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Abstract. Testing is currently the main technique adopted by the in-
dustry for improving the quality, reliability, and security of software.
In order to lower the cost of manual testing, automatic testing tech-
niques have been devised, such as random and symbolic testing, with
their respective trade-offs. For example, random testing excels at fast
global exploration of software, while it plateaus when faced with hard-to-
hit numerically-intensive execution paths. On the other hand, symbolic
testing excels at exploring such paths, while it struggles when faced with
complex heap class structures. In this paper, we describe an approach for
automatic unit testing of object-oriented software that integrates the two
techniques. We leverage feedback-directed unit testing to generate mean-
ingful sequences of constructor+method invocations that create rich heap
structures, and we in turn further explore these sequences using dynamic
symbolic execution. We implement this approach in a tool called JDoop,
which we augment with several parameters for fine-tuning its heuristics;
such “knobs” allow for a detailed exploration of the various trade-offs that
the proposed integration offers. Using JDoop, we perform an extensive
empirical exploration of this space, and we describe lessons learned and
guidelines for future research efforts in this area.

1 Introduction

The software industry nowadays heavily relies on testing for improving the qual-
ity of its products. There are, of course, good reasons for adopting this practice.
First, as opposed to more heavy-weight techniques such as static analysis, testing
is easy to deploy and understand, and most developers are familiar with software
testing processes and tools. Second, testing is scalable (i.e., millions of tests can
be executed within hours even on large programs) and precise (i.e., it does not
generate false alarms that impede developers’ productivity). Third, while testing
cannot prove the absence of bugs, there is ample evidence that testing does find
important bugs that are fixed by developers. Despite these advantages, testing
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public class HardToHit {
private int x;
public HardToHit(int x) {
this.x = (x < 0) ? -x : x;

}
public void setX(int x) {
this.x = x;

}
public int distance(int y) {
y = (y < 0) ? -y : y;
int out;
if (x > y) out = x - y;
else out = y - x;
assert out >= 0;
return out;

}
}

// Assertion Violation
public void testHardToHit() {
HardToHit h = new HardToHit(0);
h.setX(-1);
h.distance(Integer.MAX_VALUE);

}
// Random Parameters
public void testHardToHit1() {
HardToHit h =

new HardToHit(random());
h.distance(random());

}
// Random Method Sequence
public void testHardToHit2() {
HardToHit h = new HardToHit(0);
h.setX(0);
h.distance(0);

}

Fig. 1. Class with an assertion in one method (left). Input x is not properly sanitized
in method setX. Consequence: assertion can be violated by combination of method
sequence and specific input values (right).

is not a silver bullet since crafting good tests is a time consuming and costly
process, and even then achieving high coverage and catching all defects using
testing can be challenging. For example, tester to developer ratio at Microsoft
is around 1-to-1, and yet important defects still escape into production. Natu-
rally, there has been a great deal of research on alleviating these problems by
developing techniques that aim to improve the automation and effectiveness (in
terms of achieved coverage and defects found) of software testing.

Random testing is the most basic and straightforward approach to automat-
ing software testing. Typically, it completely automatically generates and exe-
cutes millions of test cases within hours, and quickly covers many statements (or
branches) of a software under test (SUT). However, a drawback of random test-
ing is that, depending on the characteristics of the SUT, the achieved coverage
plateaus due to unlikely execution paths. Fig. 1 gives our motivating example
Java program that illustrates this point (left) together with a specific test case
that triggers an assertion violation (top right). To apply random testing on the
example, we generate randomized unit test shown in the middle of the right half
of the figure. Clearly, it is trivial to execute this simple unit test many times,
each time with a new pair of random numbers being generated. It is impossible,
however, that executing it would generate inputs that violate the assertion. We
would additionally need to generate more complex sequences of method calls
(as is shown in lower right of the figure). Exploring both dimensions (parameter
values and method sequences) randomly tends to plateau and not hit paths that
require specifc combinations of method sequence and parameters values.
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A more heavyweight approach could be based on symbolic execution, which
leverages automatic constraint solvers to compute test inputs that cover such
hard-to-cover branches. For example, the JDart [26] dynamic symbolic execu-
tion tool when run on method testHardToHit2 generates test cases covering all
branches in less than a second, thereby triggering an assertion violation. The au-
thors also show that JDart improves coverage over random testing for a class
of numerically-intensive SUTs. However, symbolic-testing-based methods mainly
excel in automatically generating test inputs over primitive numeric data types,
and have hence been successfully applied as either system-level (e.g., SAGE [18],
KLEE [6]) or method-level (e.g., JDart [26], JCute [35]) test generators.

Generalizing from the above example, generating unit tests for object-oriented
software poses a two-dimensional challenge: instead of taking just primitive types
as input, methods in object-oriented software require a rich heap structure of
class objects to be generated. While several approaches have been proposed that
automatically generate symbolic heap structures [25], logical encoding of such
structures results in more complex constraints that put an additional burden on
constraint solvers; hence, these approaches have not yet seen wider adoption on
large SUTs. On the other hand, generating heap structures by randomly creating
sequences of constructor+method invocations was shown to be effective, in par-
ticular when advanced search- and feedback-directed algorithms are employed
(e.g., Randoop [29], EvoSuite [13]). It is then natural to attempt to integrate
the two approaches by using random testing to perform global/macro explo-
ration (by generating heap structures using sequences of constructor+method
invocations at the level of classes) and dynamic symbolic execution to perform
local/micro exploration (by generating inputs of primitive types using constraint
solvers at the level of methods). In this paper, we describe, implement, and em-
pirically evaluate such a hybrid approach.

Our hybrid approach integrates feedback-directed unit testing with dynamic
symbolic execution. We leverage feedback-directed unit testing to generate con-
structor+method sequences that create heap structures and drive a SUT into
interesting global (i.e., macro) states. We feed the generated sequences to a
dynamic symbolic execution engine to compute inputs of primitive types that
drive the SUT into interesting local (i.e., micro) states. We implemented this
approach as a tool named JDoop,1 which integrates feedback-directed unit test-
ing tool Randoop [29] with state-of-the-art dynamic symbolic execution engine
JDart [26]. Given that such an integration has not been thoroughly empiri-
cally studied in the past, we also assess the merits of this approach through a
large-scale empirical evaluation.

Our main contributions are as follows:
– We developed JDoop, a hybrid tool that integrates feedback-directed unit

testing with dynamic symbolic execution to be able to experiment with large-
scale automatic testing of object-oriented software.

1Note that a very preliminary version of JDoop was presented earlier as a short
workshop extended abstract [11].



4 M. Dimjašević et al.

– We implemented a distributed benchmarking infrastructure for running ex-
periments in isolation on a cluster of machines; this allows us to execute
large-scale experiments that ensure statistical significance, and also advances
the reproducibility of our results.

– We performed an extensive empirical evaluation and comparison between
random (our baseline) and hybrid testing approaches in the context of au-
tomatic testing of object-oriented software.

– We identified several open research questions during our evaluation, per-
formed additional targeted experiments to obtain answers to these questions,
and provided guidelines for future research efforts in this area.

2 Background

We provide background on dynamic symbolic execution and feedback-directed
random testing.

2.1 Dynamic Symbolic Execution

Dynamic symbolic execution [17, 36, 6] is a program analysis technique that exe-
cutes a program with concrete and symbolic inputs at the same time. It system-
atically collects constraints over the symbolic program inputs as it is exploring
program paths, thereby representing program behaviors as algebraic expressions
over symbolic values. The program effects can thus be expressed as a function
of such expressions.

Dynamic symbolic execution maintains—in addition to the concrete state
defined by the concrete program semantics—the symbolic state, which is a tuple
containing symbolic values of program variables, a path condition, and a pro-
gram counter. A path condition is a conjunction of symbolic expressions over
the symbolic inputs that characterizes an execution path through the program.
It is generated by accumulating (symbolic) conditions encountered along the ex-
ecution path, so that concrete data values that satisfy it can be used to drive its
concrete execution. Path conditions are stored as a symbolic execution tree that
characterizes all the paths exercised as part of the symbolic analysis.

In dynamic symbolic execution, the symbolic execution tree is built by repeat-
edly augmenting it with new paths that are obtained from unexplored branches
in the tree. This is done by employing an exploration strategy such as depth-first,
breadth-first, or random. A constraint solver is used to obtain a valuation for a
yet-unexplored branch by feeding it the corresponding path condition. The new
valuation drives a new iteration of dynamic symbolic execution that augments
the symbolic execution tree with a new path. JDart is a dynamic symbolic
execution engine that uses the Java PathFinder framework [44, 23] and for ex-
ecuting Java programs and recording path conditions. Maintaining the symbolic
state is achieved by a customized implementation of the bytecode instructions in
the JVM of Java PathFinder that performs concrete and symbolic operations
simultaneously. In JDoop, we configure JDart to use the Z3 [9] constraint
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solver for finding concrete inputs that drive execution along previously unex-
plored symbolic paths.

A limitation of this approach is that native code is outside the scope of the
analysis. Based on the Nhandler extension [38] to Java PathFinder, JDart
offers two strategies for dealing with native code.
– Concrete Native. In this mode, JDart executes native code on concrete

data values, and no symbolic execution of native parts is performed—only
concrete values are passed to and from native calls, and symbolic values are
not updated and cannot taint native return values. The return value is anno-
tated with a new symbolic variable. As a consequence, the concrete side of an
execution is faithful to the respective execution on a normal JVM. However,
branches in the native code are not recorded in symbolic path conditions,
which can lead to JDart not being able to explore branches after a native
call as well. Another downside of this mode is that the implementation in
Java PathFinder is relatively slow.

– No Native. In this mode, JDart does not execute native code at all. In-
stead, it returns a default concrete value every time a native method is
called and a return value is expected. The concrete value is annotated with
the corresponding symbolic variable, using the method signature of the na-
tive method as the name of that variable. Concrete execution, in this case,
is not faithful to the respective execution on a normal JVM as the intro-
duced default values in most cases are not equal to the values that would be
returned by the actual method invocations (and side effects are ignored as
well). Recorded symbolic branches cannot be explored even if solutions are
found by a constraint solver as there currently is no mechanism that allows
feeding these values into the execution (instead of the default return values
of native methods).

Since the ‘No Native’ mode is more performant and since currently there is
no way of solving most of the recorded constraints in ‘Concrete Native’ mode
(cf. results in Sec. 4), JDoop runs JDart in ‘No Native’ mode for native code.
We use the ‘Concrete Native’ mode in our evaluation for analyzing the potential
limiting impact of not executing native code faithfully and not being able to find
and inject values that target branches in native code.

JDart produces the following outputs: a symbolic execution tree that con-
tains all explored paths along with performance statistics, vectors of concrete
input values that execute paths in the tree, and a suite of test cases (based on
these vectors). A symbolic execution tree contains leaf nodes for all explored
paths and additionally leaves for branches off of executed paths that could not
be explored because the constraint solver was not able to produce adequate con-
crete values or because native code is not executed (in fully symbolic mode). For
these leaves JDart does not generate input vectors or test cases.

2.2 Feedback-Directed Random Testing

A simple approach to automatic unit testing of object-oriented software is to
completely randomly generate sequences of constructor+method invocations to-
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gether with the respective concrete input values. However, this typically results
in a large overhead since numerous sequences get generated with invalid prefixes
that lead to violations of common implicit class or method requirements (e.g.,
passing null reference to a method that expects an allocated object). Moreover,
such sequences cause trivial, uninteresting exceptions to be thrown early, thereby
preventing deep exploration of the SUT state space. Hence, instead of generating
unit tests blindly and in a completely random fashion, useful feedback can be
gathered from previous test executions to direct the creation of new unit tests.
In this way, unit tests that execute long sequences of method calls to comple-
tion (i.e., without exceptions being thrown) can be generated. This approach is
known as feedback-directed random testing and is implemented in the Randoop
automatic unit testing tool [29].

Randoop uses information from previous test executions to direct further
unit test generation. The tool maintains two sets of constructor+method invo-
cation sequences: those that do not violate a property (i.e., property-preserving)
and those that do (i.e., property-violating). The property-violating set is initially
empty, while the property-preserving set is initialized with an empty sequence.
The default property that is maintained is unit test termination without any
errors or exceptions being thrown. Randoop randomly selects a public method
(or a constructor) and an existing sequence from the property-preserving set. It
then appends the invocation of the selected constructor/method to the end of
the sequence, and replaces primitive type arguments with concrete values that
are randomly selected from a preset pool of values. Next, the newly generated se-
quences are compared against all previously generated sequences in the two sets.
If it already exists, it is simply dropped and random selection is repeated. Oth-
erwise, Randoop executes the new sequence and checks for property violations.
If no properties are violated, the sequence is added to the property-preserving
set and otherwise to the property-violating set. Randoop keeps on extending
property-preserving sequences until it reaches a provided time limit.

3 Hybrid Approach

In this section, we describe our hybrid approach that integrates dynamic sym-
bolic execution and feedback-directed random testing into an algorithm for au-
tomatic testing of object-oriented software. We implemented this algorithm as
the JDoop tool that is freely available.2 Fig. 2 shows the flow of the algorithm,
which is iterative and each iteration consists of several stages that we describe
next.

3.1 Generation of Sequences

The first stage of every iteration of our algorithm is feedback-directed random
testing using Randoop, which generates constructor+method sequences as de-
scribed in Sec. 2.2. Randoop takes advantage of a pool of concrete primitive

2JDoop is available under the GNU General Public License version 3 (or later) at
https://github.com/psycopaths/jdoop.
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values to be used as constructor/method arguments when generating sequences.
In the first iteration, we use the default pool with few values, which for the inte-
ger type are −1, 0, 1, 10, 100. Hence, an instance of a generated sequence for our
running example from Fig. 1 is the one shown in the middle of the right half of
the figure. Our algorithm grows the pool for subsequent iterations with concrete
inputs generated by dynamic symbolic execution, which we describe later. The
sequences generated in this stage serve two purposes. First, we employ them
as standalone unit tests that exercise the SUT, which is their original intended
purpose. Second, our hybrid algorithm also employs them as driver programs to
be used in the subsequent dynamic symbolic execution stage.

3.2 Selection and Transformation of Sequences

Feedback-directed
random testing

(Randoop)

Dynamic symbolic
execution

(JDart)

SelectionSelection

TransformationTransformation

Code coverage
report

Unit tests Drivers

Default input values

Driving input

values

Unit tests

Fig. 2. Iterative algorithm of JDoop
for unit test generation. The algorithm
integrates dynamic symbolic execution
and feedback-directed random testing.

The previous stage typically generates far
too many sequences to be successfully ex-
plored with a dynamic symbolic execution
engine in a reasonable amount of time.
For example, several thousands of valid
sequences are often generated in just a
few seconds. Hence, it is prudent to se-
lect a promising subset of the generated
sequences to be transformed into inputs
for the subsequent dynamic symbolic exe-
cution with JDart. The second stage im-
plements the selection and transformation
of constructor+method sequences.

Note that dynamic symbolic execution
techniques have limitations, which is why
we implemented the hybrid approach in
the first place. In particular, they can typ-
ically treat symbolically only method arguments of primitive types. For example,
if a sequence contains method calls with non-primitive types only, JDart will
not be able to explore any additional paths. Hence, not every generated sequence
is suitable for dynamic symbolic execution with JDart, and as the first step of
this stage, we filter out all sequences with no arguments of a primitive type.
Next, we have two strategies (i.e., heuristics) for selecting promising sequences.
The first strategy randomly selects a subset of sequences. The second strategy
prioritizes candidate sequences with more symbolic variables, which is based on
the intuition that having more symbolic variables leads to more paths (and also
branches and instructions) being covered. We compare the two strategies in our
empirical evaluation. Once promising sequences are selected, they have to be
appropriately transformed into driver programs for JDart.

Every candidate sequence is transformed for the final stage that performs dy-
namic symbolic execution. We achieve this by turning all constructor and method
arguments of primitive types, which are supported by JDart, into symbolic in-
put values. In our implementation, this is a simple source-to-source transforma-
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tion. For instance, our example sequence results in the following driver program:

public class TestClass {
void test1(int s0,int s1,int s2) {
HardToHit h = new HardToHit(s0);
h.setX(s1);
h.distance(s2);

}

static void main(String[] a) {
TestClass tc = new TestClass();
@Symbolic int x, y, z;
tc.test1(x, y, z);

}
}

In the driver, the integer inputs to constructor HardToHit and methods setX and
distance are transformed into the arguments of the test1 test method. The
test1 method is called from the main method that is added as an entry point
for dynamic symbolic execution. Finally, JDart is instructed that the s0, s1,
and s2 inputs to test1 are treated symbolically.

3.3 Dynamic Symbolic Execution of Sequences

The last stage of every iteration is exploring the generated driver programs
using dynamic symbolic execution as implemented in JDart. JDart explores
paths through each driver program by solving path constraints over the specified
symbolic inputs as described in Sec. 2.1. In the process, it generates additional
unit tests, where each unit test corresponds to an explored path. The generated
unit tests are added into the final set of unit tests. In addition to generating these
unit tests, we also collect all the concrete input values that JDart generates in
the process. We add these values back into the Randoop’s concrete primitive
value pool for the sequence generation stage of the next iteration. By doing this,
we feed the information that the dynamic symbolic execution generates back
into the feedback-directed random testing stage.

4 Empirical Evaluation

We aim to answer the following research questions using the results of our em-
pirical evaluation.
1. Can JDoop cover paths that plain random test case generation does not,

and how big is the positive impact of covering such paths? To answer this
question, we compare the performance of Randoop (as our baseline) and
JDoop, using code coverage as a metric for the quality of the generated test
suites.

2. Can dynamic symbolic execution enable randomized test case generation to
access regions of a SUT that remain untested otherwise, i.e., does the feed-
back loop from JDart to Randoop (see Fig. 2) have a measurable impact
on achieved coverage? To answer this question, we run JDoop in multiple
configurations with varying amounts of runtime attributed to Randoop and
JDart, enabling a feedback loop in some configurations and preventing it
in others.
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Table 1. SF110 Benchmarks we use in the evaluation. Column #B is the number of
branches, #I instructions, #M methods, and #C classes.

Benchmark #B #I #M #C
1_tullibee 915 8402 204 19
2_a4j 544 9773 522 45
3_gaj 22 415 52 10
5_templateit 564 5391 195 23
6_jnfe 132 7545 339 52
7_sfmis 146 4386 185 19
9_falselight 16 1189 32 14
11_imsmart 103 2244 86 17
13_jdbacl 3098 49385 1578 198
14_omjstate 52 954 67 14
16_templatedetails 38 656 87 24
22_byuic 2124 15031 195 14
23_jwbf 949 16032 609 86
26_jipa 128 1488 36 5
28_greencow 0 7 2 1
30_bpmail 208 3372 208 32
31_xisemele 150 3036 269 50
34_sbmlreader2 76 1447 26 8
37_petsoar 208 3445 377 58
42_asphodel 64 1139 101 20
46_nutzenportfolio 1183 18335 826 62

Benchmark #B #I #M #C
47_dvd-homevideo 376 10670 161 48
48_resources4j 312 3223 104 12
49_diebierse 197 4859 185 19
50_biff 814 7348 49 6
53_shp2kml 26 656 30 6
55_lavalamp 128 2907 236 48
63_objectexplorer 959 14118 902 84
65_gsftp 517 6587 181 32
67_gae-app-manager 68 1405 46 8
68_biblestudy 424 6005 313 23
69_lhamacaw 2016 51698 1437 101
72_battlecry 674 9550 130 15
74_fixsuite 374 6520 241 36
76_dash-framework 12 188 37 17
79_twfbplayer 1132 18315 902 160
84_ifx-framework 299 136363 26257 3900
90_dcparseargs 88 654 21 6
94_jclo 110 1094 43 4
95_celwars2009 850 15208 164 32
98_trans-locator 40 1097 39 6

3. What are the constituting factors impacting the effectiveness of JDoop in
terms of the code coverage that can be achieved through automated genera-
tion of test suites? More specifically, can we confirm or refute the conjecture
from related work [14] that robustness of the used dynamic symbolic exe-
cution engine is pivotal or do other factors exist that have an impact on
the achievable coverage (e.g., selection of test cases for symbolic execution)?
To answer this question, we analyze statistics produced by JDart and vary
the strategy in JDoop for selecting method sequences for execution with
JDart as discussed in Sec. 3 (either selecting sequences randomly or prior-
itizing those with many symbolic variables).

In the remainder of this section, we introduce the benchmarks we used in our
evaluation, describe our experimental setup, and present and discuss the results
of the evaluation.

4.1 Benchmarks

We performed our empirical evaluation using the SF110 benchmark suite [37].
The suite consists of 110 Java projects that were randomly selected from the
SourceForge repository of free software to reduce the threat to external valid-
ity (see Sec. 5). In our evaluation, we chose the largest subset of SF110 that
both JDoop and Randoop can successfully execute on. Benchmarks that were
excluded can be grouped into the following categories: unsuitable environment,
inadequate or empty benchmarks, and deficiencies of testing tools. In the un-
suitable environment category, benchmarks require privileged permissions in the
operating system, a properly set configuration file, or a graphical subsystem
to be available. There are several empty benchmarks, benchmarks that call the
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System.exit() method that is not trapped by testing tools, and benchmarks that
are otherwise inadequate because of conflicting dependencies with our testing in-
frastructure. Finally, for some benchmarks Randoop generates test cases that
do not compile. All such problematic benchmarks were excluded from consid-
eration, which left us with 41 benchmarks total, as listed in Table 1. For each
benchmark we list the number of instructions, branches, methods, and classes,
which demonstrates we use a wide range of SUTs in terms of their size and
complexity.

4.2 Experimental Setup

We used two tools in our empirical evaluation: JDoop and Randoop (version
3.0.10). We explored several configurations of JDoop, where each configuration
is determined by three parameters. The first parameter is the time limit for the
first stage of every iteration, which is when Randoop runs (see Sec. 2.2); we
vary this parameter as 1, 9, and 20 minutes. The second parameter is the time
limit for the second and third stages combined, which is when JDart runs; we
vary this parameter as 1, 9, and 40 minutes. The third parameter determines
the strategy for selecting constructor+method call sequences as candidates for
dynamic symbolic execution between: (1) random selection (denoted by R), and
(2) prioritization based on the number of symbolic variables (denoted by P).
Each configuration is code-named as JD-O-J-S, where O is the time limit for
Randoop, J is the time limit for JDart, and S is the sequence selection strategy
used. We explored the following six JDoop configurations: JD-1-9-P, JD-1-9-R,
JD-9-1-P, JD-9-1-R, JD-20-40-P, and JD-20-40-R.

We carried out the evaluation in the Emulab testbed infrastructure [45]. We
used 20 identical machines, each of which was equipped with two 2.4 GHz 64-
bit 8-core processors, 64 GB of DDR4 RAM, and an SSD disk; the machines
were running Ubuntu 16.04. We developed our testing infrastructure around the
Apache Spark cluster computing framework. To facilitate reproducibility, each
execution of a testing tool on a benchmark is performed in a pristine sand-
boxed virtualization environment. This is achieved via LXC containers running
a reproducible build of Debian GNU/Linux code-named Stretch. We allocated 4
dedicated CPU cores and 8 GB of RAM to each container. Both Randoop and
JDoop are multi-threaded, and hence they utilized the multiple available CPU
cores. Our testing infrastructure is freely available for others to use and extend.3

We allocate a one hour time limit per benchmark per testing tool/configura-
tion for test case generation. Subsequent test case compilation and code coverage
measurement phases are not counted toward the 1 hour time limit. Given that
both Randoop and JDoop employ randomized heuristics, we repeat each run
5 times to account for this variability — for each benchmark we compute an av-
erage and a standard deviation. In terms of code coverage metrics, we measured
instruction and branch coverage at the Java bytecode level using JaCoCo [20].

3The testing infrastructure is available under the GNU Affero GPLv3+ license at
https://github.com/soarlab/jdoop-wrapper.
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Table 2. Branch coverage (including standard deviations) averaged across 5 runs. The
highest and lowest numbers per benchmark are given in bold and italic, respectively.

Benchmark Randoop JD-1-9-P JD-1-9-R JD-9-1-P JD-9-1-R JD-20-40-P JD-20-40-R
1_tullibee 28.0 ± 1.2 29.4 ± 1.4 29.7 ± 1.0 29.4 ± 0.0 31.6 ± 0.531.6 ± 0.531.6 ± 0.5 28.7 ± 0.0 29.0 ± 0.2

2_a4j 58.5 ± 0.5 57.9 ± 0.0 60.0 ± 0.6 59.6 ± 0.2 62.4 ± 0.162.4 ± 0.162.4 ± 0.1 60.7 ± 0.1 60.7 ± 0.0

3_gaj 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0 40.9 ± 0.0

5_templateit 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0

6_jnfe 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0 48.5 ± 0.0

7_sfmis 35.9 ± 0.9 40.4 ± 4.2 39.7 ± 4.2 42.5 ± 0.042.5 ± 0.042.5 ± 0.0 40.5 ± 5.5 37.5 ± 2.7 37.1 ± 2.7

9_falselight 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0 6.3 ± 0.0

11_imsmart 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0 17.5 ± 0.0

13_jdbacl 36.6 ± 0.7 32.2 ± 3.1 32.2 ± 1.8 37.0 ± 0.5 38.5 ± 0.638.5 ± 0.638.5 ± 0.6 34.2 ± 1.0 33.6 ± 0.8

14_omjstate 48.1 ± 0.0 48.1 ± 0.0 48.1 ± 0.0 48.1 ± 0.0 48.8 ± 3.148.8 ± 3.148.8 ± 3.1 42.3 ± 0.0 42.3 ± 0.0

16_templatedetails 71.1 ± 0.0 68.4 ± 0.0 70.0 ± 1.8 71.1 ± 0.0 71.1 ± 0.0 68.4 ± 0.0 68.4 ± 0.0

22_byuic 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0 7.8 ± 0.0

23_jwbf 26.6 ± 2.1 26.5 ± 1.7 27.2 ± 0.9 28.0 ± 0.6 28.2 ± 1.928.2 ± 1.928.2 ± 1.9 26.1 ± 0.5 26.0 ± 0.0

26_jipa 18.8 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 24.2 ± 0.0 23.4 ± 0.0 23.4 ± 0.0

28_greencow 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

30_bpmail 36.9 ± 0.5 36.9 ± 1.5 36.1 ± 1.2 37.3 ± 0.637.3 ± 0.637.3 ± 0.6 37.2 ± 0.6 37.2 ± 0.6 37.1 ± 0.5

31_xisemele 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

34_sbmlreader2 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0 10.5 ± 0.0

37_petsoar 54.1 ± 0.754.1 ± 0.754.1 ± 0.7 52.8 ± 1.6 52.9 ± 1.4 53.4 ± 0.0 53.4 ± 0.0 53.7 ± 0.7 53.7 ± 0.7

42_asphodel 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0 9.4 ± 0.0

46_nutzenportfolio 5.5 ± 0.0 5.2 ± 0.0 5.3 ± 1.6 5.6 ± 0.0 5.6 ± 0.6 5.5 ± 0.0 5.5 ± 0.0

47_dvd-homevideo 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0 0.8 ± 0.0

48_resources4j 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.0

49_diebierse 13.7 ± 0.0 13.4 ± 3.0 19.7 ± 1.019.7 ± 1.019.7 ± 1.0 14.2 ± 0.0 15.2 ± 15.1 13.7 ± 0.0 18.6 ± 13.1

50_biff 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

53_shp2kml 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0 19.2 ± 0.0

55_lavalamp 49.8 ± 0.6 48.4 ± 0.0 48.8 ± 1.6 51.9 ± 0.7 52.0 ± 0.752.0 ± 0.752.0 ± 0.7 48.4 ± 0.0 48.0 ± 2.0

63_objectexplorer 25.3 ± 0.0 24.6 ± 1.8 24.5 ± 1.0 26.4 ± 0.326.4 ± 0.326.4 ± 0.3 26.3 ± 0.9 25.0 ± 0.0 25.0 ± 0.2

65_gsftp 9.8 ± 1.0 9.9 ± 1.0 10.0 ± 0.910.0 ± 0.910.0 ± 0.9 9.9 ± 0.0 9.9 ± 0.0 9.5 ± 0.0 9.5 ± 0.0

67_gae-app-manager 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0 2.9 ± 0.0

68_biblestudy 37.5 ± 0.037.5 ± 0.037.5 ± 0.0 36.9 ± 0.7 37.0 ± 0.4 37.3 ± 0.0 37.2 ± 0.8 37.0 ± 0.0 37.0 ± 0.0

69_lhamacaw 42.7 ± 0.4 40.1 ± 0.6 39.9 ± 1.0 46.1 ± 0.546.1 ± 0.546.1 ± 0.5 45.7 ± 0.6 40.3 ± 0.7 40.1 ± 0.4

72_battlecry 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0 0.1 ± 0.0

74_fixsuite 17.5 ± 6.5 17.1 ± 3.1 15.5 ± 1.3 19.2 ± 1.8 19.6 ± 4.019.6 ± 4.019.6 ± 4.0 17.4 ± 2.8 17.2 ± 3.3

76_dash-framework 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0 50.0 ± 0.0

79_twfbplayer 27.3 ± 0.0 23.2 ± 1.8 21.5 ± 1.3 29.4 ± 0.0 29.3 ± 1.0 29.5 ± 0.029.5 ± 0.029.5 ± 0.0 29.4 ± 0.1

84_ifx-framework 30.8 ± 0.0 32.6 ± 9.7 31.0 ± 8.9 32.9 ± 2.832.9 ± 2.832.9 ± 2.8 32.0 ± 2.8 29.5 ± 4.9 28.8 ± 2.3

90_dcparseargs 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0 64.8 ± 0.0

94_jclo 42.7 ± 0.0 46.0 ± 1.646.0 ± 1.646.0 ± 1.6 44.5 ± 0.0 44.5 ± 0.0 44.7 ± 0.8 44.5 ± 0.0 44.5 ± 0.0

95_celwars2009 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0 2.2 ± 5.22.2 ± 5.22.2 ± 5.2 2.1 ± 0.0 2.1 ± 0.0 2.1 ± 0.0

98_trans-locator 25.0 ± 0.0 15.0 ± 36.5 18.0 ± 37.7 25.0 ± 0.0 27.0 ± 3.727.0 ± 3.727.0 ± 3.7 25.0 ± 0.0 25.0 ± 0.0

Furthermore, to get more insight into the performance of JDart, we collect
statistics on the number of successful and failed runs, additional test cases it
generates, symbolic variables in driver programs, times a constraint solver could
not find valuation for a path condition, and JDart runs that explored one path
versus multiple paths.

4.3 Evaluation of Test Coverage

Table 2 gives branch coverage results for each tool and configuration on all of
the benchmarks. Most results are stable across multiple runs, meaning that the
calculated standard deviations are very small. In particular, the standard devi-
ations for Randoop on a vast majority of benchmarks are 0, even though we
used a different random seed for every run. This suggests that Randoop reaches
saturation and is unable to cover more branches. For the most part there are only
small differences in the achieved coverage between different tools/configurations
when looking at the total number of covered branches. However, JDoop (in
one of its configurations) consistently achieves higher coverage than Randoop.
Given that pure Randoop saturates, we can conclude that the improvements
in coverage we observe with JDoop are due to leveraging dynamic symbolic
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Fig. 3. Increases in branch coverage per benchmark by JDoop over baseline of Ran-
doop (in % of coverage by baseline).

execution. Among JDoop configurations, best-performing are the two 9-1 con-
figurations where in an iteration Randoop runs for 9 minutes and JDart for 1
minute; there are 6 such iterations in the 1 hour time limit.

Fig. 3 shows the increase in branch coverage per benchmark over pure Ran-
doop that is achieved by some configuration of JDoop. The increase is measured
as a percent increase in number of branches covered by JDoop over Randoop.
Standard deviation is omitted in this graph as it was small in most instances
(cf. Table 2). In two benchmarks JDoop performes slightly worse than pure
Randoop. In roughly half of the benchmarks no change is observed — and in
most cases with no variance. This suggests that these benchmarks are simply not
amenable to increasing coverage by use of symbolic execution. In the remain-
ing half of the benchmarks, branch coverage is increased. Increases range from
101.1% to 143.8% achieved coverage relative to the baseline of pure Randoop,
with an average increase of 109.6% across this half of benchmarks.

4.4 Profiling Dynamic Symbolic Execution

To analyze the potential impact of the robustness of dynamic symbolic execution
on the validity of our results, we collected data from runs on all benchmarks for
all configurations. We perform this analysis on data from single runs of JDoop
as the other results show very little variation of results between different runs in
most cases. Table 3 reports statistics on the JDart operation in different series
of experiments. Data in the table is explained and discussed in the following
paragraphs.

Modes of Operation. For all of the analyzed configurations of JDoop, JDart
runs successfully in the vast majority of cases and produces significant numbers
of test cases (up to 16, 588 in total for all benchmarks in one experiment). Most
additional test cases are produced in the JD-1-9 configurations that enable the
feedback loop between Randoop and JDart but grant the bulk of runtime
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Table 3. Statistics produced by JDart for single runs of all benchmarks in different
configurations of JDoop. JDart uses Nhandler in the ‘No Native’ mode, except for
one experiment that we performed in the ‘Concrete Native’ (CN) mode.

JD-20-40 JD-1-9 JD-9-1 JD-9-1 (CN)
Sequence Selection Strategy R P R P R P R

Potential Impact / Best Mode of Operation

# Successful Runs 33,390 28,316 46,976 43,770 4,629 1,017 3,885
Successful Runs (%) 98.5 97.8 98.2 97.5 98.5 100.0 96.3
# Additional Tests 6,436 10,802 11,272 16,588 914 5,382 n/a
# Benchmarks with Additional Tests 19 9 20 13 18 4 n/a

Robustness and Scalability of JDart

# Failed Runs 507 648 853 1,121 69 0 148
due to unhandled native code 3 1 14 6 1 0 10
due to classloading in SUT 504 647 839 1,115 68 0 138

Failed Runs (%) 1.5 2.2 1.8 2.5 1.5 0.0 3.7
# D/K Paths 17 192 170 84 5 0 26,915
D/K Paths (%) 0.3 1.8 1.5 0.5 0.0 0.0 93.6

Amenable Test Cases

# Symbolic Variables per Test Case (Avg.) 2.1 6.6 1.9 4.7 2.0 6.2 1.9
# Runs of Single Paths 32,410 27,293 45,268 42,162 4,495 988 2,801
# Runs with Multiple Paths 980 1,023 1,708 1,608 134 29 1,084

to JDart. Across all configurations, random selection of method sequences for
JDart leads to generating additional test cases for more benchmarks than pri-
oritizing sequences with many symbolic variables. Prioritization, on the other
hand, leads to more additional test cases in total.

Robustness and Scalability. Our data indicates that JDart is robust. Only
a small number of runs fail (between 0.0% and 2.5%). Of these failures, only a
tiny fraction is due to unhandled native code (less than 1%).4 The vast majority
of failed runs is caused by class-path issues in the benchmarks (more than 99%).
There are only very few cases in which the constraint solver was not able to solve
constraints of all paths in symbolic execution trees (between 0.0% and 1.8%).

Using Nhandler in the ‘Concrete Native’ mode leads to native calls being
executed faithfully and to longer recorded path conditions, as discussed in Sec. 2.
This yields constraints that are marked as not solvable (‘don’t know’ or D/K for
short) in 93.6% of all discovered paths in symbolic execution trees. This indicates
the likelihood of JDart not being able to explore most of the paths that could be
explored with proper symbolic treatment of native methods. Table 4 reports the
number of occurrences for all encountered native methods in one run of JDoop.
As can be seen from the data, the charAt method of the String class offers by
far the greatest potential for improving on the number of explored paths. Note,
however, that numbers in the table do not necessarily translate into the same
number of additional paths as occurrences are counted along paths in trees and
the same method call may appear on multiple paths.

Amenable Test Cases. The number of symbolic variables per test case behaves
as expected: it increases when using prioritization of sequences with many vari-

4These are methods for which Nhandler was not configured to take over execution,
leading to a crash of JDart. We configured Nhandler to take care of all native
methods of java.lang.String.
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Table 4. Symbolic Variables introduced by Nhandler in the ‘Concrete Native’ mode
in a single run of JD-9-1.

Method Occurrences

java.lang.String.charAt(I)C 2,157,258
java.lang.String.indexOf(I)I 430,951
java.lang.String.indexOf(II)I 18,199

java.lang.Character.isWhitespace(C)Z 63,723
java.lang.Character.isLetterOrDigit(C)Z 18,517
java.lang.Character.toLowerCase(C)C 16,506

java.lang.Math.min(II)I 2,800
java.lang.Float.floatToRawIntBits(F)I 81
sun.misc.Unsafe.compareAndSwapInt(Ljava/lang/Object;JII)Z 4,008

ables. Prioritization, however, comes at a cost since there tends to be more runs
of JDart in configurations that do not use prioritization. For all benchmarks,
a high number of runs yields only one path and hence no additional test cases.
A considerable number of these runs may be attributed to using Nhandler in
the ‘No Native’ mode, thereby hiding branches by not executing native code.
On the other hand, even in the experiment in which Nhandler was used in the
‘Concrete Native’ mode, two thirds of all runs explored only a single path. This
indicates that many method sequences that were selected for JDart simply do
not branch on symbolic variables.

4.5 Discussion

The obtained results allow us to provide answers to our research questions.
Question 1: Covering More Paths. JDoop consistently outperforms Ran-
doop on roughly 50% of the benchmarks (see Table 2 and Fig. 3). Measured
in absolute number of branches, the margins are relatively slim in many cases.
There are, however, cases in which the achieved branch coverage is increased
by 28% — resulting in an increase in code coverage by 5.4 percentage points
(26_jipa). On about 50% of the benchmarks no variation can be seen in cover-
age between both approaches. Together with the little variance that is observed
between different runs this indicates that Randoop in many cases reaches a
state where achievable coverage is (nearly) saturated. It makes sense that in
such a scenario JDoop does not add many percentage points in code coverage.
It merely adds coverage through those hard-to-hit corner cases.
Question 2: Reachable Regions. Our results indicate that the feedback loop
has a positive impact. The JD-9-1 configurations perform better than other
configurations in most cases. Regarding the time distribution between Randoop
and JDart the picture is not as clear. There is a lot more variation in the margins
of coverage increase (or decrease sometimes) for the configuration that grants
most of the time to JDart. In one particularly amenable case this results in
coverage increase by 43% (from 13.7% to 19.7% for 49_diebierse).
Question 3: Robustness of Symbolic Execution. Here, we have to refute
the conjecture that was made in related work [14], namely that a robust dynamic
symbolic execution engine can reap big increases in code coverage — or at least
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curb expectations about achievable coverage increases. Our experiments showed
that JDart handles most benchmarks without many problems. Proper analysis
of native code (especially for String methods) certainly has the potential to
improve code coverage further, but the consistently high number of symbolic
analyses that result in a single path (even in the control experiment) points to
another important factor that contributes to small margins: the generated test
cases simply do not allow exploring many new branches in most cases.

The experiments even indicate that it does not pay off to prioritize method
sequences with many variables for JDart. Prioritization adds cost twice: once
for analyzing test cases and then for exploring with many variables. Taking into
account the observation from the first answer, that Randoop (almost) achieves
saturation of coverage in one hour, this again indicates that in JDoop corner
cases are discovered by JDart. Covering more search space beats investigating
the few locations more intensively in such a scenario.
Remark on Achievable Coverage. Our observations correlate well with the
observations made in [12], where the results of a static analysis of the SF110
benchmark suite are reported. The analysis revealed that only 6.6% of methods
in the benchmark suite have path constraints that are exclusively composed of
primitive type elements. On the other hand, the study identified objects in path
constraints, calls to external libraries or native code, and exception-dependent
paths as challenges to symbolic execution. The authors report that one third of
methods have paths that deal with exceptions.

The low coverage (in absolute numbers) and low variance across all bench-
marks for Randoop and JDoop in our experiments suggests that many branches
simply cannot be covered by test cases that only rely on calling methods of ob-
jects from a project under test. Many branches rely on return values of calls to
external libraries or the occurence of exceptions, which are not triggered in a
simple testing environment. Since there is no simple or automated approach for
determining the achievable coverage for a benchmark, we sampled a few individ-
ual benchmarks and indeed quickly found cases where catch-blocks in the code
contained comments to the effect that the block is unreachable.

Taking into account the results from [12] and our findings, we conjecture that
the branch coverage that is achieved by JDoop is close to the coverage that can
be achieved without making the environment of a tested project symbolic.

5 Threats to Validity

Threats to External Validity. While the main purpose of the SF110 corpus
of benchmarks is to reduce the threat to external validity since they were chosen
randomly, we cannot be absolutely sure that the benchmarks we used are repre-
sentative of Java programs. In addition, we excluded a number of problematic
benchmarks from our evaluation (see Sec. 4.1). Hence, our results might not
generalize to all programs. In JDoop we integrated Randoop and JDart, and
we used Randoop as the baseline in our evaluation. We attempted to include
another contemporary state-of-the-art Java testing tool into the comparison, and
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EvoSuite was an obvious choice to try. However, to the best of our ability we
did not manage to get it to work with JaCoCo (the tool we use for measur-
ing code coverage) on our benchmark suite despite exchanging numerous emails
with the EvoSuite authors. This is a well-known problem caused by the online
bytecode modifications that EvoSuite often performs.5 While others successfully
combined EvoSuite and JaCoCo in the past, that was accomplished only on
very simple programs; in addition, others also reported differences in coverage
results between EvoSuite’s internal measurements and JaCoCo.6,7 Hence, we
could not perform a direct comparison and our results might not generalize to
other tools. However, earlier work on EvoSuite reports similar results to ours
with respect to using dynamic symbolic execution in combination with random
testing [14]. Finally, note that we do not include the environment and dependen-
cies of benchmarks into unit test generation, which might lead to sub-optimal
coverage.

Threats to Internal Validity. In our evaluation, we experimented with 3 dif-
ferent time allocations for Randoop and JDart that we identified as represen-
tative. While our results show no major differences between these different time
allocations, we did not fully explore this space and there might be a ratio that
would lead to a different outcome. JDart currently cannot symbolically explore
native calls, which might lead to not being able to cover program paths (and
hence also branches and instructions) that depend on such calls. Our evaluation
shows that this indeed happens and that native implementations of methods of
the String class in Java are the main culprit, but it does not allow us to provide
an estimate of the impact on the achieved code coverage. Finally, while we ex-
tensively tested JDoop to make sure it is reliable and performed sanity checks
of our results, there is a chance for a bug to have crept in that would influence
our results.

Threats to Construct Validity. Here, the main threat is the metrics we
used to assess the quality of the generated test suites, and in particular branch
coverage in the presence of dead code [3, 27]. This threat is reduced by previous
work showing that branch coverage performs well as a criterion for comparing
test suites [16].

6 Related Work

Symbolic Execution. Dynamic symbolic execution [17, 36] is a well-known
technique implemented by many automatic testing tools (e.g., [6, 18, 43, 35]). For
example, SAGE [18] is a white-box fuzzer based on dynamic symbolic execution.
It has been routinely applied to large software systems, such as media players
and image processors, where it has been successful in finding security bugs.

5
http://www.evosuite.org/documentation/measuring-code-coverage

6
https://groups.google.com/forum/#!topic/evosuite/ctk2yPIqIoM

7
https://stackoverflow.com/questions/41632769/evosuite-code-coverage-does-not-match-with-

jacoco-coverage
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Khurshid et al. [25] extend symbolic execution to support dynamically allocated
structures, preconditions, and concurrency.

Several symbolic execution tools specifically target Java bytecode programs.
A number of them implement dynamic symbolic execution via Java bytecode
instrumentation. JCute [35], the first dynamic symbolic execution engine for
Java, uses Soot [39] for instrumentation and lp_solve for constraint solving.
CATG [41] uses ASM [2] for instrumentation and CVC4 [10] for constraint solv-
ing. Another dynamic symbolic execution engine, LCT [24], supports distributed
exploration; it uses Boolector and Yices for solving, but it does not have support
for float and double primitive types. A drawback of instrumentation-based tools
is that instrumentation at the time of class loading is confined to the SUT. For
example, LCT does not by default instrument the standard Java libraries thus
limiting symbolic execution only to the SUT classes. Hence, the instrumentation-
based tools discussed above provide the possibility of using symbolic models for
non-instrumented classes or using pre-instrumented core Java classes.

Several dynamic symbolic execution tools for Java are not based on instru-
mentation. For example, the dynamic symbolic white-box fuzzer jFuzz [21] is
based on Java PathFinder (as is JDart) and can thus explore core Java
classes without any prerequisites. Symbolic PathFinder (SPF) [32] is a Java
PathFinder extension similar to JDart. In fact, JDart reuses some of the
core components of an older version of SPF, notably the solver interface and its
implementations. While at its core SPF implements symbolic execution, it can
also switch to concrete values in the spirit of dynamic symbolic execution [30].
That enables it to deal with limitations of constraint solvers (e.g., non-linear
constraints).

Hybrid Approaches. There are several approaches similar to ours that com-
bine fuzzing or a similar testing technique with dynamic symbolic execution.
Garg et al. [15] propose a combination of feedback-directed random testing and
dynamic symbolic execution for C and C++ programs. However, they are ad-
dressing challenges of a different target language and on a much smaller collection
of benchmarks that they simplified before evaluation. The Driller tool [40] inter-
leaves fuzzing and dynamic symbolic execution for bug finding in program bina-
ries, and it targets single-file binaries in search of security bugs. Galeotti et al. [14]
apply dynamic symbolic execution in the EvoSuite tool to explore test cases gen-
erated with a genetic algorithm. Even though their evaluation is carried out in a
different way than the one presented in this paper, the general conclusion is the
same in spirit — dynamic symbolic execution does not provide a lot of additional
coverage on real-world object-oriented Java software on top of a random-based
test case generation technique. MACE [7] combines automata learning with dy-
namic symbolic execution to find security vulnerabilities in protocol implemen-
tations.

There are other automated hybrid software testing tools that do not strictly
combine with symbolic execution (e.g., OCAT [22], Agitator [5], Evacon [19],
Seeker [42], DSD-Crasher [8]). Because these tools either focus on a single method
at a time or just form random method call sequences, they often fail to drive pro-
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gram execution to hard-to-reach sites in a SUT, which can result in suboptimal
code coverage.
Random Testing. Randoop [29] is a feedback-directed random testing algo-
rithm that forms random test cases that are sequences of method calls, while
ensuring basic properties such as reflexivity, symmetry, and transitivity. Search-
based software testing [28] approaches and tools are gaining traction, which is
reflected in four annual search-based software testing tool competitions in recent
years [33]. A prominent search-based tool is EvoSuite [13], which combines a ge-
netic algorithm and dynamic symbolic execution. T3 [31] is a tool that generates
randomized constructor and method call sequences based on an optimization
function. JTExpert [34] keeps track of methods that can change the underlying
object and constructs method sequences that are likely to get the object into a
desired state. All the search-based testing tools are geared toward testing at the
class level, while JDoop performs testing at the application/library level.
Benchmarking Infrastructures. In computer science, any extensive empiri-
cal evaluation, software competition, or reproducible research requires a signifi-
cant software+hardware infrastructure. The Software Verification Competition’s
BenchExec [4] is a software infrastructure for evaluating verification tools on pro-
grams containing properties to verify. It comes with an interface for verification
tools to follow, which did not fit our needs: our coverage measurement outcomes
cannot be judged in terms of program correctness. The Search-based Software
Testing Competition [33] community created an infrastructure for the competi-
tion as well. However, just like tools that participate in the competition, their
infrastructure is geared toward running a testing tool on just one class at a
time. Emulab [45] and Apt [1] are testbeds that provide researchers with an
accessible hardware and software infrastructure. They allow for repeatable and
reproducible research, especially in the domain of computer systems, by provid-
ing an environment to specify the hardware to be used, on top of which users
can install and configure a variety of systems.

7 Conclusions

We introduced a hybrid automatic testing approach for object-oriented soft-
ware, described its implementation JDoop, and performed an extensive empiri-
cal exploration of this space. Our approach is an integration of feedback-directed
random testing (Randoop) and dynamic symbolic execution (JDart), where
random testing performs global exploration, while dynamic symbolic execution
performs local exploration (around interesting global states) of a SUT. It is an
iterative algorithm where these two exploration techniques are interleaved in
multiple iterations. Our evaluation on real-world object-oriented software shows
that dynamic symbolic execution provides consistent improvements in terms of
code coverage on top of our baseline (pure feedback-directed random testing) on
those examples that are amenable to this method of testing.
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