
SWORD: A Bounded Memory-Overhead Detector of
OpenMP Data Races in Production Runs
Simone Atzeni, Ganesh Gopalakrishnan,

Zvonimir Rakamarić
University of Utah

Salt Lake City, UT, United States
{simone, ganesh, zvonimir}@cs.utah.edu

Ignacio Laguna, Gregory L. Lee,
Dong H. Ahn

Lawrence Livermore National Laboratory
Livermore, CA, United States

{ilaguna1, lee218, ahn1}@llnl.gov

Abstract—The detection and elimination of data races in large-
scale OpenMP programs is of critical importance. Unfortunately,
today’s state-of-the-art OpenMP race checkers suffer from high
memory overheads and/or miss races. In this paper, we present
SWORD, a data race detector that significantly improves upon
these limitations. SWORD limits the application slowdown and
memory usage by utilizing only a bounded, user-adjustable
memory buffer to collect targeted memory accesses. When the
buffer fills up, the accesses are compressed and flushed to a file
system for later offline analysis. SWORD builds on an opera-
tional semantics that formally captures the notion of concurrent
accesses within OpenMP regions. An offline race checker that is
driven by these semantic rules allows SWORD to improve upon
happens-before techniques that are known to mask races. To
make its offline analysis highly efficient and scalable, SWORD
employs effective self-balancing interval-tree-based algorithms.
Our experimental results demonstrate that SWORD is capable of
detecting races even within programs that use over 90% of the
memory on each compute node. Further, our evaluation shows
that it matches or exceeds the best available dynamic OpenMP
race checker in detection capability while remaining efficient in
execution time.

Index Terms—Dynamic Data Race Detection; Concurrency
Bugs; Data Races; OpenMP; High Performance Computing;
HPC; Offline Analysis

I. INTRODUCTION

Given the inexorable march toward higher computational
efficiencies, many critical software components are being
transitioned to adopt on-node parallelism. The predominant
parallel programming model of choice in this endeavor is
OpenMP. Even though OpenMP provides constructs that ease
the expression of parallelism, programmers still introduce data
races that may appear innocuous at first glance, but in fact
have serious consequences (an example involving the Hypre
library is provided in related work [1]). Such incidents and
recent studies (e.g., [2]) have helped elevate the importance of
data race checking of large-scale OpenMP programs. Static-
analysis-based data race detection tools are often considered
by those aiming for scalability; however, these tools are also
known for their high false alarm rates [3], [4], [5], [6].
As a result, dynamic analysis is preferred, with four recent
OpenMP race checking tools based on it being Helgrind [7],

This work was performed under the auspices of the U.S. Department
of Energy by LLNL under Contract DE-AC52-07NA27344 (LLNL-CONF-
740324), NSF OAC 1535032, and NSF CCF 1704715.

TSan [8], [9], IntelrInspector XE [10], and ARCHER [1].
Recent work [2] provides a comparative study of these tools
on the also contributed data race benchmark suite. Overall,
while Helgrind and TSan are well-engineered and mature
tools, they are fundamentally designed for low-level models
such as POSIX Threads. Since they do not model OpenMP
synchronization, they end up generating false alarms on real
OpenMP programs.

ARCHER has emerged as a tool capable of handling realistic
programs in production settings and avoiding false alarms,
thanks to the incorporation of the OpenMP synchronization se-
mantics [11]. In addition, ARCHER owes its success to the use
of a static analysis phase that excludes statically-guaranteed
race-free loops from dynamic analysis, and its reliance on the
TSan engine—a well-engineered implementation of happens-
before race checking. However, ARCHER suffers from three
significant drawbacks: high memory overhead, race omission
due to shadow-cell evictions, and happens-before race mask-
ing. In this paper, we introduce a fully redesigned new race
checker called SWORD that overcomes these limitations. We
now describe these drawbacks and point out how SWORD
overcomes them.

a) High Memory Overhead: Happens-before race check-
ers typically log read and write accesses, assigning them log-
ical time instances (e.g., vector clock values or epochs [12]).
Ideally, such tools must maintain all memory accesses. Un-
fortunately, this is impossible in practice, given the large
number of variables and accesses in realistic programs. As
a compromise, TSan, and hence also ARCHER, only maintain
four1 memory accesses per 8 bytes of application memory
(hereafter called a memory word). Each access record (called
a shadow cell) also occupies one word. Thus, it is clear that the
memory consumption quintuples (and in practice, it goes up 6-
fold due to other per-thread overhead). We have observed this
when ARCHER was applied on the AMG2013 benchmark: the
6-fold increase with respect to total application memory gave
us an out-of-memory (OOM) error. There is no easy way to
predict application memory needs, and thus OOM is a lurking
danger even with only four shadow cells.

SWORD has very low memory requirements, as it does

1A default setting, but adjustable between 1 and 8.

not employ shadow cells. In SWORD, each thread collects
memory accesses into its own buffer, and it suffices to allocate
a fixed 2 megabytes per thread buffer.2 When each buffer fills
up, the associated thread (independent of the other threads)
compresses and writes out the buffer to disk. The advantages
of independently collecting the traces are several. For instance,
when collecting events associated with OpenMP barriers, the
threads do not have to wait for each other to finish the barrier.

b) Race Omission due to Shadow-Cell Evictions: Since
ARCHER retains and analyzes only four accesses per memory
word, a fifth access ends up evicting one of these cells. Un-
fortunately, this results in missed races, as has been observed
while using ARCHER on real-world applications. SWORD does
not suffer from this drawback, as it retains all accesses.

c) Happens-Before Race Masking: A happens-before
race checker such as ARCHER can mask races when otherwise
conflicting accesses are separated by a happens-before path
created as an artifact of the particular schedule (see Figure 1).
This form of race masking is reported in prior literature [13],
[14], and also shows up in practice while using ARCHER.

In SWORD, an offline synchronization recovery and race
analysis phase detects races. This phase is driven by an
operational semantics of OpenMP [15] that determines which
accesses are concurrent. This approach completely avoids
happens-before race masking. It also directly supports inde-
pendent trace collection; for instance, it is the offline analysis
that helps us put together the separately collected OpenMP
barriers. Overall, SWORD aims to guarantee completeness of
data race checking for a given execution if it does not have
data-dependent branches.

Highlights of SWORD’s Implementation

Our initial implementation of this approach in SWORD
proved quite disappointing, as some examples took days to
run. After careful optimization, we brought down this time for
the same examples to a few seconds. Our use of the following
mechanisms was central to achieving this performance:

• state-of-the-art self-balancing interval trees for recording
and merging traces;

• an efficient realization of Offset-Span Labels [16] for
concurrency discovery; and

• constraint solving to detect conflicting accesses through
complex strided access patterns and partial word overlaps.

SWORD also enjoys high portability, thanks to its use of a
standard trace collection method based on OMPT, an emerging
tools interface that is expected to be incorporated into future
OpenMP standards [17]. To summarize, the contributions of
SWORD are as follows:

• bounded memory (as little as 2 MB) instead of taking
gigabytes of shadow-cell storage;

• free of race omissions due to shadow-cell evictions;
• no happens-before-induced race masking;
• publicly available as an open-source GitHub project at

https://github.com/PRUNERS/sword.

2A user-adjustable bound, but we found that 2 MB is typically optimal
since it easily fits within modern L3 caches.

Thread 0 Thread 1
acquire(L)

read(a)
write(a)

write(a)
release(L)

acquire(L)
read(a)
write(a)

release(L)

(a) No happens-before
(race detected)

Thread 0 Thread 1
write(a)

acquire(L)
read(a)
write(a)

release(L)
acquire(L)

read(a)
write(a)

release(L)

(b) Happens-before
(no race detected)

Figure 1: Different interleavings generated by the same pro-
gram. Dashed lines indicate that the write operations of Thread
0 can occur simultaneously with the operations of Thread 1.
Solid lines indicate happens-before edges between the threads.

II. BACKGROUND

A data race occurs when two concurrent memory accesses
(one of which is a write) target the same memory location.
Dynamic race detectors employ happens-before (typically
implemented using vector clocks [18] or variants) to deter-
mine whether two accesses are concurrent. Given a thread
schedule (interleaving), the underlying concurrency semantics
yields a happens-before relation. Figure 1 shows two possible
interleavings of the same program. In part (a), a race is
caught because of the absence of any happens-before ordering
between Thread 0’s write(a) invocation and Thread 1’s read(a)
or write(a) invocation. In part (b), write(a) of Thread 0
is happens-before ordered before both read(a) and write(a)
accesses of Thread 1, causing the race to be missed. This is
one common source of missed races we observe in ARCHER.
Notice that even without any branches in the code, the choice
of interleavings decides whether a race is detected or missed.
In SWORD, this sort of race omission does not happen, as the
true concurrency status of two accesses is computed using our
operational semantic model.

To further detail shadow-cell eviction mentioned in the
previous section, consider the following example harboring a
race with respect to a[0] because, while multiple threads read
the array location a[0], exactly one thread is arranged to write
it without synchronization:

int a[N];

#pragma omp parallel for
for(int i = 0; i < N; i++) {
a[i] = a[i] + a[0];

}

Suppose the master thread (thread 0) got a head start and
created an access record of a[0] being written. Given the
multiple reads on a[0] from other threads, it is possible that
this write record is purged before race-checking is invoked
(i.e., all 4 shadow cells hold read accesses). In this situation,
this race can be missed.

0 - [0,1]

1 - [0,1][0,2] 2 - [0,1][1,2]

3 - [0,1][0,2][0,2] 4 - [0,1][0,2][1,2]

7 - [0,1][2,2]

5 - [0,1][1,2][0,2] 6 - [0,1][1,2][1,2]

11 - [0,1][3,2]

12 - [1,1]

8 - [0,1][2,2][0,2] 9 - [0,1][2,2][1,2]

10 - [0,1][4,2]

IBarrier(3)

Barrier(1)
read(x)
write(y)

write(x)
m_acq()

m_rel()

read(y)
m_acq(M1)

m_rel(M1)
IBarrier(4)

Barrier(2)

write(y)
m_acq(M1)

m_rel(M1)

write(x)
m_acq()

m_rel()

IBarrier(6)

FOR-LOOP

IBarrier(7)

R1: race on y

R2: race on y

R3: race on x

IBarrier(5)

Figure 2: Structure of an OpenMP program, where
m acq/m rel denotes a mutex acquire/release, IBarrier(id)
an implicit, and Barrier(id) an explicit OpenMP barrier.

Concurrency Structure of OpenMP: Figure 2 shows
the concurrency structure of an OpenMP program with two
nested parallel regions where threads access shared memory
locations. The figure depicts OpenMP barriers, as well as
memory accesses and synchronization operations in-between.
We define a barrier interval to be a pair of adjacent barriers
along with the set of memory events spanned by them. For
example, Barrier Interval 3 includes the operations performed
between barriers 1 and 3 (in general, some of these barriers
could be implicit barriers—denoted by IBarrier—such as
introduced by default at the end of OpenMP parallel sections).

Our offline analysis phase associates each memory access
event or synchronization event it receives with the barrier
interval within which the event occurs. It is easy to observe
that the accesses carried out by two different threads within
the same barrier interval are concurrent and potentially can
race. For example, data race R1 happens within the same
Barrier Interval 3 between threads 3 and 4 since they both
write to y without synchronization. However, accesses within
sequentially ordered barrier intervals cannot race. For instance,
the write to x in Barrier Interval 1 by Thread 3 cannot have
a data race with the read of x by Thread 4 in Barrier Interval
3, as these accesses are separated by a barrier (and hence
are sequentially ordered). However, with nested parallelism,
two threads that belong to two different barrier intervals can
in fact race; races R2 and R3 are of this nature. These two
data races happen because the threads are accessing shared
variables (y for R2 and x for R3) from two barrier intervals
that belong to different concurrent parallel regions. Our offline
analysis phase relies on offset-span labels to identify if two
accesses are concurrent (we apply the data race analysis only
to concurrent accesses).

Offset-Span Labels: An offset-span label tags each
thread’s execution point with a sequence of pairs (e.g.,
[0, 1][0, 2][0, 2]), marking its lineage in the concurrency struc-
ture defined by prior forks and joins. By comparing these
labels we can determine if two threads are concurrent, thereby
focusing the data race analysis only to potentially racy threads.

The domain for the offset-span labels is OSL = (N×N)∗,
i.e., each member osl ∈ OSL is a sequence of pairs
[a1, b1][a2, b2], . . . , [an, bn]. A pair consists of offset and span.
The span indicates the number of threads spawned by the fork
(e.g., start of a parallel region) from which the pair originates.
The offset distinguishes the pair among the other pairs orig-
inating from the same parent. Take label [0, 1][0, 2][0, 2] of
Thread 3 in Figure 2 as an example. Starting from the end, the
pair [0, 2] indicates that the thread has ID 0 in a parallel region
of two threads; the second pair [0, 2] is the thread’s parent with
ID 0 in a parallel region of two threads; the first pair [0, 1]
is the predecessor of the thread’s parent and represents the
master thread.

Let osl1, osl2 ∈ OSL be two offset-span labels associated
with Thread 1 and Thread 2, respectively. These labels are
sequential (i.e., Thread 1 and Thread 2 are not concurrent)
when either

case 1: ∃ P, S . osl1 = P ∧ osl2 = PS, where P and S
are non-empty sequences of pairs, or

case 2: ∃ P, Sx, Sy, ox, oy, s . osl1 = P [ox, s]Sx ∧
osl2 = P [oy, s]Sy ∧ ox < oy ∧ ox mod s = oy mod s, where
P , Sx, Sy are (possibly empty) sequences of pairs.
Otherwise, the labels are concurrent (see [16] for details). This
judgement of concurrency is not based on building happens-
before, thus avoiding problems such as highlighted in Fig-
ure 1(b): in particular, SWORD will detect this race. However,
our semantics (and hence SWORD’s implementation) does not
take into account data-dependent control flows. Thus, if a
program bases its control-flow branch decisions on the order in
which prior synchronization actions have been executed, then
SWORD will miss races. Barring this, SWORD is a faithful
realization of our semantics (albeit, coded manually).

III. IMPLEMENTATION DETAILS

A. Dynamic Analysis

Compiler Instrumentation: We implemented SWORD us-
ing the LLVM/Clang tool infrastructure [19] (see Figure 3).
Our LLVM instrumentation pass instruments all load and store
instructions that are executed within a parallel region. (We
ignore sequential instructions as they cannot race.)

Log Collection: At runtime, SWORD collects all the
information necessary for offline data race detection. Recall
that each thread gathers its logs without coordination with
the other threads. For this, the threads interact with the
OpenMP runtime through the OMPT interface, and gather
all the information regarding thread creation, parallel region
begin/end, and synchronizations points (e.g., barriers, critical
section). OMPT provides a data field for each callback, and
we generate unique IDs for each OpenMP construct analyzed
(e.g., ID for a parallel region, ID for a critical section); we

OpenMP C/C++ Clang/LLVM Compiler

Sword Instrumentation Pass
▪ Clone functions: sequential

and parallel version
▪ Instrument loads/stores in

parallel version

OpenMP
Source
Code

Dynamic Analysis

BinaryLLVM
IR

OpenMP RT with OMPT Support

SWORD Runtime

Logs

Offline Analysis

Race
Report

Red black-tree
create and compare

Figure 3: SWORD tool flow.

pid ppid bid offset span level data begin size
0 – 0 0 24 1 0 50,000
0 – 1 0 24 1 50,000 75,000
1 – 0 0 24 1 75,000 10,000

TABLE I: Example of thread’s meta-data file. Each line
corresponds to one barrier interval. Column pid is parallel
region ID, ppid is parent parallel region ID, bid is barrier
ID, offset and span define offset-span label, level is level of
parallelism, data begin is offset (in bytes) in the log file of
the beginning of the respective data chunk, size is its size.

store this information inside the data field so that the IDs can
be retrieved during the logging process and stored into log
files. Meanwhile, the instrumented parallel loads and stores
gather information about every parallel memory access (e.g.,
size, read or write, atomic).

Each thread maintains one log file and one meta-data file.
The log file contains the information about memory accesses
and OpenMP events, while the meta-data file contains the
IDs of parallel regions, offsets into the log file to obtain the
data (i.e., memory accesses and OpenMP events) regarding a
specific parallel region, and other information. Table I details
each thread’s meta-data file, which helps the offline analysis
identify the concurrency structure. Each line in the meta-data
file represents a barrier interval. This information is used by
the offline data race detection algorithm to extract from the
log file the chunk of data for a specific barrier interval.

During program execution, SWORD collects the memory
accesses and OpenMP events information into limited-size
thread-local storage buffers. When a buffer gets full, it is
compressed and asynchronously written out into a log file.
We compared several open-source compression algorithms,
namely LZO [20], Snappy [21], and LZ4 [22]. In our case,
they all have similar performance and compression ratios, and
we chose LZO since it was easier to integrate into SWORD.

Bounded Dynamic Analysis Overhead: As previously
mentioned, during the dynamic analysis each thread maintains
a thread-local storage buffer to collect memory accesses and
OpenMP events before writing them into a file. We fine-tuned
the buffer size to minimize cache misses, and we found that
an optimal size for our setup holds 25,000 events, amounting
to around 2 MB total. The SWORD runtime maintains ad-
ditional information in several thread-local storage variables.
The amount of memory needed by SWORD for this auxiliary
storage and OMPT is around 1.3 MB per thread. Given that
the memory overhead is bounded and independent of the
characteristics of the analyzed application, we can obtain a

formula representing the total memory overhead of SWORD.
Let N be the number of threads, B the memory overhead
introduced by SWORD per thread, and C the memory overhead
introduced by the OMPT interface. Then, the total memory
overhead of SWORD is N×(B+C). Our experimental results
show that in our setup the total memory overhead of SWORD
is around 3.3 MB per thread (which includes the aforesaid
auxiliary storage).

B. Offline Analysis

Offline analysis starts by analyzing the meta-data files to
identify the concurrency structure. Once the algorithm has
identified all pairs of concurrent barrier intervals and threads, it
obtains information about the memory accesses and OpenMP
synchronization operations from the log files. The meta-data
file contains an offset for each barrier interval indicating the
location of pertinent data in the log files. The size of a single
log file can be dozens of gigabytes, and hence the entire data
collection from an application can be in the order of terabytes.
Thus, even without application memory pressure, it is not
always possible to analyze all the data directly in memory.
To handle large log files efficiently, we employ a streaming
algorithm [23] that reads access information from log files in
small chunks and carries out our analysis.

For each thread, the algorithm builds an interval tree to
summarize memory accesses and to maintain information
about OpenMP events. In our implementation, we use an
augmented red-black tree [24] to maintain the interval tree
balance and to speed up the operations of insertion and search.
A node in an interval tree contains the range of memory
accesses3 it represents, and auxiliary information such as the
operation type (R/W), size of the access, stride of the interval,
program counter, and mutex set. The interval tree approach
allows us to summarize the information about consecutive
memory accesses (e.g., array accesses) in one node. Data race
detection is then performed by comparing the interval tree of
each thread to the interval trees of other concurrent threads.
When a node in the tree overlaps with a node of another tree
there is a potential race.

Figure 4 shows an example of two threads accessing an
array of structures. Each thread is accessing a different field
of the structure, performing either a read or write, and there
are no overlapping accesses—hence also no data race. During
the offline analysis, SWORD summarizes the accesses of both
threads using the two shown intervals. The two intervals do
overlap; however, if we consider the size and the stride of the

3We treat a single access as a range with the same beginning and end.

xx y x y x y x yy

10 1314 18 22 26 30 34 38 42 4617 21 25 29 33 37 41 45 49

addresses

struct Coordinate {
 int x;
 int y;
}

Coordinate a[5];

T0 accesses a.x

T1 accesses a.y

Interval Info

[10,42], 4, 8

[14,46], 4, 8

[START, END], SIZE, STRIDE

Figure 4: Example of threads that access the same memory
interval but do not have common addresses.

accesses, they do not actually have any addresses in common,
as the threads are accessing different memory locations. Thus,
a simple overlap check is not sufficient to identify whether
two intervals intersect.

In our offline race detection algorithm, we use all the
available interval information (e.g., count, stride) to check
if two intervals have memory addresses in common. For an
interval of thread Ti, we represent all addresses that belong to
it with the following constraint:

∆ · xi + bi + si = a

∧ 0 ≤ xi ≤ ((e− b)/∆)

∧ 0 ≤ si < s,

where a is an address belonging to the interval, b and e are
the starting and ending address of the interval respectively, ∆
is the stride, and s is the size of the memory access. If we
consider the example in Figure 4, we can represent all the
addresses for intervals of T0 and T1 with these constraints:

T0 : 8 · x0 + 10 + s0 = a

∧ 0 ≤ x0 ≤ 4

∧ 0 ≤ s0 < 4

T1 : 8 · x1 + 14 + s1 = a

∧ 0 ≤ x1 ≤ 4

∧ 0 ≤ s1 < 4

If their conjunction is satisfiable, then the threads are
accessing a common address. Furthermore, if at least one
of the operations is a write, then a race is reported. In our
implementation, we use integer linear programming to solve
the constraints, and in particular GNU GLPK Version 3.63
(any other solver with similar capabilities could be employed).

The algorithm complexity is O(Nlog(N)) for the interval
tree creation with N being the number of memory accesses:
it takes O(log(N)) to insert a node into a tree and this is
done for all N memory accesses. The comparison of two
interval trees is O(Mlog(M)) with M being the number of
nodes in the tree: each of the M nodes in a tree is compared
to the other trees, which is a binary search with complexity
O(log(M)). Note that M ≤ N since an interval tree can
summarize multiple access into one interval node.

Interval Tree Example: The following example, when
executed with two threads, contains a data race in array a
due to a data dependency:

int a[1000];

#pragma omp parallel for num_threads(2)
for(int i = 1; i < 1000; i++) {
a[i] = a[i - 1];

}

During the dynamic analysis, SWORD generates two log files
and two meta-data files. Since the program has only one
parallel region and one barrier interval, the meta-data files
contain only one line. The offline data race detection algorithm
extracts the barrier interval data using the meta-data files, and
builds one red-black interval tree per thread.

Figure 5 shows possible interval trees for the two threads
executed by the program. Each node in an interval tree
describes a memory access or a collection of memory accesses
(e.g., array accesses). In addition, each node has fields to store
information about the operation type (read or write), size of the
memory access, program counter, and list of mutexes held for
that specific memory access. When the algorithm identifies two
overlapping intervals, as shown in red/underlined in Figure 5,
it employs the additional information in nodes to construct an
integer linear constraint used to check if there is a potential
race. The algorithm also checks whether one of the intervals
is a write operation and if the intersection of the mutex lists is
empty. If these two conditions are met and the linear constraint
is satisfiable, a race is reported. In the case of Figure 5, the
two red/underlined intervals are overlapping since they have
an address in common. Therefore, SWORD reports a race at
the lines of code associated with the program counter stored
by the intervals.

C. Limitations

Although SWORD supports most of the constructs defined
by the OpenMP specification, in its current form it cannot
analyze programs based on OpenMP tasking. The main lim-
itation for supporting OpenMP tasking is that the current
formulation of the offset-span label mechanism does not allow
for identifying whether two threads that executed two different
tasks are concurrent or not. This is critical to avoid false
alarms and missed races. Despite this limitation, programs
that employ OpenMP tasking are still rare, thus SWORD can
analyze most of the existing OpenMP applications.

IV. EXPERIMENTAL RESULTS

We evaluate SWORD on two OpenMP microbenchmark
suites and four large real-world HPC applications. More
specifically, we select DataRaceBench [2] and OmpSCR [25]
OpenMP microbenchmarks to show the effectiveness of
SWORD in terms of identifying data races. In addition, we
use real-world HPC applications to assess its performance
and memory overhead. We compare SWORD against the state-
of-the-art OpenMP data race checker ARCHER [1].4 In our

4We also performed a preliminary comparison with the latest version
of IntelrInspector XE. We obtained results that are very similar to its
comparison with ARCHER from our previous work [1]. Hence, we omit a
detailed comparison with IntelrInspector XE from this paper.

[335820,335820],1
R,4,4208860

[335820,335820],1
W,4,4208658

[335824,335824],1
W,4,4208639

[335816,335816],1
W,4,4208677

[335820,335820],1
R,4,4208822

[335820,335820],1
W,4,4208884

[335920,335920],1
R,4,4208736

[335812,335812],1
W,4,4208696

[335820,335820],1
R,4,4208926

[335824,335824],1
R,4,4208902

[337888,339884],500
R,4,4208985

[337892,339888],500
W,4,4209028

(a) Interval tree for Thread 0

[183564,183564],1
R,4,4208860

[183564,183564],1
W,4,4208658

[183568,183568],1
W,4,4208639

[183560,183560],1
W,4,4208677

[183564,183564],1
R,4,4208822

[183564,183564],1
W,4,4208884

[183664,183664],1
R,4,4208736

[183556,183556],1
W,4,4208696

[183564,183564],1
R,4,4208926

[183568,183568],1
R,4,4208902

[339888,341880],499
R,4,4208985

[339892,341884],499
W,4,4209028

(b) Interval tree for Thread 1

Figure 5: Example interval trees. The red/underlined nodes are the two overlapping intervals that identify the race. The node’s
fields represent respectively [begin,end] of the interval, count, type of operation, access size, and program counter.

experiments, we run two configurations of ARCHER: with
default settings and with the “flush shadow” option enabled.
The purpose of enabling this option, which flushes memory
between independent parallel regions, is to try to reduce
the memory overhead of ARCHER and to have a more fair
comparison with SWORD. We also use the default setup of 4
shadow cells per ‘line’ (see Section II).

We perform our evaluation on a machine with two 12-
core Intel Xeon E5-2695v2 processors, 32GB of RAM, and
800GB of SSD storage. The machine runs the TOSS Linux
distribution (kernel version 3.10), which is a customized distri-
bution specifically optimized for HPC clusters. We average the
measured runtimes and memory overhead of all benchmarks
across 10 executions, and we vary the number of threads from
8 to 24. In the experimental results, “baseline” denotes the
original benchmark characteristics with data race checking dis-
abled, while “archer” and “archer-low” denote ARCHER in its
default and low memory overhead configuration respectively,
and “sword” denotes our SWORD tool.

A. DataRaceBench Microbenchmarks

The DataRaceBench microbenchmark suite [2] consists
of small OpenMP codes with and without data races;
each ‘racy’ benchmark contains one known data race doc-
umented by the authors. We run every tool on all bench-
marks and inspect the outcomes; none of the tools re-
port false alarms, and they also successfully identified
almost all races. All tools missed the races in bench-
marks indirectaccess{1-4}-orig-yes. These data
races do not manifest along all program paths, and given
that both SWORD and ARCHER are dynamic analysis tools
that analyze only the executed control flow, they can
miss such races. In benchmarks nowait-orig-yes and
privatemissing-orig-yes, SWORD analysis is more
complete and it reports races that ARCHER misses for the rea-
sons discussed in Section II. These are all read-write data races
happening in the same shared variable and parallel region.
Because of multiple reads by the same thread, the shadow cells
maintained by ARCHER are eventually overwritten, and this
information loss causes these races to be missed. SWORD does
not suffer from such information loss, and it correctly identifies
them. Note that all tools report an additional unknown race in
plusplus-orig-yes, and SWORD reports an additional
unknown race in privatemissing-orig-yes as well.

of Reported Data Races
Benchmark archer archer-low sword

c loopA.badSolution 1 1 1
c loopB.badSolution1 1 1 1
c loopB.badSolution2 1 1 1

c md 1 1 2
c testPath 2 2 6

cpp qsomp1 1 1 2
cpp qsomp2 1 1 2
cpp qsomp5 1 1 3
cpp qsomp6 1 1 2

TABLE II: Data races reported in OmpSCR suite.

These are not false alarms, but rather real races that the
authors of the benchmarks have failed to document (we have
reported this, and anticipate a fix in their next release). Finally,
since DataRaceBench benchmarks are small, the runtime and
memory overheads are similar among the tools.

B. OmpSCR Microbenchmarks

The OmpSCR benchmark suite contains known data races
that have been documented in previous works [25], [1].
Table II gives the number of data races detected by each
tool. (We again omit race-free benchmarks since we ver-
ified that none of the tools report false alarms.) SWORD
not only identifies the same races as ARCHER, but also
detects new undocumented races in the following bench-
marks: c_md, c_testPath, cpp_qsomp1, cpp_qsomp2,
cpp_qsomp5, and cpp_qsomp6. Our manual inspection
confirmed that all these races are real. ARCHER missed these
races for all the reasons summarized in Section I.

Figure 6 gives the geometric mean of the runtime and
memory overheads to indicate the overall tendency of the
values, considering the large gaps in execution time and
memory usage among the different benchmarks. The runtime
overhead is small for all tools, while the relative memory
overhead is large due to small baseline, but still less than
100 MB for all tools. Also note that the memory overhead
of SWORD is constantly around 3.3 MB per thread, as we
indicated in Section III. When compared, the runtime and
memory overhead of the SWORD data collection is lower than
ARCHER in both configurations. The plots do not include
the runtime and memory overhead of the offline data race
detection algorithm, which may increase the total amount of
resources needed by SWORD for a complete analysis.

Benchmark baseline(s) archer(s) archer-low(s) sword
DA(s) OA(s) MT(s) #PR LS

c fft 0.13 0.81 0.84 0.52 2.09 1.34 2 2.4MB
c fft6 0.03 0.14 0.15 0.12 0.12 0.12 1 122kB

c jacobi01 0.9 19.83 20.91 2.57 2.06 1.33 2 51MB
c jacobi02 0.89 19.64 20.38 2.59 0.63 0.63 1 51MB

c loopA.badSolution 0.03 0.47 1.59 0.18 3.16 0.35 100 394kB
c loopA.solution1 0.03 0.65 2.76 0.36 5.88 0.22 200 981kB
c loopA.solution2 0.03 0.3 0.39 0.27 0.14 0.14 1 452kB
c loopA.solution3 0.03 0.3 1.43 0.23 2.33 0.17 100 458kB

c loopB.badSolution1 0.03 0.47 1.62 0.3 3.03 0.14 100 398kB
c loopB.badSolution2 1.79 4.08 5.26 2.26 3.09 0.15 100 390kB

c loopB.pipelineSolution 0.03 0.28 0.32 0.25 0.14 0.14 1 462kB
c lu 0.04 10.5 15.81 0.83 25.35 0.28 499 20MB

c mandel 0.08 5.06 5.05 0.37 0.1 0.1 1 81kB
c md 0.47 80.87 84.47 3.65 0.55 0.17 21 1.5MB

c pi 0.02 0.14 0.17 0.14 0.11 0.11 1 81kB
c qsort 0.04 0.23 0.33 0.14 0.27 0.12 10 125kB

c testPath 0.03 0.26 0.33 0.26 0.09 0.09 1 81kB
cpp qsomp1 1.38 259.9 264.32 5.46 1.76 1.76 1 321MB
cpp qsomp2 1.38 262.8 263.19 5.39 1.82 1.82 1 303MB
cpp qsomp5 14.27 41.54 41.51 55.44 16.47 16.47 1 204MB
cpp qsomp6 1.52 263.51 263.16 5.36 1.93 1.93 1 316MB

Mean 1.1 46.28 47.33 4.13 – – – –
Median 0.04 0.81 2.76 0.37 – – – –

Geometric Mean 0.15 0.81 2.76 0.37 – – – –

TABLE III: Overheads on the OmpSCR suite executed with 24 threads, including the execution time of the parallel offline
analysis. Column baseline is the baseline runtime; archer is the ARCHER runtime; archer-low is the low memory overhead
ARCHER configuration runtime; DA is the total dynamic analysis runtime including logging; OA is the offline analysis runtime
when executed on just one node (24 threads); MT (Max Time) is the time taken by 24 threads to analyze the region of
the offline traces that have the maximum amount of trace info (MT can reduce with more threads); #PR is the number of
independent parallel regions to analyze; LS is the amount of storage required to store the generated log files.

8 12 16 20 24

R
un

tim
e

(s
)

threads

10−3

10−2

10−1

100

(a) Runtime overhead

8 12 16 20 24
0

20

40

60

80

M
em

or
y

(M
B

)

threads

(b) Memory overhead

Figure 6: Geometric mean of runtime and memory overhead
for OmpSCR suite; the number of threads varies from 8 to 24.

Table III shows the overheads of the offline data race
checking with SWORD compared to the two ARCHER con-
figurations. The runtime overhead depends on the size of log
files and the number of parallel regions the algorithm has to
analyze for each benchmark. We distributed the offline analysis
across a cluster of nodes, and the offline data race detection
in that case typically lasts from a few milliseconds up to a
few seconds (column MT). Moreover, even running the entire
offline analysis on a single node (24 threads) takes less than a
minute for all benchmarks (column OA). We omit the memory

overhead for the dynamic analysis since it is negligible given
the small size of the benchmarks. While for most of the
benchmarks the dynamic analysis terminates quickly and does
not differ much from the runtime overhead of ARCHER, for
some the offline analysis takes a considerable amount of time.

C. HPC Benchmarks

We assess the performance and memory overhead of
SWORD using four small to large-size HPC benchmark
codes. We use three codes, namely AMG2013, LULESH, and
miniFE, from the CORAL benchmark suite [26], while the
fourth code HPCCG is a part of the Mantevo project [27].
These codes model scientific problems and simulations, and
their size ranges from tens to hundreds of thousands of lines
of code. We also leverage AMG2013 to evaluate the overheads
of the tools with an increasing problem size. AMG2013
is a parallel algebraic multigrid solver for linear systems
arising from problems on unstructured grids. Therefore, we
perform the evaluation using 4 different grid sizes: 103

(AMG2013 10), 203 (AMG2013 20), 303 (AMG2013 30),
and 403 (AMG2013 40).

Table IV shows the number of data races detected by each
tool. Note that none of the tools report false alarms. Both
tools find one race in HPCCG, which happens in a parallel
region where all threads are writing the same value into a
shared variable. While this race may seem harmless, it in fact
results in undefined behavior based on the C/C++ standard,

of Reported Data Races
Benchmark archer archer-low sword

miniFE 0 0 0
HPCCG 1 1 1

LULESH 0 0 0
AMG2013 10 4 4 14
AMG2013 20 4 4 14
AMG2013 30 4 4 14
AMG2013 40 OOM OOM 14

TABLE IV: Data races reported in HPC benchmarks. OOM
indicates that a tool ran out of memory during the analysis.

and compiler optimizations could unpredictably modify the
outcome of this program [1], [28]. ARCHER detects 4 known
races in smaller-scale AMG2013 runs [1], while it runs out of
memory at large scale. SWORD both completes the analysis at
large scale and detects 10 additional races missed by ARCHER.
These races happen in the same large parallel region (around
400 LOC) as the others, and they are all the same type of
read-write races. As before, ARCHER misses them since it
maintains only a limited number of previous accesses, while
SWORD detects them since it logs every memory access.

Figure 7 shows the slowdown and memory overhead of the
tools on the HPC benchmarks. ARCHER in both configurations
exhibits a larger slowdown than SWORD as we are increasing
the number of threads. The “archer-low” configuration flushes
the shadow memory in-between independent parallel regions,
and the plots show that this slightly reduces the memory
overhead, but it also increases the runtime overhead because
of the additional operations to release memory pages. SWORD,
on the other hand, exhibits better scaling, typically resulting in
a faster dynamic analysis than ARCHER, with the exception of
LULESH (see Figure 7c). LULESH executes a large number
of parallel regions and barriers that significantly increase the
number of I/O operations during the log collection phase
of SWORD. The plots show that the memory overhead of
ARCHER depends on the baseline memory consumption and
is around 5–7× of the baseline. On the other hand, SWORD’s
memory overhead is bounded since it depends only on the
number of threads (it is around 3.3 MB per thread) and
not the baseline. Figure 8 further analyzes this behavior by
varying the problem input size of AMG2013. This clearly
illustrates a major advantage of SWORD: as the baseline
memory consumption increases ARCHER runs out of memory,
while SWORD’s bounded memory overhead allows it to finish
its analysis successfully.

As Figure 7 and Figure 8 indicate, SWORD’s dynamic anal-
ysis (log collection) is typically faster than ARCHER at larger
scales. However, we need to take the offline analysis execution
time into account to represent the total runtime overhead of
SWORD. Table V shows the overheads of the tools including
the offline analysis of SWORD. The overall analysis runtime of
SWORD for HPCCG, including the offline data race detection
process, is less than 2 minutes if executed on a single node
and can be reduced to several seconds if executed on a cluster;
the latter is not significantly different from ARCHER. On the

other hand, SWORD is about 4 times faster than ARCHER
on miniFE. On LULESH, the SWORD’s dynamic analysis
is slower compared to ARCHER since LULESH generates
almost 300,000 independent parallel regions which increase
the I/O operations, thereby slowing down the data collection
phase. Subsequently, the SWORD’s offline analysis takes more
than 24 hours, because of the large number of regions to
analyze. For our experiments we used 24 cores per node, each
core generating the interval-tree of a different thread. While
the tree generation cannot be efficiently parallelized since it
would require the use of locks, we could significantly reduce
this large offline analysis time by using many more cores
for the comparison of the interval trees of different threads.
The most interesting case is AMG, where ARCHER runs out
of memory at large problem sizes and does not complete
its analysis, while SWORD is able to collect all the data at
runtime and perform the offline data race detection process.
Even though the SWORD’s offline analysis takes about an hour
when executed on a single node, it does not take more than
a few minutes when executed on a cluster, and the data race
detection is more complete than ARCHER.

V. RELATED WORK

Data race detection is a widely studied problem in concur-
rent programming. Netzer and Miller provide a good survey
of general approaches for data race detection [29]. A number
of different techniques have been proposed, including static
analysis [3], [5], [6], [30], [31], dynamic analysis [9], [12],
[32], and hybrid analysis [33]. These are not directly appli-
cable to OpenMP, as they fail to consider the runtimes and
internal actions of OpenMP programs. A complete survey of
data race detection methods is beyond the scope of this work;
in this section we focus on works that either address OpenMP
race checking, or are more closely related.

There has been prior work on OpenMP race checking,
including the use of dynamic analysis (e.g., [34]) and symbolic
analysis (e.g., [35]). Our prior work [1] and its precursor [36]
document the success of ARCHER in practical OpenMP race
checking, and this observation is also in line with that in a
recent study [2]. The main weakness of ARCHER is its mem-
ory consumption, which can be 6× the amount of memory
needed by the innate (unmodified) application. ARCHER does
provide an option to release some of the allocated memory in
between independent parallel regions, thereby often reducing
the memory overhead by around 30%. However, as we show
in Section IV, even this memory reduction is insufficient for
dealing with large OpenMP applications that allocate up to
90% of the available memory in each compute node.

There have been many efforts that make race checking effi-
cient by exploiting structured parallelism found in languages
such as Cilk [37], X10 [38], or Habanero Java [39]. These
techniques are not directly applicable to OpenMP. Similarly
to SWORD, Wilcox et. al. [40] propose an approach to reduce
memory overhead by employing array summarization, where
array accesses can be summarized into the same shadow-cell.
This approach reduces the memory overhead by about 30% for

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

20

22

S
lo

w
do

w
n

threads

(a) miniFE slowdown

8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

110

120

S
lo

w
do

w
n

threads

(b) HPCCG slowdown

8 12 16 20 24
0

10

20

30

40

50

60

70

S
lo

w
do

w
n

threads

(c) LULESH slowdown

8 12 16 20 24
0

10

20

30

40

S
lo

w
do

w
n

threads

(d) AMG2013 30 slowdown

8 12 16 20 24
0

1

2

3

4

M
em

or
y

(G
B

)

threads

(e) miniFE memory overhead

8 12 16 20 24
0

100

200

300

400

500

600
M

em
or

y
(M

B
)

threads

(f) HPCCG memory overhead

8 12 16 20 24
0

10

20

30

40

50

60

70

80

90

100

110

M
em

or
y

(M
B

)

threads

(g) LULESH memory overhead

8 12 16 20 24
0

2

4

6

8

10

12

14

16

18

20

22

24

M
em

or
y

(G
B

)

threads

(h) AMG2013 30 memory overhead

Figure 7: Relative slowdown and memory overhead compared to the baseline for HPC benchmarks.

Benchmark baseline(s) archer(s) archer-low(s) sword
DA(s) OA(s) MT(s) #PR LS(GB)

miniFE 4.7 101.4 101.6 13.3 8.1 4.3 28 1.1
HPCCG 0.4 10.5 46.3 14.4 84.9 2.3 898 2.8

LULESH 3.9 116.1 115.6 131.7 >24h 40.0 300,000 9.8
AMG2013 10 2.2 19.8 20.1 14.9 811.0 5.4 1,272 2.4
AMG2013 20 7.7 149.1 147.2 115.9 2,116.0 41.0 1,527 20.0
AMG2013 30 23.8 471.4 448.2 418.7 3,153.0 133.2 1,575 57.0
AMG2013 40 57.2 OOM OOM 1,251.4 3,871.0 180.2 2,036 162.0

TABLE V: Overheads on the HPC benchmarks executed with 24 threads, including the execution time of the parallel offline
analysis. See Table III for the explanation of columns. OOM indicates that the tool ran out of memory during the analysis.

AMG2013_10 AMG2013_20 AMG2013_30 AMG2013_40
0

10

20

30

S
lo

w
do

w
n

(a) Runtime overhead

AMG2013_10 AMG2013_20 AMG2013_30 AMG2013_40
0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

M
em

or
y

(G
B

)

(b) Memory overhead

Figure 8: Runtime and memory overhead on AMG2013 with
varying problem size executed with 24 threads.

array-intensive applications. However, it does not overcome
the happens-before and shadow-memory limitations explained
in Section II.

VI. CONCLUSIONS

Given the growing importance of OpenMP for harnessing
on-node parallelism, data races in production-scale OpenMP
programs present a looming threat to reliable parallel software
design. Today’s happens-before-relation-based race checkers
for OpenMP (notably ARCHER, the best in its class) are
highly memory inefficient, needing at least five times (and six
times in practice) more memory than the application itself.
Despite such a large memory overhead, they also miss a
significant number of data races due to either schedule-based
race masking or shadow-cell eviction.

In contrast, in our new work embodied in the tool SWORD,
the online analysis can be carried out using a memory buffer
of under 3 megabytes in size. Traces collected in this buffer
are compressed, and written out to log files, where the
offline analysis based on stepping an operational semantics
model takes over. This algorithm is also memory efficient,
being based on novel streaming algorithms and state-of-the-
art interval tree data structures to merge traces and check for

races. ILP-based constraint-solving further reduces the over-
head of detecting overlapping accesses. Overall, SWORD is at
least 1,000 times more memory-efficient than ARCHER, thus
virtually guaranteeing the absence of out-of-memory errors.
For instance, we could not finish checking the AMG2013
benchmark at large scale using ARCHER, while with SWORD
this was easily accomplished.

We present extensive experimental results that demonstrate
these features of SWORD as well as its overall superior
performance as well as race coverage. We performed the
experiments on a recently published OpenMP benchmark
suite [2] as well as all previous data race checking benchmarks
on which ARCHER was run. Experimental results demonstrate
that SWORD is comparable to ARCHER even on examples
where the memory pressure is not an issue. SWORD is also
sound and complete with respect to data race checking in the
absence of data-dependent control flow variations. Last but not
least, SWORD has actually found races missed by ARCHER as
well as some of the feasible races that are not documented in
a recent study [2].

While SWORD’s dynamic analysis is overall faster than
ARCHER, its offline data race analysis can sometimes take
a long time, especially at very large scales. This slow-down
can be mitigated through the development of novel parallel
algorithms, which we relegate to future work. We also plan to
extend SWORD’s approach to target regions that are offloaded
on accelerators, as well as accommodate tasking.

In conclusion, SWORD is currently the tool of choice for
checking data races in large-scale OpenMP programs. In
production use, a user of SWORD may employ available tech-
niques to systematically explore the execution-space of their
application, and attempt to check for data races within these
executions. They can carry this out without worrying about
out-of-memory errors—even when checking their applications
on production-level inputs. In the process, they will also
obtain superior race coverage than any available OpenMP race
checker.

REFERENCES

[1] S. Atzeni, G. Gopalakrishnan, Z. Rakamarić, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Müller, “Archer: Effectively
spotting data races in large OpenMP applications,” in IPDPS, 2016.

[2] C. Liao, P.-H. Lin, J. Asplund, M. Schordan, and I. Karlin,
“DataRaceBench: A benchmark suite for systematic evaluation of data
race detection tools,” in Supercomputing, 2017, pp. 11:1–11:14.

[3] P. Chatarasi, J. Shirako, M. Kong, and V. Sarkar, “An extended polyhe-
dral model for SPMD programs and its use in static data race detection,”
in Languages and Compilers for Parallel Computing (LCPC), 2016.

[4] P. Pratikakis, J. S. Foster, and M. Hicks, “LOCKSMITH: Practical static
race detection for C,” TOPLAS, vol. 33, no. 1, pp. 3:1–3:55, Jan. 2011.

[5] J. W. Voung, R. Jhala, and S. Lerner, “RELAY: Static race detection on
millions of lines of code,” in ESEC/FSE, 2007, pp. 205–214.

[6] D. Engler and K. Ashcraft, “RacerX: Effective, static detection of race
conditions and deadlocks,” in SOSP, 2003, pp. 237–252.

[7] A. Jannesari, K. Bao, V. Pankratius, and W. F. Tichy, “Helgrind+: An
efficient dynamic race detector,” in IPDPS, 2009, pp. 1–13.

[8] K. Serebryany and T. Iskhodzhanov, “ThreadSanitizer: Data race detec-
tion in practice,” in Workshop on Binary Instrumentation and Applica-
tions (WBIA), 2009, pp. 62–71.

[9] K. Serebryany and D. Vyukov, “ThreadSanitizer, a data race detector
for C/C++ and Go,” https://github.com/google/sanitizers.

[10] U. Banerjee, B. Bliss, Z. Ma, and P. Petersen, “Unraveling data race
detection in the Intel Thread Checker,” in STMCS, 2006.

[11] J. Protze, J. Hahnfeld, D. H. Ahn, M. Schulz, and M. S. Müller,
“OpenMP tools interface: Synchronization information for data race
detection,” in International Workshop on OpenMP (IWOMP), 2017, pp.
249–265.

[12] C. Flanagan and S. N. Freund, “FastTrack: Efficient and precise dynamic
race detection,” in PLDI, 2009, pp. 121–133.

[13] J. Huang, C. Zhang, and J. Dolby, “CLAP: Recording local executions
to reproduce concurrency failures,” in PLDI, 2013, pp. 141–152.

[14] Y. Smaragdakis, J. Evans, C. Sadowski, J. Yi, and C. Flanagan, “Sound
predictive race detection in polynomial time,” in POPL, 2012.

[15] S. Atzeni and G. Gopalakrishnan, “An Operational Semantic Basis
for Building an OpenMP Data Race Checker,” in 23rd International
Workshop on High-Level Parallel Programming Models and Supportive
Environments, 2018, IEEE Xplore Digital Library.

[16] J. Mellor-Crummey, “On-the-fly detection of data races for programs
with nested fork-join parallelism,” in Supercomputing, 1991, pp. 24–33.

[17] A. E. Eichenberger, J. Mellor-Crummey, M. Schulz, M. Wong, N. Copty,
R. Dietrich, X. Liu, E. Loh, and D. Lorenz, “OMPT: An OpenMP
tools application programming interface for performance analysis,” in
International Workshop on OpenMP (IWOMP), 2013, pp. 171–185.

[18] F. Mattern, “Virtual time and global states of distributed systems,” in
Parallel and Distributed Algorithms Conference, 1988, pp. 215–226.

[19] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in CGO, 2004, pp. 75–86.

[20] M. F. Oberhumer, “LZO,” http://www.oberhumer.com/lzo, 2012.
[21] Google, “Snappy,” https://google.github.io/snappy, 2011.
[22] Y. Collet, “LZ4,” https://lz4.github.io/lz4, 2011.
[23] J. Gama, Knowledge Discovery from Data Streams. Chapman &

Hall/CRC, 2010.
[24] L. J. Guibas and R. Sedgewick, “A dichromatic framework for balanced

trees,” in Annual Symposium on Foundations of Computer Science
(SFCS), 1978, pp. 8–21.

[25] A. J. Dorta, C. Rodriguez, and F. d. Sande, “The OpenMP source code
repository,” in EMPDP, 2005, pp. 244–250.

[26] “CORAL benchmark codes,” https://asc.llnl.gov/CORAL-benchmarks.
[27] “Mantevo,” https://mantevo.org, 2013.
[28] H.-J. Boehm, “How to miscompile programs with “benign” data races,”

in HotPar, 2011, pp. 3–3.
[29] R. H. B. Netzer and B. P. Miller, “What are race conditions? Some issues

and formalizations,” ACM Lett. Program. Lang. Syst., vol. 1, no. 1, pp.
74–88, Mar. 1992.

[30] V. Kahlon, Y. Yang, S. Sankaranarayanan, and A. Gupta, “Fast and ac-
curate static data-race detection for concurrent programs,” in Conference
on Computer Aided Verification (CAV), 2007, pp. 226–239.

[31] M. Naik, A. Aiken, and J. Whaley, “Effective static race detection for
Java,” in PLDI, 2006, pp. 308–319.

[32] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson,
“Eraser: A dynamic data race detector for multi-threaded programs,” in
Symposium on Operating Systems Principles (SOSP), 1997, pp. 27–37.

[33] R. O’Callahan and J.-D. Choi, “Hybrid dynamic data race detection,” in
PPoPP, 2003, pp. 167–178.

[34] O.-K. Ha, I.-B. Kuh, G. M. Tchamgoue, and Y.-K. Jun, “On-the-fly
detection of data races in OpenMP programs,” in PADTAD, 2012.

[35] H. Ma, S. R. Diersen, L. Wang, C. Liao, D. Quinlan, and Z. Yang,
“Symbolic analysis of concurrency errors in OpenMP programs,” in
International Conference on Parallel Processing (ICPP), 2013.

[36] J. Protze, S. Atzeni, D. H. Ahn, M. Schulz, G. Gopalakrishnan, M. S.
Müller, I. Laguna, Z. Rakamarić, and G. L. Lee, “Towards providing
low-overhead data race detection for large OpenMP applications,” in
LLVM Compiler Infrastructure in HPC, 2014, pp. 40–47.

[37] G.-I. Cheng, M. Feng, C. E. Leiserson, K. H. Randall, and A. F. Stark,
“Detecting data races in Cilk programs that use locks,” in Symposium
on Parallel Algorithms and Architectures (SPAA), 1998, pp. 298–309.

[38] T. Yuki, P. Feautrier, S. V. Rajopadhye, and V. Saraswat, “Checking race
freedom of clocked X10 programs,” CoRR, vol. abs/1311.4305, 2013.

[39] R. Raman, J. Zhao, V. Sarkar, M. Vechev, and E. Yahav, “Efficient data
race detection for async-finish parallelism,” in RV, 2010, pp. 368–383.

[40] J. R. Wilcox, P. Finch, C. Flanagan, and S. N. Freund, “Array shadow
state compression for precise dynamic race detection,” in ASE, 2015.

