Verifying Rust Programs with SMACK*

Marek Baranowski, Shaobo He, and Zvonimir Rakamarié

School of Computing, University of Utah, USA
{baranows, shaobo, zvonimir}@cs.utah.edu

Abstract. Rust is an emerging systems programming language with
guaranteed memory safety and modern language features that has been
extensively adopted to build safety-critical software. However, there is
currently a lack of automated software verifiers for Rust. In this work,
we present our experience extending the SMACK verifier to enable its
usage on Rust programs. We evaluate SMACK on a set of Rust programs
to demonstrate a wide spectrum of language features it supports.

1 Introduction

Rust [12] is a new programming language that aims to enable safe systems
programming by means of an elaborate type system, while providing advanced
language features such as traits, smart pointers, and closures. It avoids mem-
ory safety issues prevalent in programs written in other low-level programming
languages such as C/C++ without adding performance overhead often imposed
by runtime systems or garbage collectors. Because of these merits, Rust has re-
ceived a lot of attention from both academia and industry, and it has already
been used to implement industrial-strength safety-critical applications, such as
web browsers, cloud storage, and embedded software.

Although memory safety is enforced through type checking of Rust programs
at compile time, functional correctness (e.g., no violations of user-specified as-
sertions) is not guaranteed. Automated software verifiers based on satisfiability
modulo theories (SMT) solvers [3] are a popular choice for assuring the absence
of assertion violations. However, building a verifier, or extending an existing
one, for a new language is often tedious and time-consuming (e.g., implement
a frontend, understand and encode the language semantics). This was done in
Rust2Viper [6], which translates Rust programs from the high-level intermediate
representation (syntactically similar to Rust) into an intermediate verification
language in order to check program correctness. CRUST [14] transforms Rust
into C to verify memory safety of unsafe Rust code. As both tools use custom
translators, changes to Rust necessitate these to be updated, which is a large un-
dertaking; neither tool appears to be maintained. To the best of our knowledge,
currently there are no readily available SMT-based verifiers for Rust.

In this paper, we describe how we enable the verification of Rust programs
in the SMACK verifier [11,[13]. An advantage of SMACK is that it is mostly

* Supported in part by the National Science Foundation (NSF) award CNS 1527526.

: Rust— F{ust—; Foiaiiatnbivialaiatal llvm2bpl

|Program| | Models 1 rustc i~ IntegerOverfiow | ™

______________ 1~ llvm.expect Boogie
N Common ModelsD LLVM IR - Rust panic Fle | Corral/z3
(o] |- StructReturn
program] | Models}>(__clang)

1- IntegerUnpack

Fig. 1: Toolflow of SMACK.

input-language agnostic as it works by verifying a simple intermediate represen-
tation, specifically LLVM IR [10]. Since the official Rust compiler, rustc, can
produce LLVM IR code corresponding to Rust programs, a large frontend de-
velopment effort was not needed as a rich set of LLVM IR features is already
supported by SMACK. Rust is an advanced, low-level programming language
that controls heap sharing and aliasing using an elaborate type system. Hence,
Rust’s compiler emits LLVM IR code patterns that are often significantly differ-
ent from code generated by the Clang compiler, which is the primary target for
SMACK. In particular, it emits aliasing patterns that SMACK could not handle
well. Nevertheless, we managed to extend SMACK to support the verification of
a modern programming language such as Rust at a relatively small cost, and our
evaluation shows that it can already handle a variety of key language features.

2 SMACK Software Verification Toolchain

SMACK [11}13] is a software verification toolchain that translates LLVM IR code
into Boogie intermediate verification language [2], which is in turn verified using
back-end Boogie verifiers such as Corral [9]. Before our Rust effort, SMACK had
been predominantly used to verify LLVM IR programs produced by the Clang
C compiler. shows the toolflow of SMACK, which works as follows:

1. The SMACK top-level script automates the entire toolflow. It determines
which compiler to invoke and flags to use for program compilation. In the case
of C programs, it invokes Clang to generate LLVM IR code, while including
SMACK’s C language models. The models specify the semantics of common
C library functions such as malloc, free, and string operations.

2. The common models file is then linked with the generated LLVM IR file to
provide basic verification capabilities. This includes modeling dynamic mem-
ory, and support for assertions, assumptions, and nondeterministic values.

3. The core LLVM2BPL component takes an LLVM IR file as input, and produces
Boogie code that captures the semantics of LLVM IR instructions; it outputs
a Boogie file for verification.

4. Finally, the Corral back-end verifier is invoked on the generated Boogie file,
and it uses Z3 [5] as its SMT solver. (Note that SMACK supports other
back-end verifiers, which we omitted here.)

In this work, we use Corral in its bounded verification mode, meaning that it
unrolls loops and recursion up to a certain user-provided bound.

3 Rust-Driven Extensions to SMACK

gives a Rust program illustrating the language features that our SMACK
extensions leverage or support. Rust’s foreign function interface (FFI) allows

1 #[macro_use] mod smack; use smack::*; 1 typedef unsigned long ul;
2 extern{fn fib_c(n:u64)->ub4;} 2 ul fib_c(ul x) {

3 fn fib(x: usize, cache:&mut Vec<u64>) { 3 ul a =0, b = 1;

4 for i in 2..x+1 as usize 4 for (ul i=0; i<x-1; i++) {
5 { cache[i]=cache[i-1]+cache[i-2]; } 5 ul tmp = a;

6 } 6 a = b;

7 fn main(Q { 7 b = a + tmp;

8 let n=5u64.nondet(); 8 }

9 assume!(n > 2); 9 return b;

10 let mut cache=vec![0; n+1]; 10 3}

11 cache[0]=0; cache[1]=1;

12 fib(n, &mut cache);

13 let c_result=unsafe{fib_c(n)};

14 assert!(cache[n]==c_result);

15}

Fig. 2: Rust program that checks the equivalence between the Rust (£ib) and C
(fib_c) implementations of the Fibonacci function.

zero-cost interaction with C code, verification of which had already been ex-
tensively supported by SMACK. As a result, we are able to reuse SMACK’s C
models as well as perform cross-language verification of Rust programs contain-
ing calls to external C functions (line[13)). For example, we implemented macros
assume (line[J) and assert (line[I4) to expand into calls to SMACK’s built-in
C functions. Line[8linvokes the nondet function that introduces nondeterministic
unconstrained values. Note that we implemented these so that programs can be
easily compiled into executables even with SMACK annotations present — in
that case nondet is replaced with value 5 in the example.

Instead of being undefined or triggering wrap-around behaviors as in C, in-
teger overflows in Rust are checked and can lead to program panic. For example,
while not visible at the source level, the signed integer addition operation at line[j]
may optionally be checked for integer overflows via the Rust compiler emitting
LLVM arithmetic with overflow intrinsics; we had to extend SMACK to sup-
port such intrinsics. Finally, unlike C, standard libraries and modern language
constructs such as the Vec library (line and iterators (line [4]) are abundant
in Rust code. Modeling these libraries and language constructs is challenging
yet essential to build a practical Rust verifier; SMACK’s modeling mechanism
allowed us to implement models for common Rust libraries. We describe some
of these extensions in more detail next.

3.1 Supporting Rust-Generated LLVM IR Constructs

The LLVM IR code that rustc emits contains several key constructs that are not
used in IR code produced by Clang. Hence, we had to extend SMACK to add
support for such constructs.
Types. The Rust compiler generates load/store instructions of the LLVM i1
data type, which is almost never emitted by Clang. We added support for such
instructions by zero-extending their operands to i8 when a store operation oc-
curs, and casting them back when they are loaded.

Instructions operating on LLVM structure types occur frequently in rustc-
generated IR code, while Clang-generated IR almost always uses only primitive

types. For example, it is a common practice for Rust programmers to use the
Option type as the return type of functions. It is generic over type T and repre-
sented in LLVM IR as structure type {T,i1}, where setting i1 is used to indicate
a valid return value. Moreover, load/store instructions over structures are fre-
quently generated by rustc, but not by Clang. Hence, SMACK did not have
elaborate support for such instructions.

We support such instructions by modeling LLVM structure types using un-
interpreted functions that constrain each field. For example, value {v,1} of type
{T,i1} is represented using an integer s with constraint £(s,0)==v && f(s,1)==1,
where £ is an uninterpreted function with the second argument being the index
of a structure field. Such encoding allows us to model two basic LLVM structure
instructions extractvalue and insertvalue that read and write structure fields,
respectively. Loads and stores of structures into memory are recursively trans-
lated into a sequence of instructions that generate load/store for each field of
primitive type, in conjunction with the two aforementioned instructions. This
extension enables SMACK to handle structure constructs without us having to
introduce extensive modifications to its underlying memory model.

Integer Packing. The Rust compiler frequently packs smaller structures into
8-byte integers. For example, rustc optimizes loading of a structure of type
{i32,i32} into loading of i64. This requires less scalable bit-precise reasoning
to be selected in SMACK to avoid false bugs [7]. Hence, we added an analysis
pass to SMACK that detects load/store instructions with pointer operands of
integer element type that refer to structures. We translate such instructions to
load/store directly from/into structure fields (following the encoding described
earlier), thereby essentially avoiding packing. This approach helps to scale the
verification of Rust programs by avoiding the need for bit-precise reasoning.

Intrinsics. We added support for two types of LLVM intrinsics heavily used by
rustc: 11lvm.expect and arithmetic with overflow. The Rust compiler emits the
LLVM intrinsic 11vm.expect as an optimization hint. We modified SMACK to
transform a call to this intrinsic into essentially a no-op. As future work, we will
explore leveraging such hints to speed up verification.

1 $a2 := Szext.i8.il6($a): The Rust compiler typically emits in-
2 $b2 := $zext.i8.il6(S$h); structions for checking all integer opera-
3 $x2 := $add.il6($a2, $b2); .

PP $irun2_i§6?18($ng; tions for overflow through the use of LLVM
5 $flag := Sugt.il6($x2, 255); arithmetic with overflow intrinsics, such as
6 assert !$flag;

1lvm.uadd.with.overflow.i32. The intrinsics
Fig.3: Translation of an un- indicate the sign and bitwidth in which to
signed 8-bit checked-addition perform the given operation. We extended
intrinsic, where $a and $b are SMACK with an integer overflow checking
the operands and $x is the sum. Pass that replaces the intrinsics with instruc-

tion sequences implementing the correspond-
ing overflow checking. [Fig. 3|shows an example translation. Lines 1 and 2 extend
the precision of the arguments to double the original bitwidth, thereby avoid-
ing potential overflow. Line 3 computes the result of the addition, while line 4
converts the result back to the original bitwidth. Line 5 determines whether the

Table 1: Summary of the benchmark suite we developed.

Benchmark category‘#Files‘LOC‘ Features demonstrated
functions 8 153 Function calls, closures, recursion
generics 6 55 Generic functions, structures, traits

ifc 4 214 Information flow control example
loops 4 35 Range-based for loops
ops 12 171 Basic operations, overflows
structures 4 76 |Creation, passing, returning of structures
vector 6 88 Dynamic memory management
memory-safety 4 58 Memory safety verification
cross-language 4 48 Combining Rust and C

operation overflowed, while line 6 checks it. Note that the translation shown in
Fig. 3|is not optimal for dynamic checking since we optimized it for SMT-based
verification with SMACK. Furthermore, while the conversion of the intrinsic is
always performed, checking is made optional following the convention that it is
disabled in the release mode.

3.2 Modeling Rust Libraries

Standard Rust libraries define most of the language’s containers as generic over
the contained type, and generate the corresponding code for the container when
the program is compiled. However, the generated code is heavily optimized for
performance, and contains constructs and functions that are difficult for SMACK
to analyze, such as custom allocators. Hence, we leveraged SMACK’s existing
modeling capabilities to write models for popular Rust data structures, such as
vector (Vec). Vector is a dynamically-sized array used in many Rust programs as
well as for implementing other data structures such as stacks and queues. Cur-
rently, our vector model supports dynamic resizing, push, pop, get and mutable
get, and indexing among other features. The model resides in a separate file,
which SMACK automatically links as a Rust module.

4 Experiments
4.1 Microbenchmarks

We developed a benchmark suite containing various Rust language features to
test the SMACK extensions we developed[T] Table []] summarizes our benchmark
suite. Every category includes both correct and buggy benchmark versions. Some
notable included features are:
— The functions category tests recursion and passing closures as arguments.
— The generics category implements a generic trait for two generic structures.
A statically dispatched function is then invoked on the structures.
— The vector category tests dynamic resizing and indexing of the Rust vector.
— The cross-language category contains Rust programs that invoke C functions,

including the benchmark.

! For our tool and benchmarks see https://github.com/smackers/smack

https://github.com/smackers/smack

Table 2: Summary of the real-world programs we verified using SMACK. Column
Time shows the runtime of applying SMACK to verify a property.
[Program| Checked property [LOC|Time]

uptime General assertion 81 2s
expr Signed integer overflow | 137 | Smin

factor Un51gne.d integer overflow 100 505.
Functional correctness 17min

— In the memory safety category, we verify the absence of buffer overflows and
memory leaks arising from C-allocated arrays in unsafe Rust programs.

— The ifc category contains the information flow control (IFC) example from
related work [1]. IFC models an access control method where access authority
can only be increased. Using nondeterministic access levels, we verify that
the IFC Rust implementation only allows access to the appropriate authority.

Currently, SMACK verifies most benchmarks in under 20 minutes. The only
exception is the full-blown IFC benchmark version that takes several hours to
complete. The development of the benchmark suite helped us to identify key
language features that SMACK struggled with, and hence it guided our efforts.

4.2 Real-World Programs

To better judge the quality of our implementation, we tested SMACK on three
real-world programs, uptime, expr, and factor, from the wutils project [4]. The
project is a popular repository on GitHub (starred more than 4000 times) con-
taining Rust reimplementations of the GNU core utilities. Table [2| shows the
properties we verified for each program, their size, and the runtime of SMACK.
We slightly modify all the programs to simplify the verification processes. Most
notably, we replace the return values of external library calls with nondetermin-
istic values, and we ignore string literals by redefining macros that accept string
arguments, such as println!, to empty expressions.

In the uptime utility, which prints the uptime of a machine, we verify that
the reported uptime is 0 only when the system calls related to reporting the up-
time also return 0. SMACK generates an error trace through the Rust program
where an uptime of 0 is erroneously reported when certain resources are unavail-
able; GNU’s version of uptime reports an error in this scenario. We reported this
problem to the developers, who issued a ﬁXE| The expr utility evaluates a string
argument as an arithmetic expression. We check this program for signed integer
overflows using SMACK. Our input to expr is the addition of two nondeter-
ministic 64-bit integers, and SMACK discovers input values that trigger signed
integer overflow. GNU’s version of ezpr either reports an error, or uses unlim-
ited precision, rather than reporting an overflowed result. We again reported the
outcome to the developers, who issued a ﬁxE| In the factor utility, we focused on
verifying individual functions in its numeric library, namely sm_mul and big_mul.

2 https://github.com/uutils/coreutils/issues/1195
3 https://github.com/uutils/coreutils/issues/1194

https://github.com/uutils/coreutils/issues/1195
https://github.com/uutils/coreutils/issues/1194

Both of these functions take 3 arguments a, b, and m, and compute (a - b)%m.
We verify several properties related to integer overflows, and that sm_mul indeed
performs the specified computation. Note that we reduced the integer bit-width
to 8 bits to speed up verification.

5 Limitations and Future Work

While the described extensions we made to SMACK enable its usage on many
Rust programs, some work remains. Rust programs extensively rely on Rust’s
standard libraries. While we implemented models for the most common ones,
such as Vec, we plan to model a more substantial subset in the future. An
additional feature we plan to add is checking of unsafe pointers to ensure they
obey the semantics of the Rust’s borrow system. In particular, we want to check
pointers from external functions. The Rustbelt [8] project gives the conditions
for which pointers generated from unsafe Rust code can be verified to be safely
used. Since Rust enables legacy code to be used within a project, this feature will
enable developers to verify their wrappers adhere to Rust’s aliasing semantics.
Finally, concurrent programming is an important feature of Rust, and we plan
to support it in SMACK in the near future.

References

1. A. Balasubramanian, M. S. Baranowski, A. Burtsev, A. Panda, Z. Rakamari¢, and
L. Ryzhyk. System programming in Rust: Beyond safety. In HotOS, 2017.
2. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In FMCO, 2005.
3. C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard: Version 2.0. In
SMT, 2010.
4. Cross-platform Rust rewrite of the GNU coreutils. https://github.com/uutils/
coreutils.
5. L. M. de Moura and N. Bjgrner. Z3: An efficient SMT solver. In TACAS, 2008.
6. F. Hahn. Rust2Viper: Building a static verifier for Rust. Master’s thesis, ETH,
2016.
7. S. He and Z. Rakamari¢. Counterexample-guided bit-precision selection. In
APLAS, 2017.
8. R. Jung, J.-H. Jourdan, R. Krebbers, and D. Dreyer. RustBelt: Securing the
foundations of the Rust programming language. In POPL, 2017.
9. A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo theories. In
CAV, 2012.
10. C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, 2004.
11. Z. Rakamari¢ and M. Emmi. SMACK: Decoupling source language details from
verifier implementations. In CAV, 2014.
12. The Rust programming language. https://www.rust-lang.orgl
13. SMACK software verifier and verification toolchain. http://smackers.github.iol
14. J. Toman, S. Pernsteiner, and E. Torlak. CRUST: A bounded verifier for Rust. In
ASE, 2015.

https://github.com/uutils/coreutils
https://github.com/uutils/coreutils
https://www.rust-lang.org
http://smackers.github.io

	Verifying Rust Programs with SMACK

