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Abstract
Large scientific simulations must be able to achieve the full-system potential of supercomputers. When they tap into
high-performance features, however, a phenomenon known as non-determinism may be introduced in their program
execution, which significantly hampers application development. PRUNERS is a new toolset to detect and remedy non-
deterministic bugs and errors in large parallel applications. To show the capabilities of PRUNERS for large application
development, we also demonstrate their early usage on real-world production applications.
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1. Introduction

Software bugs, or errors, are so prevalent and so detrimen-

tal that they cost the US economy alone an estimated

US$59.5 billion annually, or about 0.6% of the gross

domestic product, according to a study commissioned by

the Department of Commerce’s National Institute of Stan-

dards and Technology (NIST) in 2002 Tassey (2002).

Finding and fixing bugs, or debugging, however, is an

arduous task, significantly adding to this cost. Every time

a bug arises, the programmer must manually diagnose and

repair it, stepping through potentially millions of lines of

code and examining hundreds or thousands of program

state variables.

High-performance computing (HPC) that uses super-

computers has become critically important for research and

development (R&D) efforts, engineering applications, and

scientific discovery. Supercomputers typically contain very

high numbers of compute cores, and applications running

on such systems must rely on multiple communication and

synchronization mechanisms as well as compiler optimiza-

tion options to effectively utilize the hardware resources.

These complexities often produce errors that occur only

occasionally, even when run with the exact same input on

the same hardware. These so-called non-deterministic bugs

are remarkably challenging to catch due in large part to

difficulty in reproducing them. Some errors may not even

reproduce when being debugged, as the act of debugging

may perturb the execution enough to mask the bug.

To find and fix these errors, programmers currently must

devote a large amount of effort and machine time. One of

our recent case studies indicates that resolving a single non-

deterministic bug can require three person-months worth of

programmers’ effort and 19 years of compute-core time in

total (Sato et al., 2017). As supercomputers can cost hun-

dreds of millions of dollars to procure and equal sums in

energy and support costs to run, expenditure quickly adds

up when debugging. Furthermore, the time a user spends

debugging is the time taken away from utilization of a

major capital investment and the science that the user is

trying to conduct. Thus, tools that can detect and remedy

these defects are highly valuable.
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PRUNERS is the only software toolset that is designed spe-

cifically to solve these challenges of debugging and testing

for non-deterministic software bugs with the scalability,

accuracy, composability, and portability demanded by

today’s high-end systems. In addition, early usage on real-

world bugs at Lawrence Livermore National Laboratory

(LLNL) proves that the effectiveness of this coordinated

toolset for fixing non-deterministic software bugs and errors.

2. The PRUNERS toolset

Sources of non-determinism are multilevel—arising from

multiple levels of the software stack (e.g. applications,

libraries, and/or system) and from different programing

models and paradigms (e.g. message passing vs. shared

memory). A single tool does not fit all required levels of

reproducibility. Our solution to the challenge is the

PRUNERS toolset (Figure 1). A reason for having a toolset

is to flexibly control sources of non-determinism and pro-

vide required levels of reproducibility depending on spe-

cific code development needs by users—levels of

reproducibility versus performance/scalability.

The PRUNERS toolset offers four novel debugging and

testing tools that can significantly assist programmers with

detecting, remedying, and further preventing these errors in

a coordinated fashion. The core objective of these tools is

effectiveness in scalable detecting, controlling, and testing

targeted, system-software-introduced sources of non-

determinism. Our toolset specifically aims at the non-

determinism introduced by the use of today’s two most

dominant parallel programming models, the Message Pass-

ing Interface (MPI) and OpenMP, as well as major compi-

lers. The development and source code of these

programming models and of compilers are outside the con-

trol of the programmers. Therefore, a non-deterministic

error caused by their use is extremely difficult to diagnose

without proper tools. This is sharply contrasted with

application-level sources where programmers have explicit

control over the application and visibility inside of the

source code. The PRUNERS toolset meets our objective by

being split into the following four interoperable individual

tool components: Archer (Atzeni et al., 2016), ReMPI (Sato

et al., 2015), NINJA (Sato et al., 2017), and FLiT (Sawaya

et al., 2017).

To ensure wide applicability and flexibility, these com-

ponents are designed to complement each other while each

individual component also works effectively as a single,

stand-alone tool. PRUNERS provides a common multilevel

toolset that unifies complementary and targeted tools that

can build on the strengths of one another.

2.1. ARCHER

A data race condition is inarguably the most malignant

form of parallel interaction among threads in OpenMP

applications. This condition occurs when two or more

threads can access shared data without proper synchroniza-

tion and at least one them modifies the data. The result can

change depending on which thread wins this race. This

leads to an undefined application behavior and thus intro-

duces latent bugs.

Data races are not unique to OpenMP. On the contrary, it

is one of the most common errors in many shared-memory

programming models, and automatic detection of this con-

dition has been widely studied. Nonetheless, efficient and

scalable race checkers of OpenMP applications are scarce.

Our previous study (Protze et al., 2014; Atzeni et al., 2016)

shows that no existing solution offers the needed capability

with requisite scalability, accuracy, and portability. Mature

open-source data race detectors like Helgrind and Thread-

Sanitizer (TSan) (Serebryany and Iskhodzhanov, 2009)

only target the low-level portable operating system inter-

face (POSIX) threads and do not support high-level pro-

gramming models such as OpenMP. Intel®Inspector INT

(As of Feb 6th, 2018) has arguably the best-in-breed

OpenMP support, but it still suffers from accuracy and

overhead problems (Atzeni et al., 2016) in addition to port-

ability problems due to hardware vendor lock-in.

Archer is a scalable and accurate OpenMP data-race

detection tool (Figure 2). Archer’s static analysis passes

classify the given OpenMP code regions into two cate-

gories: guaranteed race-free and potentially racy. Its

dynamic analysis then applies state-of-the-art data-race

detection algorithms to check only the potentially racy

OpenMP regions of code. The static/dynamic analysis com-

bination is central to the scalability (while maintaining

analysis precision) of Archer (Atzeni et al., 2016).

2.2. ReMPI

All data races are unsafe. Thus, accurately detecting the

offending source-code sites would be sufficient to fix the

bug. This is not the case for non-deterministic sources in

Figure 1. The PRUNERS toolset increases non-determinism coverage for debugging and testing workflows.
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MPI. By contrast, MPI explicitly allows non-deterministic

message exchanges for high performance so that applica-

tions can wait for messages and process those that arrive in

any order. Thus, an ability to detect where the non-

deterministic MPI functions are invoked or called is insuf-

ficient in and of itself.

Instead, PRUNERS approaches MPI sources by explicitly

and scalably controlling them. ReMPI (Sato et al., 2015)

records the non-deterministic message exchanges in one

record run and then controls subsequent runs to follow the

same message exchange sequence in the following replay

runs (Figure 3). Under ReMPI’s control, programmers can

deterministically replay MPI message exchanges, thereby,

reproducing a target bug, even under the control of a par-

allel debugger, for further root-cause analysis. With a new

compression algorithm called Clock Delta Compression

(CDC), ReMPI enables scalable MPI record-and-replay

(Sato et al., 2015).

2.3. NINJA

A common cause of non-deterministic bugs is unintended

message races, a condition in which two or more “message

Figure 2. Archer: the same index of array n is read and written by multiple threads without mutual exclusion, that is, data races. Archer
detect such racy access.

Figure 3. ReMPI: (a: ReMPI record mode) an MPI process (P1) issues two wildcard receives (Recv(*)) and receives a P2 message
followed by a P0 message; (b: ReMPI record file) ReMPI records the order of these received messages; (c: ReMPI replay mode) instead
of issuing the two Recv(*), ReMPI issues Recv(P2) followed by Recv(P0) based on the record to replay the exactly same message
receives. Even if P0 message arrive first, ReMPI can pass P2 message first to P1.

Figure 4. NINJA: (a: “Intended” message matching) Routine A
and B (interleved by Routine X) are unsafe communication rou-
tines, that is, Routines using the same MPI tag without any syn-
chronization between them. Routine A and B are isolated by
Routine X so that the message races rarely occurs. (b:
“Unintended” message matching) NINJA injects delay to mes-
sages to expose such rarely-occurring message races.

Figure 5. FLiT: A framework for testing floating-point arithmetic
variability in different compilers, optimization flags, compiler
options and platforms. These results are stored in SQL database
for further analysis.
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sends” race to match with a “message receive” and at least

one of them is unintended. Unintended message races can

significantly increase development cost because program-

mers must often run the application many times until the

races finally manifest. In fact, observing the bug itself,

especially under a debugging tool’s control, is often even

more challenging than finding the root cause of the bug for

unintended message races. Further, these tools typically

exhibit noticeable runtime overhead, which distorts and

thereby potentially masks message race bugs.

We developed innovative network noise injection tech-

niques called NINJA to exposing unintended MPI message

races (Figure 4). NINJA controls and manipulates the tim-

ings of non-deterministic message matches in ways that

maximize the chance to expose MPI message-race bugs.

With dynamic analysis of communication patterns of appli-

cations, NINJA can minimize the overhead by selectively

injecting noise into only racy MPI message exchanges Sato

et al. (2017).

2.4. FLiT

One way in which a non-deterministic bug manifests itself

as a simulation failure is through run-to-run numerical

result variation. Floating Point (FP) arithmetic is not asso-

ciative, that is, a þ (b þ c) ¼ (a þ b) þ c, and the non-

determinism in MPI and OpenMP can randomly change

the order of FP arithmetic operations, which then makes

certain failures occur only occasionally or also makes

verification difficult. This is becoming more significantly

complicated when code is ported across different

Figure 6. ARCHER identified the OpenMP data races causing HYDRA.

Figure 7. Real message-race code in Hypre 2.10.1 (depicting only
MPI functions): Routine A and B are unsafe communication rou-
tines isolated by a different communication routine (Routine X).
NINJA successfully manifested this real message races which are
not uncovered without NINJA.

Figure 8. FLiT’s visualization of test divergences under Intel
compiler (ICPC).
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hardware platforms and/or optimized using different com-

pilers and their options. While these can also change the

FP arithmetic operation order, there are currently no avail-

able tools that can help a programmer assess the extent of

FP variability. FLiT provides a powerful testing frame-

work to tackle this well-known problem for which sys-

tematic solutions are lacking.

FLiT is a test framework for quickly revealing

compiler-induced floating-point variability (Figure 5).

FLiT provides a large collection of pre-designed tests and

test automation facilities, including build scripts (i.e.

Makefiles) generation, distribution of the tests on differ-

ent platforms, and result amalgamation/query supported

through database (i.e. SQL) queries. It can also display

this compiler-, platform-induced floating-point variability

using an intuitive 2-D heat-map style.

3. State-of-the-practice

To ensure that our capabilities work for large application

development, we have actively engaged many production

code-development teams at the Lawrence Livermore

National Laboratory (LLNL) and tested the utility of our

tools on large code bases. In this process, these users have

challenged our research team with those bugs that they

previously deemed intractable, and PRUNERS has consis-

tently proven to be effective on them.

For example, Archer detected and helped fix highly elu-

sive OpenMP data races in HYDRA, a very large multi-

physics application for Livermore’s National Ignition

Facility (NIF), that caused code crashes that only intermit-

tently manifested themselves after varying numbers of time

steps and only at large scales (8192 MPI processes or

higher) on Sequoia (Figure 6). Further, as LLNL code

Figure 9. Tool comparison table: (*1) Reverse debugging with ReplayEngine TVR (As of March 24th, 2018); (*2) GDB reverse
debugging GDB (As of Feb 6th, 2018), rr RR (As of Feb 6th, 2018), UndoDB UND (As of Feb 6th, 2018); (*3) ThreadSanitize Serebryany
and Iskhodzhanov (2009); (*4) Intel inspector INT (As of Feb 6th, 2018); (*5) Data Replay complements PRUNERS. Users would first use
NINJA and ReMPI recording to quickly and scalably obtain a record that deterministically reproduces an error. Subsequently, users can
combine a ReMPI replay with a data replay tool such TotalView’s ReplayEngine for further root cause analysis. Within the MPI
determinism guarantee provided by a ReMPI replay, users apply the data replay tool’s detailed interactive debugging features such as
continue-forward and continue-backward on a small subset of processes; (*6) PRUNERS’ Archer extends ThreadSanitizer as its dynamic
analysis infrastructure.
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teams increasingly multi-thread their applications, they

have begun to integrate Archer directly into their build-

and-test systems to catch data-race bugs at testing time,

before production runs are conducted.

When reducing novel techniques into production, port-

ability and usability is significantly important for end users.

ReMPI is indeed highly portable on any MPI implementa-

tions (e.g. MVAPICH, OpenMPI, and others) using a MPI

profiling wrapper (PMPI), so that ReMPI can be easily

applied to large-scale MPI applications even without

recompiling applications by simply preloading the ReMPI

shared library, librempi:so. ReMPI is also designed to work

with other parallel debuggers, TotalView TV (As of Feb

6th, 2018) and DDT DDT (As of Feb 6th, 2018). These

ReMPI’s capability has been significantly been helping

ParaDiS (dislocation dynamics application) and Mercury

(domain-decomposed particle transport application) debug

and test MPI non-determinism.

NINJA has been shown to manifest unsafe message

races consistently within LLNL Diablo’s (a massively par-

allel implicit finite element application) use of Hypre-

2.10.1 (a scalable linear solvers and multigrid method

library). Hypre had a message-race bug that has not been

uncovered until recently (Figure 7).

An easy-to-use and community-extensible tester like

FLiT, which is designed specifically to capture compiler-

and platform-induced FP variability, is also becoming

increasingly important in scientific work dependent on

supercomputers. Critical supercomputing applications such

as the Community Earth Simulation Model, for instance,

have yielded inconsistent results when ported across plat-

forms and compilers, which hampered validation effort.

Similarly, errors in floating-point calculations have led to

inaccurate findings based on data analysis of Large Hadron

Collider experiments. Our FLiT test suggests that even a

single compiler has a large number of optimization options

that can significantly affect the numerical results of FLiT’s

predesigned “Litmus testers”(Figure 8). Our study has

shown that there are more than 40 compiler options avail-

able across four major compilers used in high-end systems,

which can affect the numerical simulation results. FLiT

offers earlier warnings as to the portability of their code

to different compilers.

4. Summary

Non-deterministic execution is becoming increasingly

common and is particularly difficult for programmers to

comprehend and debug. PRUNERS is the first coordinated

toolset that is designed specifically to help debug and test

for non-deterministic bugs, with features and attributes

commensurate for large supercomputers. It was designed

specifically with scalability, accuracy, and composability

in mind. These features superior to existing debugging

tools as shown in Figure 9. PRUNERS has demonstrated early

success on real-world bugs and already resulted in cost

savings at LLNL.
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