
SMACK+Corral: A Modular Verifier?

(Competition Contribution)

Arvind Haran1, Montgomery Carter1, Michael Emmi2,
Akash Lal3, Shaz Qadeer3, and Zvonimir Rakamarić1

1 School of Computing, University of Utah, USA, zvonimir@cs.utah.edu
2 IMDEA Software Institute, Spain, michael.emmi@imdea.org
3 Microsoft Research, India & USA, akashl@microsoft.com

Abstract. SMACK and Corral are two components of a modular toolchain for
verifying C programs. Together they exploit state-of-the-art compiler technologies
and theorem provers to simplify and dispatch verification conditions.

1 Verification Approach

SMACK [3] is a translator from the LLVM compiler’s intermediate representation (IR)
into the Boogie intermediate verification language (IVL) [1]. Sourcing LLVM exploits a
number of frontends, optimizations, and analyses. Targeting Boogie exploits a canonical
platform which simplifies verifier implementations.

Corral [2] is a verifier for the Boogie IVL which views programs as control flow
over any SMT-encodable expression language. Corral delegates semantic reasoning to
SMT solvers, and in minimizing syntactic program assumptions, it is compatible with
any theory supported by the underlying solvers.

SMACK+Corral leverages multiple theories to encode various C-language features.
We can model memory in array theory, non-linear operations with uninterpreted functions,
fixed-width words in bitvector theory, and arbitrary-length words in linear arithmetic.
Though we make no attempt to generate inductive invariants, we can use any invariant
generator as a pre-pass; if proved sound, the resulting invariants are injected into the
program as assumptions which help Corral narrow its search.

2 Software Architecture

Figure 1 depicts the SMACK+Corral architecture. We leverage the LLVM1 compiler’s
Clang C language family frontend to generate LLVM IR, an assembly-like language
in single static assignment (SSA) form targeted by frontends for a diverse spectrum
of languages (e.g., Java, JavaScript, Haskell, Erlang, Fortran) which is a convenient
representation for code optimization. We then exploit LLVM to perform several code
optimizations including control-flow graph simplification, constant propagation, and
memory-to-register promotion. Collectively these optimizations can substantially sim-
plify the source C program with fewer control locations and memory operations.
? Partially supported by NSF award CCF 1346756 and a Microsoft Research SEIF award.
1 http://llvm.org and http://clang.llvm.org

http://llvm.org
http://clang.llvm.org


SMACK

LLVM

Clang

optimize

analysis

refinement

Corral
variable 

abstraction

stratified 
inlining

LLVM 
bitcode

Boogie 
code

C code

abstract 
program

Fig. 1. The SMACK+Corral architecture.

SMACK translates from the LLVM IR to the Boogie intermediate verification
language (IVL). The Boogie IVL is a simple imperative language with well-defined,
clean, and mathematically-focused semantics which is a convenient representation for
software verifiers. Internally, SMACK leverages LLVM pointer-aliasing analyses to
construct effective encodings of pointer and memory operations into Boogie, e.g., to
avoid encoding program memory as one single array expression, which would be difficult
for back-end verifiers to reason about.

Corral attempts to prove reachability of assertion violations in the Boogie program
generated by SMACK lazily, in a goal-directed manner, to reduce pressure on the
underlying theorem prover. Corral abstracts the input program via variable abstraction,
attempting to identify a minimal set of global variables impacting the verification
condition, and stratified inlining, attempting to identify a minimal unrolling of program
loops and recursion impacting the verification condition. When necessary, Corral refines
these abstractions by tracking additional global variables and further unrolling.

3 Strengths and Weaknesses of the Approach

Speaking generally, the main incentives of our approach are modularity and the ex-
ploitation of scalable technologies. Sourcing LLVM IR exploits a rapidly-growing
frontier of LLVM frontends, encompassing a diverse set of languages including C/C++,
Java, Haskell, Erlang, Python, Ruby, Ada, and Fortran. In addition, we benefit from
code simplifications made by LLVM’s optimizer, including constant propagation and
CFG simplification, as well as readily-available analyses, including LLVM’s pointer
analyses. SMACK’s translation to Boogie IVL exploits a canonical platform which
simplifies the implementation of verifiers like Corral due to Boogie’s minimal syntax
and mathematically-focused expression language. Finally, by cleverly exploiting the
power of efficient satisfiability modulo theories (SMT) solvers, Corral is able to scale
up to complex verification queries on large programs. The general weaknesses of our
approach are currently the limited support for proving programs correct, and the limited
support for certain C-language features such as floating-point and bitwise operations.



4 Tool Setup and Configuration

Our SV-COMP 2015 submission2 contains a prebuilt Linux binary without external
dependencies, and is run by invoking the top-level script smack-svcomp.sh. The fol-
lowing command line options should be provided for SV-COMP benchmarks:

--outputdir specifies a path where temporary files are generated;
--errorwitness specifies the file name for an output error witness;
--m64 must be set on 64-bit benchmarks, such as Device Drivers Linux 64-bit.

For example, SMACK is invoked on a C benchmark file b.c by running

smack-svcomp.sh b.c --outputdir /scratch --errorwitness /tmp/w.xml

the result of which is either TRUE, UNKNOWN, or FALSE(REACH), in which case an error
witness is written to /tmp/w.xml.
SV-COMP Categories: Arrays, Control Flow and Integer Variables, Device Drivers
Linux 64-bit, Heap Manipulation/Dynamic Data Structures, Recursive, and Simple.
Note: We preprocess SV-COMP benchmarks by removing #N-source-lines, #pragma,
and #line, since tokenization breaks otherwise. The SV-COMP error witness checker
must do the same for token numbers to match. We provide a simple Python script called
replacer.py with our binary to perform this transformation.

5 Software Project and Contributors

SMACK is an MIT-licensed open-source project hosted by GitHub3 developed and
maintained by Michael Emmi of the IMDEA Software Institute and Zvonimir Rakamarić
of the University of Utah, with additional contributions from Montgomery Carter, Arvind
Haran, and Pantazis Deligiannis. SMACK is also hosted by Microsoft’s rise4fun4 website,
which allows installation-free use. Corral is an Apache 2.0-licensed open-source project
hosted by CodePlex5 developed and maintained by Akash Lal and Shaz Qadeer of
Microsoft Research. Corral is distributed with Microsoft’s Static Driver Verifier, included
in the Windows Driver Development Kit. Both SMACK and Corral are components of
the Q modular verification-technology ecosystem6.

References
1. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for checking object-

oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.
2. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In CAV ’12,

volume 7358 of LNCS, pages 427–443. Springer, 2012.
3. Z. Rakamarić and M. Emmi. SMACK: decoupling source language details from verifier

implementations. In CAV ’14, volume 8559 of LNCS, pages 106–113. Springer, 2014.

2 http://soarlab.org/smack/smack-corral.tar.gz
3 https://github.com/smackers/smack
4 http://rise4fun.com/SMACK
5 http://corral.codeplex.com
6 http://research.microsoft.com/en-us/projects/verifierq

http://soarlab.org/smack/smack-corral.tar.gz
https://github.com/smackers/smack
http://rise4fun.com/SMACK
http://corral.codeplex.com
http://research.microsoft.com/en-us/projects/verifierq

	SMACK+Corral: A Modular Verifier

