SMACK Software Verification Toolchain®

Montgomery Carter, Shaobo He,

Jonathan Whitaker, Zvonimir Rakamari¢
University of Utah, USA

ABSTRACT

Tool prototyping is an essential step in developing novel soft-
ware verification algorithms and techniques. However, im-
plementing a verifier prototype that can handle real-world
programs is a huge endeavor, which hinders researchers by
forcing them to spend more time engineering tools, and less
time innovating. In this paper, we present the SMACK
software verification toolchain. The toolchain provides a
modular and extensible software verification ecosystem that
decouples the front-end source language details from back-
end verification algorithms. It achieves that by translating
from the LLVM compiler intermediate representation into
the Boogie intermediate verification language. SMACK ben-
efits the software verification community in several ways:
(i) it can be used as an off-the-shelf software verifier in
an applied software verification project, (ii) it enables re-
searchers to rapidly develop and release new verification al-
gorithms, (iii) it allows for adding support for new languages
in its front-end. We have used SMACK to verify numerous
C/C++ programs, including industry examples, showing it
is mature and competitive. Likewise, SMACK is already be-
ing used in several existing verification research prototypes.
Our demonstration of SMACK can be found on YouTube at
the following address: |https://youtu.be/SPPSC1KdRzs

1. INTRODUCTION

Prototyping is a requisite step in presenting innovative
software verification techniques to the research community;
in order to validate a proposed technique, it must at least
be demonstrated to be functional, if not a performance im-
provement over existing techniques. However, prototyping
is often a significant engineering effort. With a traditional
monolithic implementation approach, a prototype must pro-
vide all of the features of an end-to-end verification tool,
from source program parsing and interpretation, to model

*Supported in part by the University of Utah Office of Un-
dergraduate Research and NSF CCF 1346756/1421678.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICSE ’16 Companion, May 14-22, 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4205-6/16/05. .. $15.00

DO http://dx.doi.org/10.1145/2889160.2889163

Michael Emmi
IMDEA Software Institute, Spain

generation of the interpreted program, and finally verifica-
tion of the generated model. In contrast with the rapid
pace of innovation in the field of software verification, the
long development time typical of monolithic tool prototypes
is burdensome, requiring researchers to spend more time de-
veloping tools and less time developing new techniques. This
has impact not only on researchers, but also on the software
engineering community that researchers are ultimately try-
ing to support; delayed tool prototyping leads to delayed
research publication, which leads to delayed dissemination
of new and innovative verification techniques.

Recent advances in Satisfiability Modulo Theories (SMT)
solvers [3] have led to steady growth in the popularity of au-
tomated SMT-based software verification tools. New devel-
opments in verification algorithms, in conjunction with im-
provements in computational efficiency, have brought such
tools into industry practice (e.g., Static Driver Verifier [1],
SAGE [8]). Most SMT-based tools have to bridge a gap
between the complexities of their input language and the
simplified first-order-logic-based formats that most modern
SMT solvers take as input.

The Boogie intermediate verification language (IVL) was
designed to alleviate the complexity of modeling new source
languages and implementing new verification algorithms [6].
Boogie is well-positioned to replace monolithic prototypes
with a more flexible and modular approach. The Boogie
IVL serves as a layer of abstraction between the front-end
source languages and the back-end SMT-based algorithms
for verifying them. This separation of concerns allows in-
put programs to be translated into Boogie IVL, rather than
directly proceeding to werification condition (VC) genera-
tion and SMT solving. Likewise, the Boogie IVL has simple
and well-defined syntax and semantics rules, yet expressive
enough to provide a common target for modeling the diverse
and complex semantics of input languages. In addition to
defining the Boogie IVL, the Boogie project also provides
a back-end verifier [2], as well as an API for parsing Boo-
gie IVL, VC generation, and interfacing with an underlying
SMT solver of choice. The Boogie APT allows back-end ver-
ification tools to support Boogie IVL with minimal effort.

The LLVM project is a modern compiler infrastructure
which has seen rapid adoption both in academia and in-
dustry [11]. At its core, the LLVM infrastructure aims
to provide a universal intermediate representation (IR) for
programs written in source languages supported by LLVM-
based front-ends. It is an open and extensible framework,
containing a number of front-ends that provide support for
variety of languages including C, C++, Objective-C, Swift,

https://youtu.be/SPPSC1KdRzs
http://dx.doi.org/10.1145/2889160.2889163

Boogie

Boogie Corral
- verifier

code
Duality
verifier

Figure 1: SMACK Toolchain

and Rust. The LLVM IR enables implementation of efficient
compiler transformations and analyses, and it provides the
methods needed to easily access the resulting programs and
information, respectively.

The SMACK software verifier [14] includes a toolchain
that leverages Boogie and LLVM to provide an end-to-end
verification framework (see Figure. The SMACK toolchain
is centered around the SMACK tool itself, which takes LLVM
IR code as input and translates it into a Boogie IVL pro-
gram. The toolchain utilizes an LLVM front-end, such as
LLVM’s Clang, to compile source programs into LLVM IR.
The toolchain then passes the resulting bitcode to SMACK,
which translates it into a Boogie IVL program that models
the original input program. The toolchain then passes the
Boogie IVL program to the back-end verifier of choice.

The modular nature of SMACK eases the burden on re-
searchers by promoting the development of verification algo-
rithms for the simple Boogie IVL, effectively decoupling the
implementations of verification algorithms from the com-
plex details of source languages. Support for new source
languages can be integrated easily once an LLVM front-
end compiler becomes available for them. Likewise, by em-
bracing Boogie IVL as a canonical program representation,
SMACK not only simplifies the development of verification
techniques, but also fosters the development of interopera-
ble technology in which verification back-ends can be easily
swapped. This enables rapid prototyping, and thus eases
the development burden. The consistent, single interface
that the SMACK toolchain presents to the developers allows
for programs to be verified using existing, well-established
back-end verification algorithms. However, this same famil-
iar interface can also be used to test and evaluate the most
recent advances in SMT-based verification technology.

SMACK provides benefits to the software verification and
software engineering communities alike. The software ver-
ification community benefits by reducing the overhead of
novel algorithms and techniques prototyping. The software
engineering community benefits as cutting-edge advances in
verification techniques and technology are made accessible
through the consistent, mature toolchain interface provided
by the project.

2. SMACK OVERVIEW

SMACK started as a relatively simple tool for translating
programs compiled as LLVM IR into Boogie IVL, for con-
sumption by independent back-end verification algorithms.
In an effort to further end-user adoption and improve its
suitability for real world applications, significant effort has
been expended in developing an end-to-end toolchain. The
new SMACK toolchain simplifies the application of SMACK
and the back-end Boogie verification tools.

As seen in Figure[I] the SMACK toolchain begins with an
LLVM front-end compiler. The front-end compiler generates
LLVM IR from the original input source program. Targeting
LLVM IR enables support for multiple source languages with
a single intermediate representation. Further, by utilizing
the LLVM APIs, SMACK can leverage the full functionality
of the LLVM libraries, including parsing and static analysis
tools. Once an LLVM front-end compiler has generated a
valid LLVM IR program, the toolchain passes this program
to the SMACK tool.

At the heart of the SMACK toolchain is the SMACK tool
itself [14]. SMACK translates LLVM IR code into a Boogie
IVL program that models the input program. During trans-
lation, SMACK leverages LLVM’s transformation tools to
perform optimizations which improve the performance and
accuracy of verification. Chief among these is the mem-
ory model employed by SMACK. SMACK leverages LLVM’s
data structure analysis (DSA) module to perform pointer
alias analysis. This allows SMACK to divide the memory
heap into distinct regions such that pointers associated with
each region can only alias with each other, and not those
from other regions. This optimization greatly reduces the
verification time for programs with many memory accesses.
Other optimizations include handling memory accesses on
a byte-size level rather than the word-size level, thus en-
abling precision for type unsafe operations. SMACK applies
these optimizations to the input program as it translates the
LLVM bitcode into a valid Boogie IVL program.

Once a Boogie IVL program modeling the original input
program is available, it is sent to a back-end verification
tool for verification. It is at this stage where the SMACK
toolchain really distinguishes itself. Any solver or verifier
that accepts Boogie IVL programs as input can easily be
included as back-end in the SMACK toolchain. This fa-
cilitates very rapid delivery of new verification algorithms
and techniques through the consistent interface provided by
the SMACK toolchain. Next, we briefly present some of
SMACK’s distinguishing features.

2.1 Toolchain Front-Ends

SMACK’s preliminary implementation has focused on the
translation of C programs through LLVM IR into Boogie
IVL. We currently support C via the Clang C compiler for
LLVM. Our initial experience in verifying C-language pro-
grams with SMACK is encouraging. SMACK translates
large, full-featured programs — including the entire Con-
tiki operating system, at around 100 KLOC of C code —
and has been used on intricate implementations which make
extensive use of features such as dynamic memory alloca-
tion [14]. Likewise, we have tested SMACK on various as-
pects of the C++ programming language, including classes,
methods, class inheritance, and method overloading. We are
currently lacking support for polymorphism in C++ applica-
tions, and are working on improving that aspect. Recently,
we have implemented preliminary support for Rust, whose
compiler is also based on LLVM. As future work, we are look-
ing to support other languages that have an LLVM front-end
compiler such as FORTRAN, Go, Objective-C, and Swift to
name a few.

2.2 Toolchain Back-Ends

There are several back-ends currently incorporated into
the SMACK toolchain (see below). The fact that there

are already several supported back-ends demonstrates the
ability of researchers to quickly prototype new verification
algorithms, and present them to the software verification
community without having to develop a full end-to-end ver-
ification tool.

2.2.1 Boogie Verifier

The Boogie program verifier is the original back-end solver
for Boogie IVL programs, and is part of the Boogie project.
It provides a sound, base-line solver — its focus has been on
soundness and completeness, rather than scalability to large
code bases.

2.2.2 Corral Verifier

Corral [10] utilizes the Boogie API for parsing of Boo-
gie IVL programs, as well as invocation of the underlying
SMT solver. However, Corral implements several new, in-
novative algorithms for bounded model checking. Corral
differentiates itself from the Boogie verifier by implement-
ing novel algorithms and techniques, support for verification
of concurrent programs, and enhanced error trace reporting,
among others. Corral is currently the default back-end ver-
ifier configured for the SMACK toolchain.

2.2.3 Duality Verifier

Duality [12] builds upon Corral, and as such, includes all
of the innovation delivered by Corral. Duality complements
Corral by adding the ability to construct proofs for pro-
grams, rather than simply performing SMT solving on a
bounded model.

3. USAGE SCENARIOS

In this section we describe two usage scenarios of using
SMACK that illustrate its precision and versatility.

3.1 Type Unsafe and Bitwise Operations

SMACK allows users to verify C/C++ programs with bit-
wise operations and low-level type-unsafe memory accesses.
This makes SMACK a competitive tool for verifying real-
world low-level programs such as device drivers. Figure [2]
gives such an example program that we successfully verified
using SMACK. Note that users can specify the intended
properties of a program as assertions. To verify this pro-
gram, run SMACK with the bit-precise command line
option provided.

The program consists of two parts delimited with the
empty line The code segment of the first part (lines
is legal since a pointer to char type can alias with
pointers to any other types according to the strict aliasing
rules. However, dereferencing pointer variable p (line
is not type safe because only the least significant byte is
written to. The assertion on line should hold because
the remaining bytes of x.j are all zero, which is reported
by SMACK. Note, however, that the verifier which has an
imprecise memory model will fail to handle this case which
occurs frequently in device drivers. The second part of the
program calculates the absolute value of an arbitrary inte-
ger using bitwise operations (thus branch-free) and asserts
the result is not negative (lines . Note that the re-
turn type of the absolute function is unsigned, while its re-
turn value is assigned to a variable of a signed integer type.
Therefore, if x.1 is assigned INT_MIN before the absolute
function is called, the return value (-INT_MIN) has the same

1 struct a {

2 int i;

3 int j;

4 };

5

6 // implemented with bitwise operations
7 unsigned absolute(int value) {

8 unsigned int r;

9 int mask;

10 mask =

11 value >> sizeof (int)*CHAR_BIT - 1;
12 r = (value + mask) mask ;

13 return r;

14 3}

15

16 int main(void) {
17 struct a x = {-10, 20};

19 // wvalid yet type unsafe cast
20 char *p = (char *)(&(x.j));
21 *p = 1;

22 assert(x.j == 1);

23

24 // assign nondeterministic value
25 x.1i = __VERIFIER_nondet_int ();
26 x.i = absolute(x.i);

27 assert(x.i >= 0);

28 }

Figure 2: Type Unsafe and Bitwise Operations

int main(void) {
long x = __VERIFIER_nondet_long();
long y, z = 0;
assume (x > 100);
for (y = 0; y < x; ++y) z++;
assert(z != x);

NO U W N

Figure 3: Simple Program with an Unbounded Loop

bit-representation as INT_MIN, which is the minimum integer
value if it is interpreted as a signed integer. Though there are
potential integer overflows in the absolute function, which
are undefined by the C standard, they are applied on pur-
pose by the programmer, and thus modeled by SMACK.
Hence, SMACK reports that the assertion does not hold,
and the counterexample is the case described above.

3.2 Handling of Loops

Programs containing loops can be verified with SMACK
using Boogie, Corral, or Duality as back-end verifiers. These
verification tools can statically check user-specified asser-
tions under certain unrolling depths. In addition, SMACK
can leverage Duality to prove the partial correctness of a
program with unbounded loops using techniques based on
interpolation.

Consider the program in Figure which increments z un-
til its value reaches that of x. The terminating condition of
the loop on line 5| contains a nondeterministic positive vari-

able x that is larger than 100; thus, the assertion fails only
if the loop is unrolled 100 times, which creates issues for
bounded verifiers. For example, if SMACK is invoked with
Corral using an unrolling depth of 50 (specified with the un-
roll command line option), it does not report an assertion
violation (false negative). This occurs because Corral at-
tempts to explore loop unrollings only up to the maximum
value specified by the user (50 in this case). Therefore, Cor-
ral must be given an unroll bound that is large enough to
expose the bug (100 in this example), which is often not
trivial.

However, by leveraging the power of SMACK to easily
switch between back-end verifiers, we can invoke SMACK
with Duality (instead of the default Corral) using the ver-
ifier command line option. Now, SMACK will report the
bug and provide the user with the error trace. If we change
the assertion to assert(z == x), Duality generates a proof
that the assertion holds.

4. EMPIRICAL EVALUATION

SMACK participated in the International Competition on
Software Verification (SV-COMP [15]) in 2015 and 2016. It
won numerous medals, and it is among the very few veri-
fiers that successfully compete in the overall category. This
demonstrates that SMACK, despite its modular design, has
comparable performance and scalability to state-of-the-art
monolithic program verifiers. Moreover, we publicly release
Boogie programs generated by SMACK during SV-COMP
as benchmarks, and they have been used by several emerging
Boogie back-end tools, such as ICE |[7].

S. AVAILABILITY AND INSTALLATION

SMACK is a free and open-source project hosted on GitHub
under the standard MIT license:

https://github.com/smackers/smack

The repository is accompanied by a Wiki, which contains a
wealth of information such as system requirements, installa-
tion instructions, usage instructions, and contribution guide-
lines. SMACK is typically easy to install using the provided
build script, and currently we support Linux, Windows, and
Mac OS X environments. In addition, we provide a portable
installation environment by leveraging the Vagrant system
for creating virtual development environments.

6. RELATED WORK

Even though several existing verification tools leverage the
LLVM compiler infrastructure [13| [9], they do not lever-
age a popular IVL like Boogie, and therefore do not enable
the swapping of verification back-ends. As a result, many
of the existing tools require significant engineering work to
add new features. SMACK is not hindered in this way since
cutting-edge verifiers can be easily swapped in, thus enabling
SMACK to deliver efficient verification to a wider range of
programs. For instance, Seahorn [9] and LLBMC |[13]| do
not support verification of concurrent programs because that
feature is not supported by their back-end verification algo-
rithms. We enabled support for concurrency in SMACK
with just a little bit of effort since we have access to back-
end verifiers that support this feature [5].

HAVOC [4] translates C programs into Boogie IVL pro-
grams like SMACK. However, the memory model used in

HAVOC is only word-precise, and thus its applicability is
limited to type-safe programs without low-level operations.

7. CONCLUSIONS

In this paper, we demonstrate how a modular approach
to SMT-based software verification tools can reduce proto-
typing effort, and rapidly deliver the latest software verifi-
cation innovations to the software engineering community.
The SMACK toolchain is already seeing adoption from other
researchers, such as the authors of ICE [7]. In addition, em-
pirical results demonstrate that modularization of the tradi-
tional monolithic tool architecture does not incur a perfor-
mance or precision penalty. Considered collectively, these
benefits highlight SMACK as an innovation platform for
software verification tools and techniques, to the benefit of
the software verification and engineering communities.

8. REFERENCES

[1] T. Ball, E. Bounimova, V. Levin, R. Kumar, and
J. Lichtenberg. The Static Driver Verifier research
platform. In CAV, pages 119-122, 2010.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs,
and K. R. M. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In FMCO, pages
364-387, 2006.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB
standard: Version 2.0. In SMT, 2010.

[4] S. Chatterjee, S. K. Lahiri, S. Qadeer, and
Z. Rakamarié¢. A reachability predicate for analyzing
low-level software. In TACAS, pages 19-33, 2007.

[5] P. Deligiannis, A. F. Donaldson, and Z. Rakamari¢.
Fast and precise symbolic analysis of concurrency bugs
in device drivers. In ASE, pages 166—177, 2015.

[6] R. DeLine and K. R. M. Leino. BoogiePL: A typed
procedural language for checking object-oriented
programs. Technical Report MSR-TR-2005-70,
Microsoft Research, 2005.

[7] P. Garg, C. Loding, P. Madhusudan, and D. Neider.
ICE: A robust framework for learning invariants. In
CAV, pages 69-87, 2014.

[8] P. Godefroid, M. Y. Levin, and D. A. Molnar.
Automated whitebox fuzz testing. In NDSS, pages
151-166, 2008.

[9] A. Gurfinkel, T. Kahsai, and J. A. Navas. SeaHorn: A
framework for verifying C programs (competition
contribution). In TACAS, pages 447-450. 2015.

[10] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for
reachability modulo theories. In CAV, pages 427-443,
2012.

[11] The LLVM compiler infrastructure. http://llvm.org/|

[12] K. McMillan and A. Rybalchenko. Computing
relational fixed points using interpolation. Technical
Report MSR-TR~2013-6, Microsoft Research, 2013.

[13] F. Merz, S. Falke, and C. Sinz. LLBMC: Bounded
model checking of C and C++ programs using a
compiler IR. In VSTTE, pages 146-161, 2012.

[14] Z. Rakamari¢ and M. Emmi. SMACK: Decoupling
source language details from verifier implementations.
In CAV, pages 106-113, 2014.

[15] International competition on software verification
(SV-COMP). http://sv-comp.sosy-lab.org,.

https://github.com/smackers/smack
http://llvm.org/
http://sv-comp.sosy-lab.org

	Introduction
	SMACK Overview
	Toolchain Front-Ends
	Toolchain Back-Ends
	Boogie Verifier
	Corral Verifier
	Duality Verifier

	Usage Scenarios
	Type Unsafe and Bitwise Operations
	Handling of Loops

	Empirical Evaluation
	Availability and Installation
	Related Work
	Conclusions
	References

