.

When running Uintah for solving the Mini Coal Boiler
problem, an exception is thrown in the function DW::get()
when looking for an element that does not exist in the data
warehouse. One can think of two possible reasons why this
element was not found: either it was never inserted, or it was
prematurely removed from the data warehouse. Furthermore,
the same error does not appear when using a different Uintah
scheduler component.

We proceed by inserting stack trace collectors before every
put() and remove() function of the data warehouse. Then,
we run Uintah in turn with both versions of the scheduler, and
collect stack traces visualized as CSTGs. Fig. 4(a) shows the
CSTG of the working version, while Fig. 4(b) shows the CSTG

of the crashing version.
It is not necessary to see all the details in these CSTGs.

However, it is apparent that there is a path to reduceMPI()
in the working version that does not appear in the crashing
version. Fig. 5 shows precisely that difference—the extra
green path does not occur in the crashing version. (The other
difference is related to the different names of the schedulers.)
By examining the path leading to reduceMPI(), we are
able to observe in the source code that the new scheduler
never calls function initiateReduction() that would
eventually add the missing data warehouse element that caused
the crash. Since the root cause of this bug is quite distant from
the actual crash location, relying on CSTGs enabled us to gain
understanding of this bug faster then what we would have been
able to achieve using only traditional debugging methods.

V. IMPLEMENTATION DETAILS

In our current implementation of CSTGs in the context of
Uintah running MPI on several nodes, we collect the stack
traces separately at every processor (process) by invoking the
backtrace() function (from C library execinfo.h) each time
a stack trace collection instruction is executed. Stack traces can
be written out to separate files and merged at the end of the
execution for the generation of CSTGs offline. We have also
recently added facilities to build CSTGs directly in memory. In
this case, each stack trace is processed, added to a graph data
structure and then discarded so memory overhead is minimal.
An example of the current stack trace recorded is:
stack_trace:
MPIScheduler::postMPISends(Uintah::DetailedTask*, int)+0xa15
MPIScheduler::runTask(Uintah::DetailedTask*, int)+0x3b7
MPIScheduler::execute(int, int)+0x78f
AMRSimulationController::executeTimestep(double)+0x2a6
AMRSimulationController::run()+0x103b
StandAlone/sus() [0x4064d2]
__libc_start_main()+0xed
StandAlone/sus() [0x403469]

In this example, the first line starts with stack_trace
that indicates where the stack trace starts. Each line in the
stack trace is comprised of the complete function signature,
plus a hexadecimal address indicating the calling context of the
next called function. The graph is created using standard data
structures and visualized using graphviz. We compare CSTGs
by creating a graph diff, showing deficits as negative numbers
(on red edges) and excesses as positive numbers (on green
edges).

VI. SCALING STUDIES

Figure 6 presents preliminary scaling studies of the viability
of using CSTGs in the range of 100s of processes. The case
study itself was the one presented in Section IV, with the
same collection points. The experiments were performed in
a cluster with 66 nodes, each node with a 4 AMD Opteron
“Magny Cors” 6164HE 12-core 1.7GHz CPUs, 64 GB RAM,
7200RPM SATA2 Hard drives and 10 Gigabit Ethernet. The
input file employed was one that does not produce a crash.

Figure 6 shows that the overhead of collecting stack traces
is small (less than 5% on average), both when CSTGs are



2x2 5x2 50x2 500x2

Processes and threads per process

0

200

400

600

800

1000

Ti
m

e
 i
n
 s

e
co

n
d
s

Non-instrumented Run
CSTG In Memory
CSTG in Files

Fig. 6. Running time collecting stack traces to generate CSTGs.

created in memory or when stack traces are recorded to files.
(clearly, in-memory collection eliminates interference with file
I/O and the amount of memory used is minimal because we are
mostly counting edges). The run at the highest scale involved
127,000 stack traces, and the smaller runs 800, 7000 and
35,000 stack traces. While the overhead will depend on the
number of stack traces collected or where the instrumentation
is placed, we believe that CSTGs do provide another tool in
the tool-kit of developers who may be able to easily downscale
runs to 100s of processes so that they may comprehend salient
execution differences. While more experience is needed, our
studies in www.cs.utah.edu/fv/CSTG/ provide a growing body
of evidence that CSTGs do work in practice.

VII. CONCLUDING REMARKS

In this paper, we argue the need for a new approach to
debugging large scale software frameworks and demonstrate
this approach in the context of the Uintah computational
framework. Given the constant state of evolution of these
frameworks in response to advances in software and hardware,
it is essential to have the means to evolve the design and
implementation of key components, and conduct differential
verification across versions. A key need in the evolution of
these frameworks is to have debugging tools that enhance
the efficiency of the computational framework infrastructure
developers when they are faced with tough debugging situ-
ations. Without adequate tools for efficient debugging, HPC
projects can become crippled, with their lead developers
saddled with bugs that can take days or weeks to root-cause.
The CSTG approach described above is one way of improving
the debugging of frameworks like Uintah.

Following the developments described above, the collection
and analysis of CSTGs will be the imminent focus of the URV
project. In addition to straightforward approaches to compute
differences between CSTGs, we are beginning to investigate
other means of compressing the information contained in
CSTGs and make the difference computation more insightful.
For example, decorating CSTGs with information pertaining
to locks may help identify concurrency errors pertaining to
incorrect locking disciplines. We are also directing CSTG
collection and analysis to target centrally important Uintah
components, including the Data Warehouse.

One of the most tangible high-level outcomes of the URV
project may be to lend credence to our strong belief that
collaborations such as ours are possible, and are beneficial
to both sides: to HPC researchers who gain an appreciation
of CS formal methods; and to CS researchers who get a
chance to involve in concurrency verification problems of a
more fundamental nature that directly contributes to a nation’s
ability to conduct science and engineering research.
Acknowledgements

The authors wish to thank the referees for their insightful
comments. This work was supported by the National Sci-
ence Foundation under grants OCI-0721659, the NSF OCI
PetaApps program, through award OCI 0905068 and DOE
NETL for funding under NET DE-EE0004449. This project
used the University of Delaware’s Chimera computer which
was funded by the U.S. National Science Foundation Award
CNS-0958512.

REFERENCES

[1] G. Gopalakrishnan, R. M. Kirby, S. Siegel, R. Thakur, W. Gropp,
E. Lusk, B. R. de Supinski, M. Schulz, and G. Bronevetsky, “Formal
analysis of MPI-based parallel programs,” Communications of ACM,
vol. 54, no. 12, pp. 82–91, Dec. 2011.

[2] “Uintah computational framework,” http://www.uintah.utah.edu.
[3] D. C. B. de Oliveira, Z. Rakamarić, G. Gopalakrishnan, A. Humphrey,

Q. Meng, and M. Berzins, “Practical formal correctness checking
of million-core problem solving environments for HPC,” in Informal
Proceedings of the 5th International Workshop on Software Engineering
for Computational Science and Engineering (SE-CSE), 2013.

[4] J. Beckvermit, J. Peterson, T. Harman, S. Bardenhagen, C. Wight,
Q. Meng, and M. Berzins, “Multiscale modeling of accidental explosions
and detonations,” Computing in Science and Engineering, vol. 15, no. 4,
pp. 76–86, 2013.

[5] Q. Meng, A. Humphrey, J. Schmidt, and M. Berzins, “Investigating
applications portability with the Uintah DAG-based runtime system on
petascale supercomputers,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis (SC), 2013, pp. 96:1–96:12.

[6] D. L. Brown and P. Messina, “Scientific grand challenges,
crosscutting technologies for computing at the exascale,” 2010,
http://science.energy.gov/∼/media/ascr/pdf/program-documents/docs/
crosscutting grand challenges.pdf.

[7] M. Emmi, S. Qadeer, and Z. Rakamarić, “Delay-bounded scheduling,”
in Proceedings of the ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2011, pp. 411–422.

[8] http://charm.cs.uiuc.edu/.
[9] D. C. Arnold, D. H. Ahn, B. R. de Supinski, G. L. Lee, B. P. Miller,

and M. Schulz, “Stack trace analysis for large scale debugging,” in
Proceedings of the International Parallel and Distributed Processing
Symposium (IPDPS), 2007, pp. 1–10.

[10] I. Laguna, T. Gamblin, B. R. de Supinski, S. Bagchi, G. Bronevetsky,
D. H. Anh, M. Schulz, and B. Rountree, “Large scale debugging of
parallel tasks with AutomaDeD,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), 2011, pp. 50:1–50:10.

[11] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent, “HPCToolkit: Tools for performance anal-
ysis of optimized parallel programs,” Concurrency and Computation:
Practice and Experience, vol. 22, no. 6, pp. 685–701, 2010.

[12] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger, “Diagnosing
performance changes by comparing request flows,” in Proceedings of the
USENIX Conference on Networked Systems Design and Implementation
(NSDI), 2011, pp. 4–4.

[13] G. Ammons, T. Ball, and J. R. Larus, “Exploiting hardware performance
counters with flow and context sensitive profiling,” in Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1997, pp. 85–96.


