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Abstract
Perceptron and Support Vector Machine (SVM) algo-

rithms are two well-known and widely used linear pre-
dictors. They compute a hypothesis function using su-
pervised learning to predict labels of unknown future
samples. Both training and testing procedures are typi-
cally implemented using double precision floating-points
to minimize the error, which often results in overly con-
servative implementations that waste runtime and/or
energy. In this work, we empirically analyze the impact
of floating-point precision on these predictors. We assess
whether the precision of reading the dataset, training,
or testing is the most critical for the overall accuracy.
Our analysis in particular focuses on very small floating-
point bit-widths (i.e., only several bits of precision), and
compares these against the well-known and widely used
single and double precision types.

1 Introduction
Floating-point representation was invented to model real
numbers in computers. Representing real numbers as a
finite sequence of bits naturally introduces approxima-
tion, which leads to errors in computations [7]. Hence,
developers are often conservative about floating-point
precision, and use the maximum precision provided by
their target platform. However, executing floating-point
operations can be a major contributor to runtime and en-
ergy consumption. For example, Tagliavini et al. [12] run
a set of floating-point applications on a microcontroller,
and show that 30% of the energy consumption was due
to floating-point computations and another 20% due to
moving operands between memory and registers. Hence,
leveraging lower precisions can lead to significant savings,
and the impact of low-cost floating-point precisions on
machine learning predictors is an active research area.
Several recent papers explore the effects of floating-
and fixed-point reduction on neural networks [8, 9, 14].
Gupta et al.[8] show that neural networks can be trained
using low precision fixed-points, with a minimal sacrifice
of quality. Zhou et al. [14] propose innovative methods to
train convolutional neural networks with low bit-width
weights, activations, and gradients. Hubara et al.[9] in-
troduce a method to train quantized neural networks
using low precision arithmetic. Others studied the effects
of reduced precision on the SVM algorithm [2, 10]. As
us, Lesser et al. [10] apply quantization on mantissas.
Unlike us, they focus only on the classification process,
and do not independently study reading, computing, and
testing. Furthermore, they show that using any preci-
sion in the [15,52] range leads to comparable accuracy,
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while our results indicate that even lower precisions are
adequate for many datasets; note that we do differ in
kernel implementations (Gaussian vs Linear).

We study the effects of floating-point precision on the
accuracy of the Perceptron and SVM machine learning
algorithms. We focus on single-layer neural networks
since they are easy to control and employ a convex
optimization problem that converges to the optimum
in reals. Moreover, in multi-layer neural networks the
relation between quantization and accuracy might be
affected by other factors orthogonal to our exploration.
We implemented the algorithms using multiple-precision
numerical libraries, which allows us to independently
vary the precision of reading the dataset, computing
the model, and testing of the computed model. We em-
pirically evaluated the precision/accuracy trade-offs on
several datasets, with a particular focus on very small
floating-point bit-widths. Our results and conclusions
serve as a guideline for making floating-point precision
choices when implementing these algorithms.

2 Methodology

The format adopted for floating-point representation con-
sists of the sign of the number, significand (mantissa),
and exponent. This format is part of the IEEE 754 stan-
dard [1], which includes, among others, two well-known
and popular representations: single precision (1-bit sign,
23-bit mantissa, 8-bit exponent) and double precision
(1-bit sign, 52-bit mantissa, 11-bit exponent). However,
it has been shown that using representations other than
these default ones can be beneficial in many applications
to improve runtime and energy efficiency [12], which is
what we explore in this work.

Perceptron [11] is a mistake-driven algorithm: once a
sample is misclassified the predictor is updated. The up-
date step involves the weight vector as the main contrib-
utor to the classification process. Particularly interesting
in terms of floating-point analysis is the average vari-
ant of Perceptron, which maintains an average predictor
weighted on wrong predictions, and it needs a wider dy-
namic range for this computation. SVM [4, 13] is more
restrictive than Perceptron since it aims for a safe mar-
gin between the linear separator and the closest samples.
SVM is trained using a stochastic sub-gradient descent
method, whose goal is to maximize the safe margin while
minimizing the number of violating samples.

We implemented Perceptron (P), Average Perceptron
(AP), and SVM algorithms using multiple-precision nu-
merical libraries MPFR [6] and FlexFloat [12]. This
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Figure 1. Accuracy for various precision regimes. Graphs compare two chosen testing precisions (top and bottom) on
different datasets. Axis R denotes reading precision, C' computing precision, and the third axis shows the accuracy.
For example, (2, 10) represents a 2-bit mantissa and 10-bit exponent.

allows us to specify how many bits are assigned to man-
tissa and exponent of each floating-point instruction.
We mainly focus on varying the mantissa bits, since
exponent does not play a major role in influencing the
accuracy once it is large enough that exceptions (e.g.,
overflow, underflow) do not appear.

We analyze the accuracy impact of precision of the
three main learning algorithm stages: reading the dataset,
training, and testing. Storing and reading the dataset
in low precision potentially leads to savings in memory
traffic. Once the dataset is read at the desired floating-
point precision, the training procedure of an algorithm
executes with the specified computing precision. Finally,
the generated model is passed to the testing procedure,
executed with the specified testing precision. We measure
the accuracy of the model by performing a 4-fold cross-
validation on each dataset.

3 Results

We used the following datasets for our empirical evalua-
tion: fourclass [3] and heart, diabet, ionosphere, splice [5].
They range in size between 270-1000 samples and 2-60
features. Before training, we scale each dataset to the
[—1,1] interval, and detect a good hyper-parameters
configuration for each algorithm. We vary the num-
ber of mantissa bits for reading, training, and test-
ing from {2,3,...,9,10,23,52}. We made the source
code and detailed results publicly available at https:
//github.com /soarlab/FPML. Fig. 1 shows several repre-
sentative and interesting graphs we generated, and in
the rest of this section we discuss key observations.
The precision used to store and read the dataset can
be substantially reduced with respect to single or double
precisions. This is encouraging since detecting a minimal

threshold value for the reading precision can significantly
reduce memory traffic. In all our datasets, reducing the
reading precision does not have a noticeable impact on
the final accuracy — samples can be stored even using
only 3 bits for mantissa. However, the relation between
quantization and accuracy depends on the dataset, and
precision has to be fine-tuned for the given dataset.

The computing precision is the most critical and sen-
sitive parameter. For example, Fig. 1(b) shows that in
case of the Splice dataset, SVM has to be trained at the
highest (double) precision to achieve good accuracy. To
summarize, out of 10 analysis runs (5 AP and 5 SVM)
only 30% of the time training has to be performed at
double precision, while in the rest 10 bits is enough.
(Note that we excluded Perceptron from the summary
because it is hard to observe a precision threshold due
to its erratic behavior in terms of accuracy.)

The testing precision can often be substantially re-
duced without having a major impact on the accuracy.
For our datasets, using 9 bits mantissa for testing is
always enough to reach the same accuracy as double pre-
cision. More precisely, 60% of the time 6 bits is enough,
while 30% of the time 4 bits is enough. Finally, in one
case using only 2 bits for testing achieves similar accu-
racy as double precision. Figs. 1(a,c) show how testing
with just 2 and 3 bits produces accuracy similar to us-
ing double (52 bits). This is particularly important for
deployment scenarios where training is performed on
large machines potentially using double precision, but
the learned models are deployed to for example mobile
platforms using very low precision to conserve energy.
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