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Rigorous estimation of maximum floating-point round-off errors is an important capability central to many
formal verification tools. Unfortunately, available techniques for this task often provide very pessimistic
overestimates, causing unnecessary verification failure. We have developed a new approach called Symbolic
Taylor Expansions that avoids these problems, and implemented a new tool called FPTaylor embodying
this approach. Key to our approach is the use of rigorous global optimization, instead of the more familiar
interval arithmetic, affine arithmetic, and/or SMT solvers. FPTaylor emits per-instance analysis certificates
in the form of HOL Light proofs that can be machine checked.

In this paper, we present the basic ideas behind Symbolic Taylor Expansions in detail. We also survey as
well as thoroughly evaluate six tool families, namely Gappa (two tool options studied), Fluctuat, PRECiSA,
Real2Float, Rosa and FPTaylor (two tool options studied) on 24 examples, running on the same machine, and
taking care to find the best options for running each of these tools. This study demonstrates that FPTaylor
estimates round-off errors within much tighter bounds compared to other tools on a significant number of
case studies. We also release FPTaylor along with our benchmarks, thus contributing to future studies and
tool development in this area.
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1. INTRODUCTION
The floating-point number representation is foundational to computing, playing a
central role in the representation and manipulation of real numbers. Unfortunately,
floating-point arithmetic suffers from error-inducing rounding operations. That is, af-
ter each calculation of a sub-expression, the result must be snapped (rounded) to the
nearest representible number before the whole expression can be evaluated. The near-
est representible number may be half a unit in the last place or ulp (in the worst case)
away from the calculated (intermediate) result, and this distance is called round-off
error. The value of the ulp is proportional to the result exponent, making errors value
dependent. Given all these subtleties, one seldom analyzes computations directly in
floating-point. Instead, one conceives and analyzes computations in the realm of reals,
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and then ensures that the amount of discrepancy—round-off error—is “small.” The
manner in which round-off errors are examined and accepted varies from application
to application: the more exacting the application, the more rigorous the methods em-
ployed must be. The IEEE standard [IEEE 754 2008] was a landmark achievement in
computer arithmetic, standardizing the meaning of floating-point operations and the
notion of correct rounding. Even systems that abide by the IEEE standard can violate
axioms that one takes for granted in the space of real numbers. One such axiom might
be (b 6= c)⇒ ((a−b) 6= (a−c)). The following session in Python (version 3.5.0) produces
these results, where one can take b = .333333333333333 and c = .333333333333334.

>>> (100+(1.0/3)) - .333333333333333
100.0
>>> (100+(1.0/3)) - .333333333333334
100.0

>>> (10+(1.0/3)) - .333333333333333
10.000000000000002
>>> (10+(1.0/3)) - .333333333333334
10.0

Very few practitioners have the time or wherewithal to dig into the underlying reasons
(e.g., it is known that even the process of printing an answer [Andrysco et al. 2016]
introduces rounding).

Some everyday tools can be more befuddling. Excel (version 15.56) produces these
answers (the first two cases are discussed in [Kahan 2006]) with the rounding rules
involved discussed tangentially [Support 2018]:

= (4/3− 1) ∗ 3− 1 prints 0
= ((4/3− 1) ∗ 3− 1) prints -2.22045E-16
= (4/3− 1) ∗ 3− 1 + 0 prints -2.22045E-16

Google sheets used to behave similar to Excel, but now prints -2.22045E-16 even for
the first case.

Even in IEEE-standard abiding systems, floating-point arithmetic presents nu-
merous difficulties. Floating-point error analysis is non-compositional. As an exam-
ple, Kahan [Kahan 2006] has pointed out that there exist input intervals in which
(ex− 1)/log(ex) exhibits smaller error than (ex− 1)/x even though clearly x always ex-
hibits smaller error than log(ex). In practice, all these boil down to two vexing features
of floating-point. First, an entire given expression must be analyzed to find out its
maximum round-off error; we cannot, in general, learn much by analyzing the subex-
pressions. Second, identities true in real arithmetic do not apply to floating-point.

Our Focus. This paper develops rigorous methods to estimate the maximum floating-
point round-off error in straight-line code sequences. Understanding error analysis
properly in this setting is essential before we can meaningfully consider programs with
conditionals and loops. Moreover, there are only a handful of tools that conduct error
estimation on codes with conditionals and loops, and very few are available for external
evaluation. The approaches employed to handle loops in these tools also differ signifi-
cantly. These make such comparisons practically difficult.1Given that the community
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has established widely understood criteria for measuring errors in straight-line codes,
that will be the focus of our detailed study in this paper.

We thoroughly evaluate six tool families, namely Gappa (two tool options studied),
Fluctuat, PRECiSA, Real2Float, Rosa and FPTaylor (two tool options studied) on 24
examples, running on the same machine. We are also careful to find the best options for
running each of these tools, and fully document all these options plus our evaluation
platforms. We believe that this is a timely contribution in the light of the recently
growing interest in rigorous floating-point analysis.

Currently available techniques for computing round-off errors of even simple
straight-line programs often return quite pessimistic overestimates. A typical cause
for such poor behavior are the chosen underlying abstractions that lose correlations be-
tween round-off errors generated by subexpressions. This can lead to unnecessary veri-
fication failures in contexts where one is attempting to prove upper bounds of round-off
error. Another limitation of available rigorous techniques is that most of them do not
handle transcendental functions other than by analyzing truncated series expansions
thereof.

In this paper, we present a new approach called Symbolic Taylor Expansions that
avoids these problems, and we implement it in a tool called FPTaylor. A key feature
of our approach is that it employs rigorous global optimization, instead of the more
familiar interval arithmetic, affine arithmetic, and/or SMT solvers for error estimation.
In addition to providing far tighter upper bounds of round-off error in a vast majority of
cases, FPTaylor also emits per-instance analysis certificates in the form of HOL Light
proofs that can be machine checked. We note that this ability to check proof certificates
is possessed by Gappa, Real2Float (for polynomial programs), and PRECiSA.

Simple Illustrative Example. Suppose one is asked to calculate the maximum round-
off error produced by t/(t+1) for t ∈ [0, 999] being an IEEE-defined 32-bit floating-point
number [IEEE 754 2008]. This can be achieved in practice in a few minutes by running
through all ∼ 232 cases by (1) instantiating this expression in two precisions, namely
the requested 32-bit precision, and a much higher precision (say, 128-bit) serving as
an approximation for reals, and (2) comparing the answers over the 232 values of the
requested floating-point precision. Clearly, this brute-force approach will not scale for
more than one variable or even a single double-precision (64-bit) variable t.

While SMT solvers can be used for small problems [Rümmer and Wahl 2010; Haller
et al. 2012], the need to scale encourages the use of various abstract interpretation
methods [Cousot and Cousot 1977], the most popular choices being interval [Moore
1966] or affine [Stolfi and de Figueiredo 2003] arithmetic. Unfortunately, both these
popular methods, while often fast, produce grossly exaggerated error estimates. In
many contexts, such overestimates cause unnecessary verification failures or result in
programmers over-optimizing code.

For example, suppose one sets about to verify using interval analysis that the error
in calculating t/(t+ 1) in single-precision is less than 0.001. We show in Section 3 that
interval analysis would produce an estimate of error equal to 0.030517578125. Affine
arithmetic also does not fare well as it is well-known to produce exaggerated answers
in the presence of non-linear operators. In reaction to such high error, a programmer
might decide to instantiate t in double-precision, and reapply interval analysis, result-
ing in an error equal to 5.6843418860808015e−11. However, by employing better error
analysis, one can avoid un-necessarily switching over to higher precision. For example,
using the methods we propose, we can show that the error in t/(t+1) can be rigorously
bounded by 1.1920928955078125e−07 even for single-precision.

1In Section 6.3, we do provide some preliminary comparative results pertaining to conditionals.
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Contributions. Now we summarize our key contributions:

— We describe all the details of our rigorous floating-point round-off error estimation
approach based on Symbolic Taylor Expansions and rigorous global optimization,
which allows us to reduce the dimensionality of the problem while maintaining criti-
cal correlations between round-off errors.

— We release an open source version of our tool FPTaylor.2 FPTaylor handles all basic
floating-point operations and all the binary floating-point formats defined in IEEE
754. It supports transcendental and mixed-precision expressions, uncertainties in
input variables, and estimation of relative and absolute round-off errors;3 it also pro-
vides a rigorous treatment of subnormal numbers.

— For the same problem complexity (i.e., number of input variables and expression
size), FPTaylor obtains tighter bounds than state-of-the-art tools in most cases, while
incurring comparable runtimes. We also empirically verify that our overapproxima-
tions are within a factor of 1.9 of the corresponding underapproximations computed
using a recent dynamic tool [Chiang et al. 2014].

— FPTaylor has a mode in which it produces HOL Light proof scripts. This facility
actually helped us find a bug in our initial tool version. This experience underscores
the importance of built-in consistency checking mechanisms, especially bridging tool
versions.

— Many tools in this space including FPTaylor are based on back-end global optimizers.
We provide a thorough evaluation of FPTaylor on our examples across three different
optimizers. Our studies demonstrate the importance of supporting multiple optimizer
types that perform differently on different types of examples.

Roadmap. We first provide the necessary background in Section 2 and present a
brief overview of our approach and compare it against other existing methods in Sec-
tion 3. Symbolic Taylor Expansions are presented in Section 4, implementation details
in Sections 5 and 6, evaluation in Section 7, related work in Section 8, and conclusions
in Section 9. In our Appendix, we provide the following details: (A): a comprehensive
results table listing all experimental results, including Fluctuat with and without sub-
divisions, and FPTaylor under 10 different combinations of rounding models, backend
optimizer selections, and optimization problem selections (standard rounding model
versus improved rounding model); and (B): an evaluation of the performance of FP-
Taylor’s backend optimizers on several harder benchmarks.

2. BACKGROUND

Table I: Rounding to nearest operator
parameters

Precision (bits) ε δ

half (16) 2−11 2−25

single (32) 2−24 2−150

double (64) 2−53 2−1075

quad. (128) 2−113 2−16495

Floating-Point Arithmetic. The IEEE 754
standard [IEEE 754 2008], concisely formal-
ized in a related article [Goualard 2014], de-
fines a binary floating-point number as a
triple of sign (0 or 1), significand, and ex-
ponent, i.e., (sgn, sig, exp), with numerical
value (−1)sgn × sig × 2exp. The standard de-
fines four general binary formats with sizes
of 16, 32, 64, and 128 bits, varying in con-
straints on the sizes of sig and exp. The stan-
dard also defines special values such as in-

2Available at https://github.com/soarlab/FPTaylor
3These terms are defined later, but at a high level the absolute error in evaluating an expression E is the
actual difference between the true (real-valued) answer and the floating-point answer, while the relative
error divides the absolute error with the true answer.
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finities and NaN (not a number). We do not distinguish these values in our work and
report them as potential errors. Rounding plays a central role in defining the seman-
tics of floating-point arithmetic. Denote the set of floating-point numbers (in some fixed
format) as F. A rounding operator rnd : R→ F is a function which takes a real number
and returns a floating-point number which is closest to the input real number and has
some special properties defined by the rounding operator. Common rounding operators
are rounding to nearest (ties to even), toward zero, and toward ±∞. A simple model of
rounding is given by the following formula [Goldberg 1991; Goualard 2014]

rnd(x) = x(1 + e) + d (1)

where |e| ≤ ε, |d| ≤ δ, and e× d = 0. If x is a symbolic expression, then exact numerical
values of e and d are not explicitly defined in most cases. (Values of e and d may be
known in some cases; for instance, if we know that x is a sufficiently small integer
then rnd(x) = x and thus e = d = 0.) The parameter ε specifies the maximal relative
error introduced by the given rounding operator. The parameter δ gives the maximal
absolute error for numbers which are very close to zero (relative error estimation does
not work for these small numbers called subnormals). Table I shows values of ε and
δ for the rounding to nearest operator of different floating-point formats. Parameters
for other rounding operators can be obtained from Table I by multiplying all entries by
2, while Equation (1) applies both for rounding towards zero and towards infinity (by
suitably adjusting the ranges of e and d).

The standard precisely defines the behavior of several basic floating-point arithmetic
operations. Suppose op : Rk → R is an operation. Let opfp be the corresponding floating-
point operation. Then the operation opfp is correctly rounded if the following equation
holds for all floating-point values x1, . . . , xk:

opfp(x1, . . . , xk) = rnd
(
op(x1, . . . , xk)

)
. (2)

The following operations must be correctly rounded according to the standard:
+,−,×, /,√, fma. (Here, fma(a, b, c) is a ternary fused multiply-add operation that com-
putes a× b+ c with a single rounding.)

Combining equations (1) and (2), we get a simple model of floating-point arithmetic
which is valid in the absence of overflows and invalid operations:

opfp(x1, . . . , xk) = op(x1, . . . , xk)(1 + e) + d . (3)

There are some special cases where the model given by Equation (3) can be improved.
For instance, if op is ‘−’ or ‘+’, then d = 0 [Goualard 2014]. Also, if op is ‘×’ and one of
the arguments is a nonnegative power of two then e = d = 0. These and several other
special cases are implemented in FPTaylor to improve the quality of the error analysis.

Equation (3) can be used even with operations that are not correctly rounded. For
example, most implementations of floating-point transcendental functions are not cor-
rectly rounded but they yield results which are very close to correctly rounded re-
sults [Harrison 2000]. As another example, the technique introduced by Bingham et
al. [Bingham and Leslie-Hurd 2014] can verify relative error bounds of hardware im-
plementations of transcendental functions. In all such cases, we can still use Equa-
tion (3) to model transcendental functions, but we need to increase values of ε and δ ap-
propriately. In addition, there exist software libraries that compute correctly rounded
values of transcendental functions [Daramy et al. 2003; Fousse et al. 2007]. For such
libraries, Equation (3) can be applied without any changes to the values of ε and δ.

Taylor Expansion. A Taylor expansion is a well-known formula for approximating an
arbitrary sufficiently smooth function with a polynomial expression. In this work, we
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use the first order Taylor approximation with the second order error term. Higher or-
der Taylor approximations are possible but they lead to complex expressions for second
and higher order derivatives and do not give much better approximation results [Neu-
maier 2003]. Suppose f(x1, . . . , xk) is a twice continuously differentiable multivariate
function on an open convex domain D ⊂ Rk. Note that the open convex domain re-
striction is only required for the general Taylor’s theorem. We apply this theorem to
elementary functions to derive our rules described in Section 5. As a consequence, our
rules are in general not restricted to any domain, except when we, for example, divide
by zero or take arcsin of an argument outside [−1, 1]. For any fixed point a ∈ D (we
use bold symbols to represent vectors) the following formula holds (for example, see
Theorem 3.3.1 in [Mikusinski and Taylor 2002])

f(x) = f(a) +

k∑
i=1

∂f

∂xi
(a)(xi − ai) +

1

2

k∑
i,j=1

∂2f

∂xi∂xj
(p)(xi − ai)(xj − aj) . (4)

Here, p ∈ D is a point which depends on x and a.
Later we will consider functions with arguments x and e defined by f(x, e) =

f(x1, . . . , xn, e1, . . . , ek). We will derive Taylor expansions of these functions with re-
spect to variables e1, . . . , ek:

f(x, e) = f(x,a) +

k∑
i=1

∂f

∂ei
(x,a)(ei − ai) +R2(x, e) . (5)

In this expansion, variables x1, . . . , xn appear in coefficients ∂f
∂ei

thereby producing Tay-
lor expansions with symbolic coefficients.

3. OVERVIEW OF OUR APPROACH
We now detail the simple example from Section 1 on estimating the worst case absolute
round-off error in the expression t/(t+1). Our goal is to illustrate the difficulties faced
by interval and affine methods used by themselves, and to bring out many of the key
ideas underlying our work. In our example, t ∈ [0, 999] is a floating-point number,
and absolute round-off error is defined as errabs = |ṽ − v|, where ṽ is the result of
floating-point computations and v is the result of corresponding exact mathematical
computations. Let � and ⊕ denote floating-point operations corresponding to ‘/’ and
‘+’.

Suppose interval abstraction were used to analyze this example. The round-off error
of t ⊕ 1 can be estimated by 512ε where ε is the machine epsilon (which bounds the
maximum relative error of basic floating-point operations such as ⊕ and �) and the
number 512 = 29 is the largest power of 2 which is less than 1000 = 999 + 1. Interval
abstraction replaces the expression d = t ⊕ 1 with the abstract pair ([1, 1000], 512ε)
where the first component is the interval of all possible values of d and 512ε is the
associated round-off error. Now we need to calculate the round-off error of t� d. It can
be shown that one of the primary sources of errors in this expression is attributable
to the propagation of error in t ⊕ 1 into the division operator. The propagated error is
computed by multiplying the error in t ⊕ 1 by t

d2 .4 At this point, interval abstraction
does not yield a satisfactory result since it computes t

d2 by setting the numerator t
to 999 and the denominator d to 1. Therefore, the total error bound is computed as
999 × 512ε ≈ 512000ε. This works out to be 0.030517578125 for single precision and
5.6843418860808015e−11 for double precision (see Table I).

4Ignoring the round-off division error, one can view t � d as t/(dexact + δ) where δ is the round-off error in
d. Apply Taylor approximation which yields as the first two terms (t/dexact)− (t/(d2exact))δ.
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The main weakness of the interval abstraction is that it does not preserve variable
relationships (e.g., the two t’s may be independently set to 999 and 0). In the example
above, the abstract representation of d was too coarse to yield a good final error bound
(we suffer from eager composition of abstractions). While affine arithmetic is more
precise since it remembers linear dependencies between variables, it still does not
handle our example well as it contains division, a nonlinear operator (for which affine
arithmetic is known to be a poor fit).

A better approach is to model the error at each subexpression position and globally
solve for maximal error—as opposed to merging the worst-cases of local abstractions,
as happens in the interval abstraction usage above. Following this approach, a simple
way to get a much better error estimate is the following. Consider a simple model for
floating-point arithmetic. Write t⊕ 1 = (t+1)(1+ ε1) and t� (t⊕ 1) = (t/(t⊕ 1))(1+ ε2)
with |ε1| ≤ ε and |ε2| ≤ ε. Now, compute the first order Taylor approximation of our
expression with respect to ε1 and ε2 by taking ε1 and ε2 as the perturbations around t,
and computing partial derivatives with respect to them (see equations (4) and (5) for a
recap):

t� (t⊕ 1) =
t(1 + ε2)

(t+ 1)(1 + ε1)
=

t

t+ 1
− t

t+ 1
ε1 +

t

t+ 1
ε2 +O(ε2) .

(Here t ∈ [0, 999] is fixed and hence we do not divide by zero.) It is important to keep
all coefficients in the above Taylor expansion as symbolic expressions depending on
the input variable t. The difference between t/(t + 1) and t � (t ⊕ 1) can be easily
estimated (we ignore the term O(ε2) in this motivating example but later in Section 4
we demonstrate how rigorous upper bounds are derived for all error terms):∣∣∣− t

t+ 1
ε1 +

t

t+ 1
ε2

∣∣∣ ≤ ∣∣∣ t

t+ 1

∣∣∣|ε1|+ ∣∣∣ t

t+ 1

∣∣∣|ε2| ≤ 2
∣∣∣ t

t+ 1

∣∣∣ε .
The only remaining task now is finding a bound for the expression t/(t + 1) for all
t ∈ [0, 999]. Simple interval computations as above yield t/(t + 1) ∈ [0, 999]. The error
can now be estimated by 1998ε, which is already a much better bound than before. We
go even further and apply a global optimization procedure to maximize t/(t + 1) and
compute an even better bound, i.e., t/(t + 1) ≤ 1 for all t ∈ [0, 999]. Thus, the error is
bounded by 2ε. This works out to be 1.1920928955078125e−07. The combination of Tay-
lor expansion with symbolic coefficients and global optimization yields an error bound
which is 512000/2 = 256000 times better than a naı̈ve error estimation technique imple-
mented in many other tools for floating-point analysis. Our error estimation approach
has the added advantage of avoiding the explicit modeling of the operators involved
in the problem being analyzed (‘/’ and ‘+’ in our example); functions underlying these
operators are handled by the backend global optimizer.

4. SYMBOLIC TAYLOR EXPANSIONS
In this section, we present Symbolic Taylor Expansions at a high level, and then dis-
cuss how error estimation is regarded as an optimization problem (Section 4.1), how
relative errors are computed (Section 4.2), mixed-precision support (Section 4.3), and
FPTaylor’s improved rounding model (Section 4.4). A deep-dive into how exactly Sym-
bolic Taylor Forms are derived is then provided in Section 5.

Given a function f : Rn → R, the goal of the Symbolic Taylor Expansions approach
is to estimate the round-off error when f is realized in floating-point. We assume that
the arguments of the function belong to a bounded domain I, i.e., x ∈ I. In general,
the domain I can be quite arbitrary; the only requirement is that it is bounded and the
function f is defined everywhere on this domain. In FPTaylor, the domain I is defined
with inequalities over input variables. In our benchmarks as well as our implementa-
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tion of FPTaylor presented later, we have ai ≤ xi ≤ bi for all i = 1, . . . , n. In this case,
I = [a1, b1]× . . .× [an, bn] is a product of intervals.

Let fp(f) : Rn → F be a function derived from f where all operations, variables, and
constants are replaced with the corresponding floating-point operations, variables, and
constants. Our goal is to compute the following round-off error:

errfp(f, I) = max
x∈I
|fp(f)(x)− f(x)| . (6)

The optimization problem in Equation (6) is computationally hard and not supported
by most classical optimization methods as it involves a highly irregular and discon-
tinuous function fp(f). The most common way of overcoming such difficulties is to
consider abstract models of floating-point arithmetic that approximate floating-point
results with real numbers. Section 2 presented the following model of floating-point
arithmetic (see Equation (3)):

opfp(x1, . . . , xn) = op(x1, . . . , xn)(1 + e) + d .

Values of e and d depend on the rounding mode and the operation itself. Special care
must be taken in case of exceptions (overflows or invalid operations). Our tool can
detect and report such exceptions.

First, we replace all floating-point operations in the function fp(f) with the right
hand side of Equation (3). Constants and variables also need to be replaced with
rounded values, unless they can be exactly represented with floating-point numbers.
We get a new function f̃(x, e,d) which has all the original arguments x = (x1, . . . , xn) ∈
I, but also the additional arguments e = (e1, . . . , ek) and d = (d1, . . . , dk) where k is the
number of potentially inexact floating-point operations (plus constants and variables)
in fp(f). Note that f̃(x,0,0) = f(x). Also, f̃(x, e,d) = fp(f)(x) for some choice of e and
d. Now, the difficult optimization problem in Equation (6) can be replaced with the
following simpler optimization problem that overapproximates it:

erroverapprox(f̃ , I) = max
x∈I,|ei|≤ε,|di|≤δ

|f̃(x, e,d)− f(x)| . (7)

Note that for any I, errfp(f, I) ≤ erroverapprox(f̃ , I). However, even this optimization
problem is still hard because we have 2k new variables ei and di for (inexact) floating-
point operations in fp(f). We further simplify the optimization problem using Taylor
expansion.

We know that |ei| ≤ ε, |di| ≤ δ, and ε, δ are small. Define y1 = e1, . . . , yk = ek, yk+1 =
d1, . . . , y2k = dk. Consider the Taylor formula (see Equation (5)) with the second order
error term of f̃(x, e,d) with respect to e1, . . . , ek, d1, . . . , dk.

f̃(x, e,d) = f̃(x,0,0) +

k∑
i=1

∂f̃

∂ei
(x,0,0)ei +R2(x, e,d) (8)

with

R2(x, e,d) =
1

2

2k∑
i,j=1

∂2f̃

∂yi∂yj
(x,p)yiyj +

k∑
i=1

∂f̃

∂di
(x,0,0)di

for some p ∈ R2k such that |pi| ≤ ε for i = 1, . . . , k and |pi| ≤ δ for i = k+1, . . . , 2k. Note
that we added first order terms ∂f̃

∂di
(x,0,0)di to the error term R2 because δ = O(ε2)

(see Table I; in fact, δ is much smaller than ε2).
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We have f̃(x,0,0) = f(x) and hence the error from Equation (7) can be determined
as follows:

erroverapprox(f̃ , I) ≤ max
x∈I,|ei|≤ε

∣∣∣ k∑
i=1

∂f̃

∂ei
(x,0,0)ei

∣∣∣+M2 (9)

where M2 is an upper bound for the error term R2(x, e,d). In our work, we use simple
methods to estimate the value of M2, such as interval arithmetic or several iterations
of a global optimization algorithm. We always derive a rigorous bound of R2(x, e,d)
and this bound is small in general since it contains an ε2 factor. Large values of M2

(relative to the first term in Equation (9)) may indicate serious stability problems—for
instance, the denominator of some expression is very close to zero. Our tool issues a
warning if the computed value of M2 is large.

Next, we note that in Equation (9) the maximized expression depends on ei linearly
and it achieves its maximum value when ei = ±ε. Therefore, the expression attains
its maximum when the sign of ei is the same as the sign of the corresponding partial
derivative, and we transform the maximized expression into the sum of absolute values
of partial derivatives. Finally, we get the following optimization problem:

errfp(f, I) ≤ erroverapprox(f̃ , I) ≤M2 + εmax
x∈I

k∑
i=1

∣∣∣ ∂f̃
∂ei

(x,0,0)
∣∣∣ . (10)

The solution of our original, almost intractable problem (i.e., estimation of the floating-
point error errfp(f, I) mentioned in Equation 6) is reduced to the following two much
simpler subproblems: (i) compute all expressions and constants involved in the opti-
mization problem in Equation (10), and (ii) solve the optimization problem in Equa-
tion (10).

In our implementation, we do not compute partial derivatives directly. Instead, we
use special rules that produce the final symbolic expressions as described in detail
in Section 5. There are two advantages to having these rules. First, the rules help
systematically derive the partial derivatives. Second, our tool supports an improved
rounding model (see Section 4.4) that introduces discontinuous functions for which
partial derivatives cannot be computed; our special rules help overcome this difficulty.

4.1. Solving Optimization Problems
We compute error bounds using rigorous global optimization techniques [Neumaier
2004]. In general, it is not possible to find an exact optimal value of a given real-
valued function. The main property of rigorous global optimization methods is that
they always return a rigorous bound for a given optimization problem (some conditions
on the optimized function are necessary such as continuity or differentiability). These
methods can also balance between accuracy and performance. They can either return
an estimation of the optimal value with the given tolerance or return a rigorous upper
bound after a specific amount of time (iterations).

It is also important to note that we are optimizing real-valued expressions, not
floating-point ones. A particular global optimizer can work with floating-point num-
bers internally but it must return a rigorous result (i.e., one that overapproximates
the optimum). For instance, the optimal maximal floating-point value of the function
f(x) = 0.3 is not 0.3 (since this constant is not exactly FP-representable); instead it
is the smallest floating-point number r which is greater than 0.3. This ensures that
the real valued bound is below the given answer. It is known that global optimization
is a hard problem. But note that abstraction techniques based on interval or affine
arithmetic can be considered as primitive (and generally overly conservative) global
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optimization methods. FPTaylor can use any existing global optimization method to
derive rigorous bounds of error expressions, and hence it is possible to run it with very
conservative but fast global optimization technique if necessary (Table III in fact lists
three optimizers that FPTaylor supports).

The optimization problem in Equation (10) depends only on input variables of the
function f , but it also contains a sum of absolute values of functions. Hence, it is
not trivial—some global optimizers may not accept absolute values since they are not
smooth functions. In addition, even if an optimizer accepts absolute values, they make
the optimization problem considerably harder.

There is a naı̈ve approach to simplify and solve this optimization problem. Find
minimum (yi) and maximum (zi) values for each term ∂f̃

∂ei
(x,0,0) separately. Let

si(x) =
∂f̃
∂ei

(x,0,0). Now, imagine computing the following:

max
x∈I

k∑
i=1

|si(x)| ≤
k∑
i=1

max
x∈I
|si(x)| =

k∑
i=1

max{−yi, zi} . (11)

This result can sometimes be overly conservative, but in most cases it is close to the
optimal result as our experimental results demonstrate (see Section 7). This leads to
the two approaches (decomposed versus monolithic) discussed in Table III on Page 23
(the decomposed approach allows for the separate maximizations suggested in Equa-
tion 11).

We also apply global optimization to compute a conservative range of the expression
for which we estimate the round-off error (i.e., the range of the function f ). By com-
bining this range information with the bound of the absolute round-off error computed
from Equation (10), we can get a rigorous estimation of the range of fp(f). The range
of fp(f) is useful for verification of program assertions and proving the absence of
floating-point exceptions such as overflows or divisions by zero. In addition, FPTaylor
computes ranges of intermediate expressions. By default, these ranges are computed
with simple interval arithmetic, but there is also an option to compute them with
global optimization backends. In FPTaylor, potential runtime errors are checked with
simple interval arithmetic before the construction of Taylor forms. However, FPTaylor
does not check for all runtime errors accurately (this is not the main goal of FPTaylor).

4.2. Relative Error
It is easy to derive the relative error estimation method from our formulas for absolute
errors. The relative error is computed as

errrel fp(f, I) = max
x∈I

∣∣∣∣ fp(f)(x)− f(x)f(x)

∣∣∣∣ . (12)

Replace fp(f)(x) with f̃(x, e,d) and use Equation (8) to get the following overapprox-
imation of the relative error:

errrel overapprox(f̃ , I) ≤ max
x∈I,|ei|≤ε

∣∣∣ k∑
i=1

(
∂f̃

∂ei
(x,0,0)

/
f(x)

)
ei

∣∣∣+max
x∈I

M2

|f(x)|
. (13)

Here, M2 is exactly the same as in Equation (9). The final optimization problem for
the relative error is:
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errrel fp(f, I) ≤ errrel overapprox(f̃ , I) ≤ max
x∈I

M2

|f(x)|
+ εmax

x∈I

k∑
i=1

∣∣∣ ∂f̃
∂ei

(x,0,0)
/
f(x)

∣∣∣ . (14)

We can also derive a simplified optimization problem similar to Equation (11).
Both Equation (14) and the corresponding simplified optimization problems are im-
plemented in FPTaylor.

Note that the relative error can be estimated only for functions which are not equal
to 0 for all input arguments.

4.3. Mixed Precision
We derived Equation (10) under the assumption that all rounding operations have the
same precision. It is easy to derive a general optimization problem for mixed precision
computations.

Suppose that each error variable ei is bounded by εi: |ei| ≤ εi. Without loss of gener-
ality, assume that ε1 = min{ε1, . . . , εk}. Then the optimization problem given by Equa-
tion (10) can be rewritten in the following way:

errfp(f, I) ≤M2 + ε1 max
x∈I

k∑
i=1

εi
ε1

∣∣∣ ∂f̃
∂ei

(x,0,0)
∣∣∣ . (15)

FPTaylor has been used to verify results of the mixed precision synthesis tool FP-
Tuner [Chiang et al. 2017].

4.4. Improved Rounding Model
The rounding model described by equations (1) and (3) is not tight. For example, if we
round a real number x ∈ (8, 16] then Equation (1) yields rnd(x) = x + xe with |e| ≤ ε.
A tighter bound for the same e would be rnd(x) = x + 8e. This more precise round-
ing model follows from the fact that floating-point numbers have the same distance
between each other in the interval

[
2n, 2n+1

]
for integer n. These lead to the options

standard versus improved discussed in Table III on Page 23.
We now show how to implement this improved rounding model. Define p2(x) =

maxn∈Z{2n | 2n < x} for x > 0, p2(0) = 0, and p2(x) = −p2(−x) for x < 0. Now we
can rewrite equations (1) and (3) as

rnd(x) = x+ p2(x)e+ d,

opfp(x1, . . . , xk) = op(x1, . . . , xk) + p2
(
op(x1, . . . , xk)

)
e+ d .

(16)

The function p2 is piecewise constant. The improved model yields optimization prob-
lems with discontinuous functions p2. These problems are harder than optimization
problems for the original rounding model and can be solved with branch and bound
algorithms based on rigorous interval arithmetic (see Section 6.1).

5. DERIVING SYMBOLIC TAYLOR FORMS
We now present the technical details of deriving symbolic Taylor forms and the accom-
panying correctness proofs.

Definitions. We want to estimate the round-off error in computation of a function
f : Rn → R on a domain I ⊂ Rn. The round-off error at a point x ∈ I is defined as
the difference fp(f)(x) − f(x) and fp(f) is the function f where all operations (resp.,
constants, variable) are replaced with floating-point operations (resp., constants, vari-
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ables). Inductive rules which define fp(f) are the following:
fp(x) = x, x is a floating-point variable or constant
fp(x) = rnd(x), x is a real variable or constant

fp
(
op(f1, . . . , fr)

)
= rnd

(
op(fp(f1), . . . , fp(fr))

)
,

where op is +,−,×, /,√, fma

(17)

The definition of fp(sin(f)) and other transcendental functions is implementation de-
pendent and it is not defined by the IEEE 754 standard. Nevertheless, it is possible to
consider the same approximation model of fp(sin(f)) as in Equation (3) with slightly
larger bounds for e and d.

Use Equation (1) to construct a function f̃(x, e,d) from fp(f). The function f̃ approx-
imates fp(f) in the following precise sense:

∀x ∈ I, ∃e ∈ Dε,d ∈ Dδ, fp(f)(x) = f̃(x, e,d) , (18)
where ε and δ are upper bounds of the corresponding error terms in the model in
Equation (1). Here, Dα = {y | |yi| ≤ α}, i.e., e ∈ Dε means |ei| ≤ ε for all i; likewise,
d ∈ Dδ means |dj | ≤ δ for all j.

We have the following Taylor expansion of f̃(x, e,d):

f̃(x, e,d) = f(x) +

k∑
i=1

si(x)ei +R2(x, e,d) . (19)

Here we denote si = ∂f̃
∂ei

. We also include the effect of subnormal computations cap-
tured by d in the second order error term. We can include all variables dj in R2(x, e,d)
since δ = O(ε2) (in fact, δ is much smaller than ε2). Rules for computing a rigorous
upper bound of R2(x, e,d) are presented in Figure 1.

Equation (19) is inconvenient from the point of view of Taylor expansion derivation
as it differentiates between first and second order error terms. Let M2 ∈ R be such that
|R2(x, e,d)| ≤ M2 for all x ∈ I, e ∈ Dε, and d ∈ Dδ. In practice, we estimate M2 using
interval arithmetic by default, but one can select global optimization as well. Define
sk+1(x) =

M2

ε . Then the following formula holds:
∀x ∈ I, e ∈ Dε,d ∈ Dδ, ∃ek+1, |ek+1| ≤ ε ∧R2(x, e,d) = sk+1(x)ek+1 . (20)

This formula follows from the simple fact that
∣∣∣R2(x,e,d)
sk+1(x)

∣∣∣ ≤ M2

sk+1(x)
= ε. Next, we sub-

stitute Equation (19) into Equation (18), find ek+1 from Equation (20), and replace
R2(x, e,d) with sk+1(x)ek+1. We get the following identity:

∀x ∈ I, ∃e1, . . . , ek+1, |ei| ≤ ε ∧ fp(f)(x) = f(x) +

k+1∑
i=1

si(x)ei . (21)

The identity in Equation (21) does not include variables d. The effect of these variables
is accounted for in the expression sk+1(x)ek+1.

We introduce the following data structure and notation. Let 〈f, s〉 be a pair of a sym-
bolic expression f (we do not distinguish between a function f and its symbolic ex-
pression) and a list s = [s1; . . . ; sr] of symbolic expressions si. We call the pair 〈f, s〉 a
Taylor form. We also use capital letters to denote Taylor forms, e.g., F = 〈f, s〉. For any
function h(x), we write h ∼ 〈f, s〉 if and only if

∀x ∈ I, ∃e ∈ Dε, h(x) = f(x) +

r∑
i=1

si(x)ei . (22)
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CONST
c

〈c, []〉
CONSTRND

rnd(c)

〈c, [ferr(c)]〉

VAR
x

〈x, []〉
VARRND

rnd(x)

〈x, [ferr(x)]〉

RND
〈f, s〉〈

f, [f ] @ s @ [εM2 +
δ
ε ]
〉
, where M2 ≥ max

x∈I
(
∑
i |si(x)|)

ADD
〈f, s〉 , 〈g, t〉
〈f + g, s @ t〉

SUB
〈f, s〉 , 〈g, t〉

〈f − g, s @ [−tj ]j〉

MUL
〈f, s〉 , 〈g, t〉

〈f × g, [f × tj ]j @ [g × si]i @ [εM2]〉 , where M2 ≥ max
x∈I

(∑
i,j

|tj(x)si(x)|

)

INV
〈f, s〉〈

1
f , [−

si
f2 ]i @ [εM2]

〉
, where M2 ≥ max

x∈I,|ei|≤ε

(∑
i,j

∣∣∣ si(x)sj(x)
(f(x)+

∑
k

sk(x)ek)3

∣∣∣)

SQRT
〈f, s〉〈√

f, [ si
2
√
f
]i @ [εM2]

〉
, where M2 ≥ max

x∈I,|ei|≤ε

(
1
8

∑
i,j

∣∣∣ si(x)sj(x)

(f(x)+
∑
k

sk(x)ek)3/2

∣∣∣)

SIN
〈f, s〉

〈sin f, [si cos f ]i@[εM2]〉, where M2 ≥ max
x∈I,|ei|≤ε

(
1
2

∑
i,j

∣∣∣sin(f(x)+∑
k

sk(x)ek)si(x)sj(x)
∣∣∣)

Fig. 1: Derivation rules of symbolic Taylor forms

If h ∼ 〈f, s〉 we say that 〈f, s〉 corresponds to h. We are interested in Taylor forms 〈f, s〉
corresponding to fp(f). Note that the expression on the right hand side of Equation (22)
is similar to an affine form where all coefficients are symbolic expressions and the noise
symbols ei are restricted to the interval [−ε, ε].

Rules. Our goal is to derive a Taylor form F corresponding to fp(f) from the sym-
bolic expression of fp(f). This derivation is done by induction on the structure of fp(f).
Figure 1 shows main derivation rules of Taylor forms. In this figure, the operation
@ concatenates two lists and [] denotes the empty list. The notation [−tj ]j means
[−t1; . . . ;−tr] where r is the length of the corresponding list.

Consider a simple example illustrating these rules. Let f(x, y) = 1.0/(x + y) and
x, y ∈ [0.5, 1.0]. From Equation (17) we get fp(f)(x, y) = rnd

(
1.0/ rnd(rnd(x) + rnd(y))

)
.

(Note that x and y are real variables so they must be rounded.) We take the rules
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CONST and VARRND and apply them to corresponding subexpressions of fp(f):

CONST
(
1.0
)
= 〈1.0, []〉 ,

VARRND

(
rnd(x)

)
= 〈x, [ferr(x)]〉 = 〈x, [x]〉 ,

VARRND

(
rnd(y)

)
= 〈y, [ferr(y)]〉 = 〈y, [y]〉 .

Here, the function ferr : R → R estimates the rounding error of a given value. We
used the simplest definition of this function: ferr(c) = c. But it is also possible to define
ferr in a more precise way and get better error bounds for constants and variables.
The rule CONSTRND (resp., VARRND) may yield better results than application of rules
CONST (resp., VAR) and RND in sequence.

We present the remainder of the Taylor form construction across four steps, naming
the intermediate results A through D. Applying the rule ADD to the Taylor forms of
rnd(x) and rnd(y):

A = ADD
(
〈x, [x]〉 , 〈y, [y]〉

)
= 〈x+ y, [x] @ [y]〉 .

We now apply the RND rule to A to get:

B = RND
(
A
)
=

〈
x+ y, [x+ y] @ [x; y] @ [εM2 +

δ

ε
]

〉
,

where M2 ≥ maxx,y∈[0.5,1.0](|x|+ |y|) is found to be 2 internally via interval arithmetic.
For the sake of illustration, let us replace εM2 +

δ
ε by the overapproximation 2.1ε:

B = 〈x+ y, [x+ y;x; y; 2.1ε]〉 .
Then we apply the rule INV to B (with some algebraic simplification):

C = INV
(
B
)
=

〈
1

x+ y
,

[
−1
x+ y

;
−x

(x+ y)2
;
−y

(x+ y)2
;
−2.1ε

(x+ y)2

]
@ [εM2]

〉
,

where M2 is computed using the formula in the INV rule. In this case M2 = 16.1, which
is computed internally in FPTaylor using interval arithmetic. The next step is the
multiplication rule applied to the Taylor form corresponding to the constant 1.0 and C:
MUL

(
〈1.0, []〉 , C

)
= 〈fC , sC @ [ε · 0]〉. Finally, we apply the rule RND to MUL

(
〈1.0, []〉 , C

)
:

D =

〈
1

x+ y
,

[
1

x+ y

]
@

[
−1
x+ y

;
−x

(x+ y)2
;
−y

(x+ y)2
;
−2.1ε

(x+ y)2
; 16.1ε; 0

]
@

[
εM2 +

δ

ε

]〉
.

As before, we compute εM2 + δ
ε ≤ 4.1 and get the final Taylor form corresponding to

our example (a complete treatment of all expression types is given under the proof of
Theorem 5.1):

D =

〈
1

x+ y
,

[
1

x+ y
;
−1
x+ y

;
−x

(x+ y)2
;
−y

(x+ y)2
;
−2.1ε

(x+ y)2
; 16.1ε; 0; 4.1ε

]〉
.

The main property of rules in Figure 1 is given by the following theorem.

THEOREM 5.1. Suppose RULE is one of the derivation rules in Figure 1 with k ar-
guments and op is the corresponding mathematical operation. Let F1, . . . , Fk be Taylor
forms such that h1 ∼ F1, . . . , hk ∼ Fk for some functions h1, . . . , hk. Then we have

op(h1, . . . , hk) ∼ RULE(F1, . . . , Fk) .

PROOF. We prove the property in turn for all rules defined in Figure 1.
CONST. Let c ∈ R be a constant. Then the corresponding Taylor form is 〈c, []〉. The
proof of the fact that c ∼ 〈c, []〉 is trivial. We have another rule for constants. If the
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symbolic expression of fp(f) contains the term rnd(c) (that is, c cannot be exactly rep-
resented with a floating-point number), then the rule CONSTRND is applied and the
form 〈c, [ferr(c)]〉 is derived. There are different ways to define the function ferr(c). The
simplest definition is ferr(c) = c. In this case, the fact rnd(c) ∼ 〈c, [c]〉 follows from
Equation (1): rnd(c) = c(1 + e) = c + ce with |e| ≤ ε. (We need to make an additional
assumption that rnd(c) is not in the subnormal range of floating-point numbers, i.e.,
d = 0 in Equation (1); it is usually the case, but if it is a subnormal number then
we still can construct a correct Taylor form as 〈c, [δ/ε]〉.) It is possible to construct a
more precise Taylor form of c when rnd(c) 6= c. We can always compute a precise value
ferr(c) = (rnd(c)− c)/ε and the corresponding Taylor form.

VAR. The rules for variables are analogous to rules for constants.

RND. Given a Taylor form 〈f, s〉, the rounding rule RND returns another Taylor form
which corresponds to a rounding operator applied to the expression defined by 〈f, s〉.
We need to prove that h ∼ 〈f, s〉 implies rnd(h) ∼ RND

(
〈f, s〉

)
(here, rnd(h) is a function

defined by rnd(h)(x) = rnd(h(x))). Fix x. The assumption h ∼ 〈f, s〉 means that we can
find e1, . . . , ek with |ei| ≤ ε such that h(x) = f(x) +

∑k
i=1 si(x)ei (see Equation (22)).

Equation (1) allows us to find ek+1 and d with |ek+1| ≤ ε, |d| ≤ δ such that

rnd(h(x)) =

(
f(x) +

k∑
i=1

si(x)ei

)
(1 + ek+1) + d

= f(x) +

k∑
i=1

si(x)ei + f(x)ek+1 +

(
d+ ek+1

k∑
i=1

si(x)ei

)
.

Define sk+1 = f and find M2 such that M2 ≥ maxx∈I

(∑k
i=1|si(x)|

)
. Define sk+2 =

εM2 + δ
ε . We get d + ek+1

∑k
i=1 si(x)ei = sk+2ek+2 for some ek+2. Moreover, it is not

difficult to see that |ek+2| ≤ ε. We can write

∃e1, . . . , ek, ek+1, ek+2, |ei| ≤ ε ∧ rnd(h(x)) = f(x) +

k+2∑
i=1

si(x)ei .

Compare the definitions of sk+1 and sk+2 with the result of the rule RND and conclude
that rnd(h) ∼ RND

(
〈f, s〉

)
.

SUB (ADD). Consider the subtraction rule (the addition rule is analogous). Suppose
h1 ∼ 〈f, s〉 and h2 ∼ 〈g, t〉. Show that h1 − h2 ∼ SUB

(
〈f, s〉 , 〈g, t〉

)
. We can find e1, . . . , ek

and v1, . . . , vr, |ei| ≤ ε, |vj | ≤ ε, such that

h1(x)− h2(x) =
(
f(x) +

k∑
i=1

si(x)ei
)
−
(
g(x) +

r∑
j=1

tj(x)vj
)

= f(x)− g(x) +

 k∑
i=1

si(x)ei +

r∑
j=1

(−tj(x))vj

 .

Hence the result follows.
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MUL. Suppose that h1 ∼ 〈f, s〉 and h2 ∼ 〈g, t〉. Fix x ∈ I, then by Equation (22) we have

h1(x) = f(x) +

t∑
i=1

si(x)ei, for some e1, . . . , et, |ei| ≤ ε ,

h2(x) = g(x) +

r∑
j=1

tj(x)vj , for some v1, . . . , vr, |vj | ≤ ε .

Compute the product of h1(x) and h2(x):

h1(x)h2(x) =
(
f(x) +

t∑
i=1

si(x)ei
)(
g(x) +

r∑
j=1

tj(x)vj
)

= f(x)g(x) +

r∑
j=1

f(x)tj(x)vj +

t∑
i=1

g(x)si(x)ei +R2(x) ,

where R2(x) =
∑t,r
i=1,j=1 si(x)tj(x)eivj . Find a constant M2 such that M2 ≥

maxx∈I

(∑t,r
i=1,j=1|si(x)tj(x)|

)
. We have M2ε

2 ≥ |R2(x)| for all x ∈ I. Hence, for any
x we can find w = w(x), |w| ≤ ε, such that R2(x) = εM2w. Therefore

h1(x)h2(x) = f(x)g(x) +

r∑
j=1

f(x)tj +

t∑
i=1

g(x)si + (εM2)w .

This equation holds for any x ∈ I. Compare the right hand side of this equation with
the definition of the rule MUL and we get h1h2 ∼ MUL

(
〈f, s〉 , 〈g, t〉

)
.

INV. The proof of this rule follows from the following Taylor expansion:
1

f +
∑
k skek

=
1

f
−
∑
i

si
f2
ei +

∑
i,j

sisj
(f +

∑
k skθk)

3
eiej ,

where |θk| ≤ |ek| ≤ ε. Replace the last sum in this expansion with its upper bound M2ε
and we get the rule INV.
SQRT. The proof of this rule follows from the following Taylor expansion:√

f +
∑
k

skek =
√
f +

∑
i

si

2
√
f
ei −

1

8

∑
i,j

sisj
(f +

∑
k skθk)

3/2
eiej ,

where |θk| ≤ |ek| ≤ ε. Replace the last sum in this expansion with its upper bound M2ε
and we get the rule SQRT

SIN. The proof of this rule follows from the following Taylor expansion:

sin(f +
∑
k

skek) = sin f +
∑
i

si cos(f)ei −
1

2

∑
i,j

sin(f +
∑
k

skθk)sisjeiej ,

where |θk| ≤ |ek| ≤ ε. Replace the last sum in this expansion with its upper bound M2ε
and we get the rule SIN.

The next theorem summarizes the main result of this section.

THEOREM 5.2. For any input function fp(f), the Taylor form constructed with the
rules described in Figure 1 corresponds to the function fp(f). That is, if the constructed
Taylor form is 〈f, s〉 then fp(f) ∼ 〈f, s〉 and the property in Equation (22) holds.
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PROOF. We present a sketch of the proof. The proof is by induction on the symbolic
expression fp(f). The base case corresponds to Taylor forms of constants and variables
which are derived with rules CONST and VAR. These rules produce correct Taylor forms
(see Theorem 5.1). The induction step follows from the identity (here, we give a proof
for the multiplication; all other operations are analogous): fp(f×g) = rnd(fp(f)×fp(g)).
Suppose that fp(f) ∼ 〈f, s〉 = F and fp(g) ∼ 〈g, t〉 = G. Theorem 5.1 implies h = fp(f)×
fp(g) ∼ MUL

(
F,G

)
= H and rnd(h) ∼ RND

(
H
)
. Therefore fp(f × g) ∼ RND

(
MUL

(
F,G

))
and the result follows by induction.

6. IMPLEMENTATION
We implemented a prototype tool called FPTaylor for estimating round-off errors in
floating-point computations based on our method described in Sections 4 and 5. The
tool implements all features described there such as estimation of relative errors (Sec-
tion 4.2), support for transcendental functions (Section 5), mixed precision floating-
point computations (Section 4.3), and the improved rounding model (Section 4.4).

FPTaylor is implemented in OCaml and uses several third-party tools and libraries.
An interval arithmetic library [Alliot et al. 2012b] is used for rigorous estimations of
floating-point constants and second order error terms in Taylor expansions. Internally,
FPTaylor implements a very simple branch and bound global optimization technique
based on interval arithmetic. The main advantage of this simple optimization method
is that it can work even with discontinuous functions which are required by the im-
proved rounding model described in Section 4.4. Our current implementation of the
branch and bound method supports only simple interval constraints for input domain
specification. FPTaylor also works with several external global optimization tools and
libraries, such as NLopt optimization library [Johnson 2017] that implements various
global optimization algorithms. The optimization algorithms in NLopt are not rigorous
and may produce incorrect results, but they are fast and can be used for obtaining solid
preliminary results before applying slower, rigorous optimization techniques. The Z3
SMT solver [de Moura and Bjørner 2008] can also be used as an optimization backend
by employing a simple binary search algorithm similar to the one described in related
work [Darulova and Kuncak 2014]. We use Z3-based optimization to support inequality
constraints, however it does not work with transcendental or discontinuous functions.
We also plan to support other free global optimization tools and libraries in FPTaylor
such as ICOS [Lebbah 2009], GlobSol [Kearfott 2009], and OpenOpt [OpenOpt 2017].
We optionally use the Maxima computer algebra system [Maxima 2013] for performing
symbolic simplifications which can improve overall performance.

1: Variables
2: float64 x in [1.001, 2.0],
3: float64 y in [1.001, 2.0];
4: Definitions
5: t rnd64= x * y;
6: // Constraints
7: // x + y <= 2;
8: Expressions
9: r rnd64= (t-1)/(t*t-1);

Fig. 2: FPTaylor input file example

As input FPTaylor takes a text file de-
scribing floating-point computations, and
prints out the computed floating-point error
bounds as output. Figure 2 demonstrates an
example FPTaylor input file. Each input file
contains several sections which define vari-
ables, constraints (in Figure 2 constraints
are not used and are commented out), and
expressions. FPTaylor analyses all expres-
sions in an input file. All operations are as-
sumed to be over real numbers. Floating-
point arithmetic is modeled with rounding
operators and with initial types of variables. The operator rnd64= in the example
means that the rounding operator rnd64 is applied to all operations, variables, and
constants on the right hand side (this notation is borrowed from Gappa [Daumas and
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Melquiond 2010]). See the FPTaylor user manual distributed with the tool for all usage
details.

Implementation Details of Taylor Form Derivation. In Section 5, the definitions of
Taylor forms and derivation rules are simplified. Taylor forms which we use in the
implementation of our method keep track of error variables ei explicitly in order to ac-
count for possible cancellations. Consider a simple example of computing a Taylor form
of fp(f) where f(x, y) = xy − xy with x, y ∈ [0, 1] ∩ F. It is obvious that fp(f)(x, y) = 0
for all x and y. On the other hand, we have fp(f)(x, y) = rnd

(
rnd(xy)− rnd(xy)

)
and if

we compute its Taylor form with rules from Figure 1, we get an error which is of order
of magnitude of ε. The problem in this example is that the rounding error introduced
by floating-point computation of xy should always be the same. Our simplified Taylor
forms do not explicitly include error terms ei, which we address with the following easy
modification. Let a pair 〈f, [sieai ]i〉 be a Taylor form where f, si are symbolic expres-
sions and eai are symbolic variables. Values of indices ai can be the same for different
values of i (e.g., we can have a3 = a1 = 1). With this new definition of the Taylor form,
the only significant change must be done in the rounding rule RND. This rule creates
the following list of error terms: [f ] @ s @ [εM2 +

δ
ε ]. This list needs to be replaced with

the list [feaf ] @ s @ [(εM2+
δ
ε )ea]. Here, ea is a fresh symbolic variable and the index af

corresponds to the symbolic expression f ; af should be the same whenever the same
expression is rounded.

Explicit error terms also provide the mixed-precision support in FPTaylor. It is done
by attaching different bounds (values of ε and δ) to different error terms.

Improvements to Taylor Form Derivation. We implemented several other improve-
ments of the derivation rules for obtaining better error bounds:

— Whenever we multiply an expression by a non-negative power of 2 or divide by a
negative power of 2, we do not need to round the result.

— If we divide by a non-negative power of 2 or multiply by a negative power of 2, we
only need to consider potential subnormal errors (given by the term δ

ε in the RND
rule).

— There are no subnormal errors for rounding after addition, subtraction, or square
root (i.e., we do not need to add the term δ

ε in the RND rule).
— Constants which can be exactly represented by floating-point numbers (of a given

precision) are not rounded.
— The rule CONSTRND has different implementations for standard (Equation (1)) and

improved (Equation (16)) rounding models. For the improved rounding model, we
have ferr(c) =

(
rnd(c)− c

)
/ε computed with infinite precision rational arithmetic (all

input constants are finite decimal numbers in FPTaylor). For the standard rounding
model, we have ferr(c) = p2(c) (see Section 4.4). This definition is formalized in HOL
Light. The ferr definition for the improved rouning model is better and we plan to use
it for the standard rounding model when we formalize it in HOL Light.

— The rule VARRND has two different implementations for the standard rounding model.
The default implementation is ferr(x) = x. Another implementation is ferr(x) =
max{|p2(a)|, |p2(b)|} if the variable x belongs to the interval [a, b]. This implemen-
tation may yield better results when the interval [a, b] is not too wide. Essentially,
we overestimate the improved rounding error for a variable. From the optimization
point of view, the second implementation is simpler than the default implementation
because it replaces some variables with constants. In our experiments, we observed
that the second implementation is better for all but one benchmark (t div t1, see Sec-
tion 7) and we will present results for the second implementation only. Whenever the
standard rounding model is used, one can always run experiments with both vari-
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function IBBA(f , x , xtol , ftol )
fbestLow ← −∞
fbestHigh ← −∞
Q← Queue()
Q.push(x)
while Q 6= ∅ do
xn ← Q.pop()
fxn ← f (xn )
fbestLow ← max(fbestLow , lower(fxn))
i f upper(fxn) < fbestLow or width(xn) < xtol or

width(fxn) < ftol then
fbestHigh ← max(fbestHigh , upper(fxn))
continue

end i f
xl, xr ← split(xn)
Q.push(xl)
Q.push(xr)

end while
return fbestHigh

end function

Fig. 3: Interval branch and bound algorithm (IBBA) underlying GELPIA. Here, f is the
function to optimize and x is the input domain (treated as a scalar here, but in general,
is an N -dimensional rectangular domain). Arguments xtol and ftol are scalars used to
suppress the split step when either the input or the output interval width are small.

able rounding rules and select the best results. Note that this rule is only applied to
real-valued input variables.

6.1. Rigorous Global Optimizer
We have developed a global optimization tool called GELPIA [Gelpia 2017] to obtain
the upper-bounds of round-off errors. In general, finding the maximum value of an
n-variable function requires search over the n-dimensional space of its inputs—an n-
dimensional rectangle. Given the large number of floating-point n-tuples in such input
space, exhaustive search is all but impossible, and sampling can cover only a tiny frac-
tion of possible input tuples. Precision estimation and optimization methods leverage
a variety of tools and techniques, including dReal [Gao et al. 2013], semi-definite pro-
gramming [Magron et al. 2017], SMT [Darulova and Kuncak 2014], and classical tools
for interval and affine arithmetic [Daumas and Melquiond 2010; Darulova and Kun-
cak 2011; 2014]. Previous studies [Panchekha et al. 2015; Lee et al. 2016; Solovyev
et al. 2015] have shown that using optimization tools in this arena is promising, often
proving to be advantageous to more classical (e.g., SMT-based) methods that do not
support important classes of functions (e.g., transcendental functions). When the in-
terval functions in question are monotonic (for rectangle r1 contained in rectangle r2,
i.e., r1 v r2, the upper-bound calculation respects f(r1) v f(r2)), one can perform this
search using a combination of heuristics.

The basic heuristics are to split a rectangle along the longest dimension, obtain
upper-bounds for each sub-rectangle, and zoom into the most promising sub-rectangle,
while also keeping alive a population of postponed rectangles [Alliot et al. 2012a]. We
have found that performing this split at the point where the exponent increments im-
proves performance. Determining if a sub-rectangle is promising utilizes the derivative
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of the function—if the derivative spans zero then a local maxima or minima must be
present. A multi-point function estimation is used to further order the intervals. This
of course only changes the convergence rate, and not the soundness of the optimizer.
This is known as the interval branch and bound algorithm, and Figure 3 gives the
pseudocode as it is implemented in GELPIA. The arguments xtol and ftol dictate, re-
spectively, the maximum width an input rectangle and output interval are allowed to
have before bounding occurs. This allows for full optimization when these arguments
are set to zero. We implemented this basic algorithm with a number of improvements
in our GELPIA global optimizer.

GELPIA is a rigorous global optimizer—it guarantees that the returned upper bound
is greater than or equal to the global maximum, and the returned lower bound is less
than or equal to the global maximum. Key to its efficiency is its use of GAOL [Goualard
2017], an interval library which uses X86 SIMD instructions to speed up interval
arithmetic, and also supports transcendental functions such as sin, cos, tan. GAOL is
sound as it satisfies the inclusion property for interval arithmetic. For example, if
[a, b]+ [c, d] = [a+c, b+d], where the addition is computed using real arithmetic, GAOL
computes the interval as [a, b]

⊕
[c, d] = [a+ c, b+ d], where a+ c is the nearest double

rounded toward −∞ and b+ d is the nearest double rounded toward ∞. This guaran-
tees the interval inclusion property as [a, b] + [c, d] = [a + c, b + d] ⊆ [a+ c, b+ d] =
[a, b]

⊕
[c, d]. Since we are operating on real intervals, we employ rewriting to improve

results. For example, if x = [−1, 1] then x · x equals [−1, 1] in interval arithmetic; we
replace the input sub-expression with x2 which evaluates to [0, 1]. We are also able to
determine statically if a division-by-zero error occurs, and emit an appropriate mes-
sage to the user. We implemented GELPIA as an open source project using the Rust
programming language, and we parallelized the search algorithm. We use an update
thread that periodically synchronizes all solvers to focus their attention on the current
most promising sub-rectangle. Additionally, information from other solvers is used to
boost the priorities of promising sub-rectangles.

6.2. Formal Verification of FPTaylor Results in HOL Light
We formalized error estimations in equations (10) and (11) in HOL Light [Harrison
2009]. In our formalization we do not prove that the implementation of FPTaylor sat-
isfies a given specification. Instead, we formalized theorems necessary for validating
results produced by FPTaylor. The validity of results is checked against specifications
of floating-point rounding operations given by Equation (1). We also use Equation (16)
to certify error bounds of constants. The general improved rounding model is not fo-
mally verified yet. We chose HOL Light as the tool for our formalization because
it includes a procedure for formal verification of nonlinear inequalities (including in-
equalities with transcendental functions) [Solovyev and Hales 2013]. Verification of
nonlinear inequalities is necessary since the validity of results of global optimization
procedures can be proved with nonlinear inequalities. Proof assistants PVS [Narkaw-
icz and Munoz 2013] and Coq [Martin-Dorel et al. 2013] also include procedures for
verification of nonlinear inequalities.

The validation of FPTaylor results is done as follows. First, FPTaylor is executed
on a given problem with a special proof saving flag turned on. In this way, FPTaylor
computes the round-off errors and produces a proof certificate and saves it in a file.
Then a special procedure is executed in HOL Light which reads the produced proof
certificate and formally verifies that all steps in this certificate are correct. The final
theorem has the following form (for an error bound e computed by FPTaylor):

` ∀x ∈ I, |fp(f)(x)− f(x)| ≤ e .
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Here, the function fp(f) is a function where a rounding operator is applied to all op-
erations, variables, and constants. As mentioned above, in our current formalization
we define such a rounding operator as any operator satisfying equations (1) and (16).
We also implemented a comprehensive formalization of floating-point arithmetic in
HOL Light [Jacobsen et al. 2015]; our floating-point formalization is available in the
HOL Light distribution. Combining this formalization with theorems produced from
FPTaylor certificates, we can get theorems about floating-point computations which do
not explicitly contain references to rounding models from equations (1) and (16).

The formalization of FPTaylor helped us to find a critical bug in our implementa-
tion. We have an option to use an external tool for algebraic simplifications of internal
expressions in FPTaylor (see Section 6 for more details). All expressions are passed as
strings to this tool. Constants in FPTaylor are represented with rational numbers and
they are printed as fractions. We forgot to put parentheses around these fractions and
in some rare cases it resulted in wrong expressions passed to and from the simplifica-
tion tool. For instance, if c = 111/100 and we had the expression 1/c then it would be
given to the simplification tool as 1/111/100. We discovered this associativity-related
bug when formal validation failed on one of our test examples. The main takeaway
is that the maintenance and enhancement of FPTaylor (and other tools that generate
proof-certificates) is greatly facilitated by such safety-nets.

All limitations of our current formalization are limitations of the tool for verification
of nonlinear inequalities in HOL Light. In order to get a verification of all features
of FPTaylor, it is necessary to be able to verify nonlinear inequalities containing the
discontinuous function p2(x) defined in Section 4.4. We are working on improvements
of the inequality verification tool which will include this function. Nevertheless, we al-
ready can automatically verify interesting results which are much better than results
produced by Gappa, another tool which can produce formal proofs in the Coq proof
assistant [Coq 2016].

6.3. Handling of Conditionals
FPTaylor is not a tool for general-purpose floating-point program analysis. It cannot
handle conditionals and loops directly, but can be used as an external decision proce-
dure for program verification tools (e.g., [Frama-C 2017; Rakamarić and Emmi 2014]).

Conditional expressions can be verified in FPTaylor in the same way as it is done in
Rosa [Darulova and Kuncak 2014]. Consider a simple real-valued expression

f(x) = if c(x) < 0 then f1(x) else f2(x) .
The corresponding floating-point expression is the following

f̃(x) = if c̃(x) < 0 then f̃1(x) else f̃2(x)

where c̃(x) = c(x) + ec(x), f̃1(x) = f1(x) + e1(x), and f̃2(x) = f2(x) + e2(x). Our goal is
to compute a bound E of the error e(x) = f̃(x)− f(x).

First of all, we estimate the error ec(x). Suppose, it is bounded by a constant Ec:
|ec(x)| < Ec. Now we need to consider 4 cases: 2 cases when both f(x) and f̃(x) take
the same path, and 2 cases when they take different paths:
1. Find E1 such that c(x) < 0 =⇒ |f̃1(x)− f1(x)| ≤ E1.
2. Find E2 such that c(x) ≥ 0 =⇒ |f̃2(x)− f2(x)| ≤ E2.
3. Find E3 such that −Ec < c(x) < 0 =⇒ |f̃2(x)− f1(x)| ≤ E3.
4. Find E4 such that 0 ≤ c(x) < Ec =⇒ |f̃1(x)− f2(x)| ≤ E4.

Finally, we take E = max{E1, E2, E3, E4}. Problems 1–4 can be solved in FPTaylor.
Indeed, FPTaylor can handle additional constraints given in these problems (c(x) < 0,
etc.; currently, constraints are supported by the Z3-based optimization procedure only)
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int main(void) {
double a, b, r;
a = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);
b = __BUILTIN_DAED_DBETWEEN(0.0, 100.0);
if (b >= a) {

r = b / (b - a + 0.5);
} else {
r = b / 0.5;

}
DSENSITIVITY(r);
return 0;

}

Fig. 4: A simple Fluctuat example with a conditional expression

Table II: Round-off error estimation results for the example in Figure 4

Fluctuat Fluctuat (subdiv.) Rosa FPTaylor
∞ ∞ 1.8e-11 5.8e-12

and it can directly compute bounds of errors |f̃i(x)− fi(x)|, i = 1, 2. The value of E3 can
be determined from the following inequality

|f̃2(x)− f1(x)| ≤ |f2(x)− f1(x)|+ |f̃2(x)− f2(x)| .
It is enough to bound the range of the real-valued function f2(x)−f1(x) which FPTaylor
can do. We can find E4 in the same way.

The procedure described above is partially implemented in FPTaylor and we already
can handle some examples with conditionals in a semi-automatic way (we need to
prepare separate input files for each case described above).

Consider a simple example which demonstrates that automatic handling of condi-
tionals in FPTaylor is a promising research direction. Figure 4 presents a simple Fluc-
tuat [Delmas et al. 2009] example with two floating-point variables a and b such that
a, b ∈ [0, 100]. We want to measure the round-off error in the result r. We prepared
corresponding input files for Rosa and FPTaylor. Table II shows results obtained with
Fluctuat (version 3.1071), Rosa (version from May 2014), and FPTaylor on this simple
example. We can see that Fluctuat (even with manual subdivisions) failed to find any
error bound in this example. Results of FPTaylor are about 3 times better than Rosa’s
results.

7. EXPERIMENTAL RESULTS
In this section, we describe our extensive empirical evaluation of FPTaylor, including
a detailed comparison of various tools and configurations in terms of the computed
round-off errors and performance.

7.1. Tools and Benchmarks
We have conducted a detailed comparative study of FPTaylor against Gappa (version
1.3.1) [Daumas and Melquiond 2010], Fluctuat (version 3.1384) [Delmas et al. 2009],
PRECiSA [Titolo 2017], Real2Float (version 0.7), and the Rosa compiler for reals (we
report results from the version of this tool from the opt branch dated October 2015,
as this yields much better results overall) [Darulova and Kuncak 2014]. See Section 8
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Table III: Configurations of FPTaylor used in the experiments

Configuration Rounding model Optimizer Optimization type

FPTaylor a standard Simple bb decomposed
FPTaylor b standard Simple bb monolithic
FPTaylor c improved Simple bb decomposed
FPTaylor d improved Simple bb monolithic
FPTaylor e standard Gelpia decomposed
FPTaylor f standard Gelpia monolithic
FPTaylor g improved Gelpia decomposed
FPTaylor h improved Gelpia monolithic
FPTaylor i standard Z3 decomposed
FPTaylor j standard Z3 monolithic

Table IV: Configurations of related tools used in the experiments

Tool Version and notes

Fluctuat fluctuat v3.1384
Fluctuat subdiv. fluctuat v3.1384 with 20 subdivisions per input variable
Gappa Gappa 1.3.1
Gappa simple Gappa 1.3.1 with simple hints
Gappa hints Gappa 1.3.1 with advanced hints
PRECiSA master branch (commit 19f5089ca9ef) with args. 52 5 2 False 40
Real2Float version 0.7
Rosa master branch (commit 1f9e9d2fc1dc)
Rosa opt opt branch (commit d1360b85a563)

for more information on these tools. Table III lists FPTaylor configurations we ex-
perimented with, where “Simple bb” denotes a simple implementation of the branch
and bound algorithm used in the FPTaylor paper [Solovyev et al. 2015]. As an ex-
ample, FPTaylor-f computes results using the standard rounding approach (that sup-
ports HOL Light proof generation), decomposed optimization problem (Equation (11)),
and Gelpia optimizer. On the other hand, FPTaylor-h computes results using the im-
proved rounding model (for which our HOL Light proof generation is not available)
combined with the monolithic optimization problem (Equations (16) and (10)). Table IV
lists the configurations of related tools we experimented with. Gappa (hints) and Fluc-
tuat (subdiv.) compute results using manually provided subdivision hints. More pre-
cisely, Gappa and Fluctuat are instructed to subdivide intervals of input variables into
a given number of smaller pieces. The main drawback of these manually provided
hints is that it is not always clear which variable intervals should be subdivided and
how many pieces are required. It is very easy to make Gappa and Fluctuat very slow
by subdividing intervals into too many pieces (even 100 pieces are enough in some
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Table V: Benchmarks, their characteristics, and comparision with the dynamic under-
approximation tool S3FP. Columns Vars, Ops, and Trans show the numbers of vari-
ables, floating-point operations, and transcendental operations in each benchmark,
respectively; column FPTaylor-h shows error bounds computed by FPTaylor; column
S3FP shows lower bounds of errors estimated with S3FP; column Ratio gives ratios of
overapproximations computed with FPTaylor-h and underapproximations computed
with S3FP.

Benchmark Vars Ops Trans FPTaylor-h S3FP Ratio

Univariate polynomial approximations

sine 1 18 0 4.5e-16 2.9e-16 1.51
sineOrder3 1 5 0 6.0e-16 4.1e-16 1.45
sqroot 1 14 0 5.1e-16 4.7e-16 1.08

Rational functions with 1 to 6 variables

t div t1 1 2 0 2.3e-16 1.6e-16 1.38
carbonGas 1 11 0 6.0e-9 4.2e-9 1.40
doppler1 3 8 0 1.3e-13 1.0e-13 1.24
doppler2 3 8 0 2.3e-13 1.9e-13 1.20
doppler3 3 8 0 6.7e-14 5.7e-14 1.16
himmilbeau 2 14 0 1.1e-12 7.5e-13 1.45
jetEngine 2 48 0 1.1e-11 7.1e-12 1.53
kepler0 6 15 0 7.5e-14 5.3e-14 1.40
kepler1 4 24 0 2.9e-13 1.6e-13 1.72
kepler2 6 36 0 1.6e-12 8.4e-13 1.90
predPrey 1 7 0 1.6e-16 1.5e-16 1.04
rigidBody1 3 7 0 3.0e-13 2.7e-13 1.09
rigidBody2 3 14 0 3.7e-11 3.0e-11 1.21
turbine1 3 14 0 1.7e-14 1.1e-14 1.45
turbine2 3 10 0 2.0e-14 1.4e-14 1.39
turbine3 3 14 0 9.6e-15 6.2e-15 1.54
verhulst 1 4 0 2.5e-16 2.4e-16 1.02

Transcendental functions with 1 to 4 variables

azimuth 4 14 7 8.9e-15 6.6e-15 1.35
hartman3 3 72 4 4.6e-15 2.4e-15 1.89
logexp 1 3 2 2.0e-15 1.4e-15 1.43
sphere 4 5 2 8.4e-15 6.4e-15 1.29

cases).5 Note that we selected the results of only the most interesting configurations
to be included in the paper. We provide all results in the accompanying spreadsheet
at [Solovyev 2017].

Table V lists all of our benchmarks and provides a comparison with the dynamic
underapproximation tool S3FP [Chiang et al. 2014]. We used 24 benchmarks in our
empirical evaluation, most of which were obtained from related work [Darulova and
Kuncak 2014; Magron et al. 2017]; we added several more benchmarks that include

5In one experiment, we provided Gappa with hints of the form $x; $y; and that provided results in-between
in quality between Gappa and Gappa (hints).
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transcendental functions.6 For all benchmarks, input values are assumed to be real
numbers, which is how Rosa treats input values, and hence we always need to con-
sider uncertainties in inputs. Benchmarks sine, sqroot, and sineOrder3 are different
polynomial approximations of sine and square root. The benchmark t div t1 is the
t/(t + 1) example presented in Section 1. Benchmarks carbonGas, rigidBody1, rigid-
Body2, doppler1, doppler2, and doppler3 are nonlinear expressions used in physics.
Benchmarks verhulst and predPrey are from biological modeling. Benchmarks tur-
bine1, turbine2, turbine3, and jetEngine are from control theory. Benchmarks kepler0,
kepler1, kepler2, himmilbeau, and hartman3 are from mathematical problems. Bench-
mark logExp is from Gappa++ paper [Linderman et al. 2010] and it estimates the
error in log(1+ exp(x)) for x ∈ [−8, 8]. Benchmarks sphere and azimuth are taken from
NASA World Wind Java SDK [NASA 2017], which is a popular open-source 3D interac-
tive world viewer with many users ranging from US Army and Air Force to European
Space Agency. An example application that leverages World Wind is a critical com-
ponent of the Next Generation Air Transportation System (NextGen) called AutoRe-
solver, whose task is to provide separation assurance for airplanes [Giannakopoulou
et al. 2014].

We first compare the results of FPTaylor with lower bounds of errors estimated with
a state-of-the-art dynamic underapproximation tool S3FP [Chiang et al. 2014] in Ta-
ble V. All FPTaylor results are only 1.0–1.9 times worse than the estimated lower
bounds for polynomial and rational benchmarks and 1.3–1.9 times worse for tran-
scendental tests. This indicates that the overapproximations of round-off errors pro-
duced by FPTaylor are typically close to the actual errors. We also conducted experi-
ments in which SMT solvers that support floating-point reasoning [Cimatti et al. 2013;
de Moura and Bjørner 2008] were directly used to measure roundoff error. This was
done by expressing the function of interest in the theory of real numbers as well as
in the theory of floating-point numbers, and then showing that their difference lies
within a threshold. This approach was unable to produce results even on simple exam-
ples in a reasonable amount of time (we set timeout to 30 minutes). We performed all
experiments on an Intel Xeon E5-2680 machine with 126GB of RAM.

7.2. Comparison of Computed Round-off Errors
Table VI gives the main results of our experimental comparison. All results are given
for double precision floating-point numbers and we ran Gappa, Fluctuat, Real2Float,
and Rosa with standard settings. We now detail aspects specific to various tools and
discuss the results they produce.

For PRECiSA, a cursory pass was made in which we varied the required configura-
tion variables over multiple runs. Based on this “training” phase, a final configuration
to run PRECiSA was chosen based on the best average answer for the benchmarks
while not exceeding maximum runtime of the existing tools. Times for PRECiSA are
based on the tool-reported runtime. We should observe that this tool-reported runtime
actually excludes a setup time that the tool incurs when run in a batch mode. The
authors of PRECiSA (correctly) argue that that this setup time will be incurred only
once when using the tool interactively, and so it makes sense to ignore it.

We used a simple branch and bound optimization method in FPTaylor since it works
better than Z3-based optimization on most benchmarks. For transcendental functions,
we employ increased values of ε and δ with the 1.5 coefficient: ε = 1.5 · 2−53 and
δ = 1.5 · 2−1075. It is well-known that error models for transcendental functions are
implementation dependent. The standard recommends (but not requires) to have cor-

6Our benchmarks are available at https://github.com/soarlab/FPTaylor/tree/develop/benchmarks/toplas
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Table VI: Experimental results for absolute round-off error bounds. Grey rows show
computed round-off errors; white rows show runtimes in seconds; bold font marks best
results for each benchmark; italic font marks pessimistic results at least 3 orders of
magnitude worse than the best ones; OoM marks the tool running out of memory.

Benchmark Fluctuat Fluctuat Gappa Gappa PRECiSA R2Float Rosa FPTaylor-f FPTaylor-h
(subdiv.) (hints) (opt)

sine 8.0e-16 7.5e-16 1.2e-15 7.0e-16 6.0e-16 6.1e-16 5.8e-16 5.6e-16 4.5e-16
0.25 0.11 0.08 25.43 11.76 4.95 5.20 1.20 1.14

sineOrder3 1.2e-15 1.1e-15 8.9e-16 6.6e-16 1.2e-15 1.2e-15 1.0e-15 9.6e-16 6.0e-16
0.36 0.09 0.05 2.09 6.11 2.22 3.82 0.98 1.02

sqroot 6.9e-16 6.9e-16 5.8e-16 5.4e-16 6.9e-16 1.3e-15 6.2e-16 7.0e-16 5.1e-16
0.39 0.09 0.11 5.06 8.18 4.23 4.20 1.05 1.02

t div t1 1.2e-10 2.8e-12 1000 10 2.3e-13 5.5e-16 5.7e-11 5.8e-14 2.3e-16
0.31 0.09 0.01 0.18 5.89 125.31 6.55 1.00 0.95

carbonGas 4.6e-8 1.2e-8 2.7e-8 6.1e-9 7.4e-9 2.3e-8 1.6e-8 9.2e-9 6.0e-9
1.55 0.54 0.11 2.35 6.30 4.65 6.03 1.10 1.08

doppler1 4.0e-13 1.3e-13 2.1e-13 1.7e-13 2.7e-13 7.7e-12 2.5e-13 1.6e-13 1.3e-13
0.52 6.30 0.05 3.31 16.17 13.20 10.86 2.20 1.97

doppler2 9.8e-13 2.4e-13 4.0e-13 2.9e-13 5.4e-13 1.6e-11 5.7e-13 2.9e-13 2.3e-13
0.53 6.15 0.05 3.37 16.87 13.33 10.58 2.42 2.20

doppler3 1.6e-13 7.2e-14 1.1e-13 8.7e-14 1.4e-13 8.6e-12 1.1e-13 8.3e-14 6.7e-14
0.80 6.46 0.05 3.32 15.65 13.05 9.41 2.15 1.88

himmilbeau 1.1e-12 1.1e-12 1.1e-12 8.6e-13 1.1e-12 1.5e-12 1.1e-12 1.4e-12 1.1e-12
0.08 0.34 0.07 1.86 26.20 0.66 4.73 1.03 1.02

jetEngine 4.1e-8 1.1e-10 8300000 4500 crash OoM 5.0e-9 1.4e-11 1.1e-11
0.62 1.45 0.20 27.64 N/A N/A 84.01 4.89 2.84

kepler0 1.2e-13 1.1e-13 1.3e-13 1.1e-13 1.2e-13 1.2e-13 8.3e-14 9.5e-14 7.5e-14
0.12 8.59 0.13 7.33 37.57 0.76 5.70 1.13 1.31

kepler1 5.2e-13 3.6e-13 5.4e-13 4.7e-13 crash 4.7e-13 3.9e-13 3.6e-13 2.9e-13
0.10 157.74 0.23 10.68 N/A 22.53 18.82 1.23 2.08

kepler2 2.7e-12 2.3e-12 2.9e-12 2.4e-12 crash 2.1e-12 2.1e-12 2.0e-12 1.6e-12
0.12 22.41 0.44 24.17 N/A 16.53 19.67 1.87 1.30

predPrey 2.5e-16 2.4e-16 2.1e-16 1.7e-16 1.7e-16 2.6e-16 2.0e-16 1.9e-16 1.6e-16
0.50 0.18 0.04 1.40 8.08 4 11.20 1.11 1.07

rigidBody1 3.3e-13 3.3e-13 3.0e-13 3.0e-13 3.0e-13 5.4e-13 3.3e-13 3.9e-13 3.0e-13
0.40 1.96 0.06 1.42 7.42 3.09 3.48 1.01 0.99

rigidBody2 3.7e-11 3.7e-11 3.7e-11 3.7e-11 3.7e-11 6.5e-11 3.7e-11 5.3e-11 3.7e-11
0.22 3.87 0.09 2.22 10.79 1.08 4.20 1.04 1.02

turbine1 9.3e-14 3.1e-14 8.4e-14 2.5e-14 3.8e-14 2.5e-11 6.0e-14 2.4e-14 1.7e-14
0.55 5.05 0.11 5.54 24.35 136.35 9.10 1.15 1.10

turbine2 1.3e-13 2.6e-14 1.3e-13 3.4e-14 3.1e-14 2.1e-12 7.7e-14 2.6e-14 2.0e-14
0.79 3.98 0.08 3.94 19.17 8.30 5.46 1.09 1.17

turbine3 7.0e-14 1.4e-14 40 0.36 2.3e-14 1.8e-11 4.7e-14 1.3e-14 9.6e-15
0.62 5.08 0.11 6.29 24.47 137.36 7.60 1.14 1.21

verhulst 5.6e-16 4.9e-16 4.2e-16 2.9e-16 2.9e-16 4.7e-16 4.7e-16 3.3e-16 2.5e-16
0.26 0.09 0.02 0.41 4.95 2.52 7.15 1.01 0.99

azimuth − − − − crash 2.9e-13 − 1.2e-14 8.9e-15
− − − − N/A 2.30 − 5.22 4.62

hartman3 − − − − − 3.0e-13 − 7.0e-15 4.6e-15
− − − − − 3.51 − 12.98 12.67

logexp − − − − − 2.6e-15 − 2.1e-15 2.0e-15
− − − − − 0.80 − 0.98 0.96

sphere − − − − 9.0e-14 1.6e-14 − 1.1e-14 8.4e-15
− − − − 20.58 0.08 − 5.10 5.37
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rectly rounded basic transcendental functions. This can be achieved with CRLibm or
analogous libraries. Java documentation requires 1 ulp error for transcendental func-
tions, which is equivalent to the coefficient of 2.0 in FPTaylor. However, this bound
appears to be too pessimistic: we ran several simple experiments and never observed
a round-off error larger than 0.6 ulp for exp, sin, cos, and log (for double precision ar-
guments). There are some formal results for particular implementations. For example,
Harrison gives the bound of 0.57341 ulp for cos on IA-64 [Harrison 2000]. We chose
the coefficient of 1.5 as a compromise between actual implementations (the coefficient
of about 0.6/0.5 = 1.2) and a pessimistic safe choice (the coefficient of 2.0).

Gappa computed best results in 3 out of 20 benchmarks (we do not count last 4
benchmarks with transcendental functions). FPTaylor computed best results in 23
benchmarks, except on the himmilbeau benchmar.7 Gappa without hints was able to
find a result better than or equivalent to FPTaylor-h with respect to the himmilbeau,
rigidBody1, and rigidBody2 benchmarks. On the other hand, in several benchmarks
(t div t1, jetEngine, and turbine3), Gappa (even with hints) computed very pessimistic
results.

Real2Float typically produces error bounds that are more pessimistic than Rosa’s.
The tool also ran out of memory on the jetEngine benchmark, which is consistent with
the findings in the paper [Magron et al. 2017]. At the same time, Real2Float found good
error bounds for all transcendental benchmarks. It also was able to find the second best
bound for t div t1.

Rosa consistently computed decent error bounds, with exceptions for t div t1 and
jetEngine. We used the opt branch of Rosa due to inproved runtimes and improved
answers with one exception being sine which has a slightly better answer using the
master branch with a computed answer of 5.19e-16 versus the opt branch computing
5.74e-16. FPTaylor-h outperformed Rosa on all benchmarks, while the results with the
standard rounding model FPTaylor-f are slightly more mixed (Rosa produces tighter
bounds in that case for sqroot, himmilbeau, kepler0, rigidBody1, and rigidBody2).

Fluctuat results without subdivisions are worse than Rosa and FPTaylor’s results.
Fluctuat results with subdivisions are comparable to Rosa’s, but they were obtained
with carefully chosen subdivisions. It found better results than FPTaylor-f for sqroot,
doppler1, doppler2, doppler3, himmilbeau, rigidBody1, and rigidBody2. FPTaylor with
the improved rounding model outperformed Fluctuat with subdivisions on all bench-
marks. Only FPTaylor and Fluctuat with subdivisions found good error bounds for the
jetEngine benchmark. We find that PRECiSA performs about as well as Rosa on all
benchmarks, but takes more time than Rosa.

FPTaylor yields best results with the improved rounding model (Equation (16)) com-
bined with the monolithic optimization problem (Equation (10)). These results are at
most 1.6 times better (with an exception for t div t1) than results computed with the
standard rounding model (Equation (3)) combined with the decomposed optimization
problem (Equation (11)). The main advantage of the decomposed optimization problem
is that it creates multiple simple queries for the underlying optimizer. Hence, it can be
applied to more complex problems and used with almost any global optimizer. On the
other hand, the monolithic optimization problem uses only one advanced query, which
typically yields better precision results. However, the advanced query is not twice dif-
ferentiable, and often includes discontinuities, both of which violate requirements for
many global optimization algorithms.

7While the absolute error changing from (e.g.) 10−8 to 10−10 does not appear to be large, it is a significant
two-order of magnitude difference; for instance, imagine these differences accumulating over 104 iterations
in a loop.
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7.3. Performance and Formal Verification Results

Table VII: Summary of perfor-
mance results (in seconds)

Tool Time (s)

Fluctuat 8.26
Fluct.(div.) 48.95
Gappa 1.22
Gappa(hints) 75.53
PRECiSA 247.94
Real2Float 475.20
Rosa opt 115.26
FPTaylor-e 130.24
FPTaylor-f 21.79
FPTaylor-g 130.52
FPTaylor-h 21.15

Table VII compares performance results of different
tools on the 17 benchmarks which all tools were able
to complete (FPTaylor takes about 24 seconds on
four transcendental benchmarks using monolithic
optimization). They only provide a rough idea of
what to expect performance-wise with these tools,
given that performance is largely a function of the
component technologies (e.g., external optimizers)
that all tools end up using. For example, the per-
formance of FPTaylor using the monolithic opti-
mization problem (FPTaylor-f, FPTaylor-h) is better
than using the decomposed problem (FPTaylor-e,
FPTaylor-g), which seems counter intuitive. This is
because GELPIA is invoked multiple times when the
decomposed problem is used, leading to a startup
time overhead that on short-running benchmarks
overshadows the benefits of having simpler opti-
mization queries.

In our evaluation of PRECiSA, we found that general configurations often yielded
either inferior estimates or increased time relative to FPTaylor. The manner in which
configurations are to be selected can benefit from more guidelines, as it can dramat-
ically affect result quality as well as execution times. Gappa and Fluctuat (without
hints and subdivisions) are considerably faster than Real2Float, Rosa, and FPTaylor.
Gappa often fails to produce tight bounds on nonlinear examples as Table VI demon-
strates, and it also cannot handle transcendental functions. Fluctuat without subdi-
visions is also not as good as FPTaylor in terms of bounding error estimates. Rosa is
slower than FPTaylor because it relies on an inefficient optimization algorithm imple-
mented with Z3.

We also formally verified all results in the column FPTaylor-f of Table VI. For all
these results, corresponding HOL Light theorems were automatically produced us-
ing our formalization of FPTaylor described in Section 6.2. Verification time for 12
benchmarks, excluding doppler1-3 and jetEngine, was 10.5 minutes. jetEngine took 28
minutes, and doppler1-3 took an average of 37 minutes each. Such performance fig-
ures match up with the state of the art (e.g., the Flyspeck project—a formal proof of
the Kepler conjecture), considering that even results pertaining to basic arithmetic
operations must be formally derived from primitive definitions.

7.4. Comparison of Backend Optimizers
Table VIII gives the experimental results for different backend optimizers. This study
was done to highlight the fact that different backend optimizers handle certain bench-
marks with different levels of precision and efficiency. In terms of precision, on most
benchmarks all the backends produce the same or very similar results. However, Z3
does occasionally produce very pessimistic results and/or is much slower than other
backends; it also cannot as of now handle transcendental functions. Simple bb and
GELPIA are comparable in their performance and precision on these benchmarks. In
Appendix B, we present results of an additional evaluation of different backend op-
timizers we performed on a set of synthetically-created harder benchmarks. This is
a preliminary study given the synthetic nature of the used benchmarks. As can be
observed in Table X, GELPIA offers best performance on most harder benchmarks
when the monolithic optimization problem is used. Such studies may help improve the
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Table VIII: Experimental results for different backend optimizers. Grey rows show
computed round-off errors; white rows show runtimes in seconds; bold font marks best
results for each benchmark.

Benchmark FPTaylor-b (Simple bb) FPTaylor-f (Gelpia) FPTaylor-j (Z3)

sine 5.6e-16 5.6e-16 5.6e-16
0.88 1.21 0.77

sineOrder3 9.6e-16 9.6e-16 9.5e-16
0.78 0.99 0.61

sqroot 7.0e-16 7.0e-16 7.0e-16
0.78 1.06 0.57

t div t1 5.8e-14 5.8e-14 5.7e-14
0.72 1.00 0.63

carbonGas 9.2e-09 9.2e-09 9.1e-09
0.86 1.10 0.69

doppler1 1.6e-13 1.6e-13 1.6e-13
1.98 2.20 2.86

doppler2 2.9e-13 2.9e-13 2.9e-13
2.20 2.42 2.96

doppler3 8.3e-14 8.3e-14 8.2e-14
2.45 2.15 2.51

himmilbeau 1.4e-12 1.4e-12 1.4e-12
0.78 1.03 2.17

jetEngine 1.4e-11 1.4e-11 9.2e-08
2.22 4.90 11.33

kepler0 9.5e-14 9.5e-14 1.3e-13
0.91 1.13 10.59

kepler1 3.6e-13 3.6e-13 6.4e-13
0.93 1.24 10.66

kepler2 2.0e-12 2.0e-12 3.2e-12
1.38 1.87 10.69

predPrey 1.9e-16 1.9e-16 1.9e-16
0.84 1.11 0.65

rigidBody1 3.9e-13 3.9e-13 3.9e-13
0.73 1.02 0.58

rigidBody2 5.3e-11 5.3e-11 5.3e-11
0.78 1.05 10.54

turbine1 2.4e-14 2.4e-14 2.4e-14
0.88 1.15 2.24

turbine2 2.6e-14 2.6e-14 1.7e-13
0.9 1.09 10.59

turbine3 1.3e-14 1.3e-14 7.5e-14
0.87 1.15 10.61

verhulst 3.3e-16 3.3e-16 3.3e-16
0.76 1.01 0.56

azimuth 1.2e-14 1.2e-14 −
3.89 5.23 −

hartman3 5.8e-15 7.0e-15 −
36.096 12.99 −

logexp 2.1e-15 2.1e-15 −
0.72 0.98 −

sphere 1.1e-14 1.1e-14 −
2.91 5.11 −
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heuristics employed in future optimizers, and they also indicate the need for develop-
ing advanced optimization backends to be able to efficiently tackle larger examples.

8. RELATED WORK
Taylor Series. Method based on Taylor series have a rich history in floating-point

reasoning, including algorithms for constructing symbolic Taylor series expansions for
round-off errors [Miller 1975; Stoutemyer 1977; Gáti 2012; Mutrie et al. 1992], and
stability analysis. These works do not cover round-off error estimation. Our key in-
novations include computation of the second order error term in Taylor expansions
and global optimization of symbolic first order terms. Taylor expansions are also used
to strictly enclose values of floating-point computations [Revol et al. 2005]. Note that
in this case round-off errors are not computed directly and cannot be extracted from
computed enclosures without large overestimations.

Abstraction-Based Methods. Various abstraction-based methods (including abstract
interpretation [Cousot and Cousot 1977]) are widely used for analysis of floating-point
computations. Abstract domains for floating-point values include intervals [Moore
1966], affine forms [Stolfi and de Figueiredo 2003], and general polyhedra [Chen et al.
2008]. There exist different tools based on these abstract domains. Gappa [Daumas
and Melquiond 2010] is a tool for checking different aspects of floating-point programs,
and is used in the Frama-C verifier [Frama-C 2017]. Gappa works with interval ab-
stractions of floating-point numbers and applies rewriting rules for improving com-
puted results. Gappa++ [Linderman et al. 2010] is an improvement of Gappa that ex-
tends it with affine arithmetic [Stolfi and de Figueiredo 2003]. It also provides defini-
tions and rules for some transcendental functions. Gappa++ is currently not supported
and does not run on modern operating systems. SmartFloat [Darulova and Kuncak
2011] is a Scala library which provides an interface for computing with floating-point
numbers and for tracking accumulated round-off. It uses affine arithmetic for measur-
ing errors. Fluctuat [Delmas et al. 2009] is a tool for static analysis of floating-point
programs written in C. Internally, Fluctuat uses a floating-point abstract domain based
on affine arithmetic [Goubault and Putot 2011]. Astrée [Cousot et al. 2005] is another
static analysis tool which can compute ranges of floating-point expressions and detect
floating-point exceptions. A general abstract domain for floating-point computations
is described in [Martel 2006]. Based on this work, a tool called RangeLab is imple-
mented [Martel 2011] and a technique for improving accuracy of floating-point com-
putations is presented [Martel 2009]. Ponsini et al. [Ponsini et al. 2014] propose con-
straint solving techniques for improving the precision of floating-point abstractions.
Our results show that interval abstractions and affine arithmetic can yield pessimistic
error bounds for nonlinear computations.

PRECiSA [Titolo 2017] is a tool that converts floating-point programs into lemmas
for the PVS proof assistant. This is done by representing errors of floating-point oper-
ations symbolically in terms of the errors of the operands relative to the real-valued
operations. PRECiSA’s error formulas also include constraints enabling detection of in-
valid operator inputs and analysis of branching conditionals. Furthermore, PRECiSA
propagates error conditionals into function calls and branches, thereby enabling more
precise analysis in some cases. Hence, unlike FPTaylor, PRECiSA is capable of analyz-
ing entire programs, including function calls and divergent branches. However, as our
experiments show, FPTaylor greatly outperforms PRECiSA on straight-line floating-
point routines both in terms of precision and efficiency.

SMT. The work closest to ours is Rosa [Darulova and Kuncak 2014; 2017] in which
they combine affine arithmetic and an optimization method based on an SMT solver
for estimating round-off errors. Their tool Rosa keeps the result of a computation in
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a symbolic form and uses an SMT solver for finding accurate bounds of computed ex-
pressions. The main difference from our work is representation of round-off errors with
numerical (not symbolic) affine forms in Rosa. For nonlinear arithmetic, this represen-
tation leads to overapproximation of error, as it loses vital dependency information
between the error terms. Our method keeps track of these dependencies by maintain-
ing symbolic representation of all first order error terms in the corresponding Taylor
series expansion. Another difference is our usage of rigorous global optimization which
is more efficient than using SMT-based binary search for optimization.

While abstract interpretation techniques are not designed to prove general bit-
precise results, the use of bit-blasting combined with SMT solving is pursued by [Brill-
out et al. 2009]. Recently, a preliminary standard for floating-point arithmetic in SMT
solvers was developed [Rümmer and Wahl 2010]. Z3 [de Moura and Bjørner 2008] and
MathSAT 5 [Cimatti et al. 2013] SMT solvers support this standard, but only par-
tially. For example, Z3 lacks support for casts from floating-points into reals and vice
versa, which is typically needed for computing errors of floating-point computations.
There exist several other tools which use SMT solvers for reasoning about floating-
point numbers. FPhile [Paganelli and Ahrendt 2013] verifies stability properties of
simple floating-point programs. It translates a program into an SMT formula encoding
low- and high-precision versions, and containing an assertion that the two are close
enough. FPhile uses Z3 as its backend SMT solver. Leeser et al. [Leeser et al. 2014]
translate a given floating-point formula into a corresponding formula for real numbers
with appropriately defined rounding operators. Ariadne [Barr et al. 2013] relies on
SMT solving for detecting floating-point exceptions. Haller et al. [Haller et al. 2012]
lift the conflict analysis algorithm of SMT solvers to abstract domains to improve their
efficacy of floating-point reasoning.

In general, the lack of scalability of SMT solvers used by themselves has been ob-
served in other works [Darulova and Kuncak 2014]. Since existing SMT solvers do
not directly support mixed real/floating-point reasoning as noted above, one must of-
ten resort to non-standard approaches for encoding properties of round-off errors in
computations (e.g., using low- and high-precision versions of the same computation).

Optimization-Based Methods. Magron et al. [Magron et al. 2017] introduce a method
for estimating absolute round-off errors in floating-point nonlinear programs based on
semidefinite programming. The approach works by decomposing the round-off error
into an affine part with respect to the error variable e and a higher-order part. Bounds
on the higher-order error part are obtained similar to how it is done in FPTaylor. For
the affine part, instead of using global optimization, the authors employ a relaxation
procedure based on semidefinite programming. Lee et al. [Lee et al. 2016] proposed
a verification method that combines instruction rewriting and rigorous precision mea-
surement using global optimization. A distinguishing feature of their work is that they
can handle bit-manipulation operations over floating-points.

Proof Assistants. An ultimate way to verify floating-point programs is to give a for-
mal proof of their correctness. To achieve this goal, there exist several formalizations of
the floating-point standard in proof assistants [Melquiond 2012; Harrison 2006]. Boldo
et al. [Boldo et al. 2013] formalized a non-trivial floating-point program for solving a
wave equation. This work partially relies on Gappa, which can also produce formal cer-
tificates for verifying floating-point properties in the Coq proof assistant [Coq 2016].

Many tools and frameworks in this space separately handle the concerns of
straight-line code analysis and conditional/loop analysis [Boldo et al. 2013; Boldo and
Melquiond 2011; Boldo et al. 2009; Boldo et al. 2015; Goodloe et al. 2013; Damouche
et al. 2017]. They typically achieve this by decomposing the overall verification prob-
lem down to simpler checks at the straight-line program level, which are then dis-
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charged by simpler tools. Our tool contribution should be viewed as a powerful assis-
tant for such more general frameworks.

9. CONCLUSIONS
We presented a new method to estimate round-off errors of floating-point computa-
tions called Symbolic Taylor Expansions. We formally establish the correctness of our
method, and also describe a tool FPTaylor that implements it. FPTaylor is one of a
small number of tools that rigorously handles transcendental functions. It achieves
tight overapproximation estimates of errors—especially for nonlinear expressions. FP-
Taylor is not designed to be a tool for complete analysis of floating-point programs. It
cannot handle conditionals and loops directly; instead, it can be used as an external
decision procedure for program verification tools such as Frama-C [Frama-C 2017] or
SMACK [Rakamarić and Emmi 2014], or within rigorous floating-point optimization
and synthesis tools such as FPTuner [Chiang et al. 2017]. Conditional expressions can
be verified in FPTaylor in the same way as it is done in Rosa [Darulova and Kuncak
2014] (see Section 6.3 for details).

In addition to experimenting with more examples, a promising application of FPTay-
lor is in error analysis of algorithms that can benefit from reduced or mixed-precision
computations. Another potential application of FPTaylor is its integration with a re-
cently released tool Herbie [Panchekha et al. 2015] that improves the accuracy of nu-
merical programs. Herbie relies on testing for round-off error estimations. FPTaylor
can provide strong guarantees for numerical expressions produced by Herbie. Ideas
presented in this paper can be directly incorporated into existing tools. For instance,
an implementation similar to Gappa++ [Linderman et al. 2010] can be achieved by in-
corporating our error estimation method inside Gappa [Daumas and Melquiond 2010];
the Rosa compiler [Darulova and Kuncak 2014] can also be easily extended with our
technique.
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Érik Martin-Dorel, Laurence Rideau, Laurent Théry, Micaela Mayero, and Ioana Pasca. 2013. Certified,
efficient and sharp univariate Taylor models in Coq. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2013 15th International Symposium on. IEEE, 193–200.

Maxima. 2013. Maxima, a Computer Algebra System. Version 5.30.0. (2013). Retrieved April 3, 2013 from
http://maxima.sourceforge.net/

Guillaume Melquiond. 2012. Floating-Point Arithmetic in the Coq System. Information and Computation
216 (2012), 14–23. DOI:https://doi.org/10.1016/j.ic.2011.09.005

Piotr Mikusinski and Michael Taylor. 2002. An Introduction to Multivariable Analysis from Vector to Mani-
fold. Birkhäuser Boston.
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A. ADDITIONAL EXPERIMENTAL RESULTS
Table IX presents a summary of all our experimental results.

B. GLOBAL OPTIMIZER EVALUATION ON HARD EXAMPLES
Table X presents a study of various backend optimizers on some hard examples from
the area of optimization [Surjanovic and Bingham 2017][Weisstein 2017b][Weisstein
2017a]. This study demonstrates the need to invest in good backend optimization ap-
proaches, in addition to developing improved error estimation approaches.
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Table IX: Experimental results for absolute round-off error bounds. Grey rows show computed
round-off errors; white rows show runtimes in seconds; bold font marks best results for each
benchmark; italic font marks pessimistic results at least 3 orders of magnitude worse than the
best ones; OoM marks the tool running out of memory.
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Table X: Experimental results for different backend optimizers on larger benchmarks.
Grey rows show computed round-off errors; white rows show runtimes in seconds; bold
font marks best results for each benchmark.
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