
A Timeless Model for the Verification of
Quasi-Periodic Distributed Systems

Maryam Dabaghchian

School of Computing

University of Utah

Salt Lake City, UT, USA

maryam@cs.utah.edu

Zvonimir Rakamarić

School of Computing

University of Utah

Salt Lake City, UT, USA

zvonimir@cs.utah.edu

ABSTRACT

A cyber-physical system often consists of distributed multi-rate

periodic processes that communicate using message passing; each

process owns a local clock not synchronized with others. We call

such systems quasi-periodic distributed systems. Traditionally, one

would model them using timed automata, thereby having to deal

with high-complexity verification problems. Recently, several re-

searchers proposed discrete-time abstractions based on the calendar

model to make the verification more tractable. However, even the

calendar model contains a notion of time in the form of a global

clock. We propose a novel, timeless computation model for quasi-

periodic distributed systems to facilitate their verification. The main

idea behind our model is to judiciously replace synchronization

using a global clock and calendar with synchronization over lengths

of message buffers. We introduce a simple domain-specific language

for programming of such systems and use it to formalize the seman-

tics of both the calendar and timeless model. Then, we prove that

our timeless model is an overapproximation of the calendar model.

Finally, we evaluate our timeless model using several benchmarks.

CCS CONCEPTS

• Theory of computation → Models of computation;

Distributed computing models; • Computer systems organi-

zation→ Robotics; Embedded systems; Real-time systems.

KEYWORDS

quasi-periodic distributed systems, finite-state systems,model check-

ing, timeless model, calendar model

ACM Reference Format:

Maryam Dabaghchian and Zvonimir Rakamarić. 2019. A Timeless Model for

the Verification of Quasi-Periodic Distributed Systems. In 17th ACM-IEEE
International Conference on Formal Methods and Models for System Design
(MEMOCODE ’19), October 9–11, 2019, La Jolla, CA, USA. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3359986.3361201

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6997-8/19/10. . . $15.00

https://doi.org/10.1145/3359986.3361201

1 INTRODUCTION

A cyber-physical system often consists of multiple processes, where

each process is periodically activated at its preset nominal rate. Pro-

cesses are approximately synchronized using their local clocks with

a bounded drift from a global reference clock (i.e., each local clock

might slightly diverge from the global reference clock). At each acti-

vation, a process performs its computation and communicates with

other processes using the publish-subscribe messaging paradigm

in a non-blocking manner. In the publish-subscribe messaging par-

adigm, there are a number of topics (or message channels) to which

a process can publish or subscribe to. Typically, each topic has one

publisher (to avoid network jamming) that sends messages to it and

several subscribers that receive them. We call such a system a quasi-
periodic distributed system (QPDS). Robot Operating System [33]

is an example of a well-known and widely used framework that

employs this paradigm.

Model checking [12, 32] is a class of verification techniques typi-

cally employed in the verification of QPDSs. Due to its continuous-

time aspects, a QPDS would traditionally be modeled using timed

automata [2], and verified usingmodel checkers such as UPPAAL [5].

However, due to the high complexity of the timed automata model

checking problem, it is unlikely that this approach will scale to large

systems. Hence, researchers have been exploring alternative, more

efficient modeling approaches, such as the discrete-time calendar

model [18, 19, 29, 35]. The calendar model maintains a set contain-

ing future discrete events with the time at which they should be

scheduled. When the next schedulable event is removed from the

set, the system time is updated as a discrete step. However, though

individual steps are discrete, even this model maintains a notion of

time in the form of a global real-valued clock, which means that it

is still beyond the reach of classical model checkers for finite-state

systems. To address this problem, we propose a timeless finite-state

model for QPDSs.

We introduce a simple domain-specific language for program-

ming of QPDSs. Our language contains annotations that allow for

users to specify key parameters of their system, such as the periods

of all processes, drifts, sizes of message buffers, and expected num-

bers of messages at every process activation. We use our language

to formalize the semantics of the calendar model and our timeless

finite-state model. The main idea behind our model is to judiciously

replace calendar-based synchronization that employs a global clock

with synchronization that uses predicates over message buffers.

We achieve this by constructing a constraint satisfaction problem

using the user-provided parameters of the system, such as periods,

drifts, delays, and buffer sizes. If the generated constraints are sat-

isfiable, then the system is amenable to overapproximation (i.e.,

https://doi.org/10.1145/3359986.3361201
https://doi.org/10.1145/3359986.3361201

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Maryam Dabaghchian and Zvonimir Rakamarić

Sensor
r = 10 ms

Controller
r = 50 ms

Operator
r = 100 ms

Actuator
r = 10 ms

Speed

Power

InDanger

Go

Danger

Figure 1: Semi-autonomous ground vehicle architecture.

sound modeling) using our timeless model; otherwise, a user has

to adjust the system parameters. Furthermore, we generate buffer

predicates from the system parameters, and use them for process

synchronization in the timeless model. For example, we ensure that

a publish statement cannot proceed if there is a subscriber with a

full receiving message buffer, where the message buffer size satisfies

our constraint problem. Finally, we prove that our timeless model

is an overapproximation (i.e., sound abstraction in terms of safety

properties) of the respective calendar model.

We summarize our main contributions as follows:

• We introduce a simple domain-specific programming lan-

guage for QPDSs, and use it to formalize the semantics of

the previously introduced calendar model.

• We are the first to propose and formalize a timeless model

for QPDSs that can be verified using classical model checkers

for finite-state systems.

• We define a constraint satisfaction problem that checks

whether a QPDS is amenable to sound modeling using the

user-provided parameters of the system.

• We prove that our timeless model is an overapproximation

of the calendar model.

• We develop the timeless model of several benchmarks in

SPIN to evaluate our approach.

2 PRELIMINARIES

In this section, we introduce a simple example, our program syntax,

and basic definitions of QPDSs.

2.1 Simple Example

Figure 1 shows an example QPDS modeling a semi-autonomous

ground vehicle [29]. It consists of four processes called Sensor , Oper-
ator , Controller , and Actuator , where r denotes their periods (i.e., a
process activates every r milliseconds). Arrows between processes

capture the publisher-subscriber relationships. For example, Sensor
publishes to topics Speed and Danger , while Controller reads mes-

sages from those two topics and publishes to topics InDanger and
Power . Note that Controller can read and perform its computation

using multiple messages from the Speed or Danger topics, as its
activation period is five times the Sensor’s activation period.

To illustrate a possible behavior of the system, suppose that

Sensor publishes the current velocity to topic Speed and a Boolean

value to topic Danger notifying about a detected obstacle. By taking
into account the nominal periods and drifts of Sensor and Controller ,

prog ::= delay dmin dmax

topic+ proc+

topic ::= topic tid

proc ::= process pid annot {stmt}

annot ::= period r drift ρ pubsub+

pubsub ::= publishes tid

| subscribes tid size new max_lost

stmt ::= read m := tid

| publish tid m

| return

| stmt; stmt

Figure 2: Program syntax.

we can observe that there will be at least four messages present

in the Controller’s buffers when it activates. Hence, the controller

can compute the needed actuator power based on the last four

velocity values. If the velocity goes out of the allowed range or

if an obstacle is detected, Controller publishes value 0 to topic

Power , thereby stopping the vehicle. As we can observe from this

example behavior, a precise analysis of this system is complex since

it involves reasoning about the continuous local clocks, periods, and

drifts. Aswe show in this paper, it is possible to construct finite-state

models of such systems that get rid of the complex continuous-time

aspects, while preserving soundness of the verification.

2.2 Program Syntax

Figure 2 shows our program syntax, which enhances a simpleWhile

language (an imperative programming language with while loops,

assignments, and conditionals [26]; not shown for simplicity) with

features to support periodic process definition and publish/sub-

scribe communication. A program consists of multiple processes

communicating over topics. Annotation delay dmin dmax defines

the minimum and maximum bounds of the message transmission

delay for all topics. (Note that our approach can be extended to

allow for different delay bounds for each topic.) Each topic has only

one publisher process, whereas it can have multiple subscribers. We

assign a unique identifier tid to each topic and pid to each process.

A process also contains annotations and a top-level statement.

Annotations allow for a user to specify the parameters of its

QPDS, based on which we ensure it can be soundly abstracted

using our timeless model (see Section 4.1). Annotation period r
sets the period of the corresponding process, while drift ρ sets its

maximum drift as a fraction of r where 0 ≤ ρ < 1. Annotation

publishes tid registers it as the only publisher to topic tid, while
subscribes tid size new max_lost registers it as a subscriber to topic
tid with size specifying the receiving buffer size, new the minimum

number of messages required on the topic for the process to per-

form its local computation, and max_lost the maximum number of

consecutive messages that can be lost due to an insufficient buffer

size (i.e., when a message buffer gets full we drop the oldest mes-

sages in the buffer to accommodate further incoming messages).

A Timeless Model for the Verification of Quasi-Periodic Distributed Systems MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

delay .1 .2

topic Speed , Danger , InDanger , Go, Power

process Sensor

period 10 drift .1

publishes Speed

publishes Danger

{

// evaluate speed and obstacle

publish Speed speed;

publish Danger obstacle;

return

}

process Controller

period 50 drift .1

publishes InDanger

publishes Power

subscribes Danger 6 4 1

subscribes Speed 7 4 0

subscribes Go 1 0 0

{

read obstacle := Danger;

read go := Go;

read speed := Speed;

// evaluate power

publish Power power;

publish InDanger obstacle;

return

}

Figure 3: Source code excerpt of our simple example.

Statement read m := tid retrieves the first message received on

topic tid, removes it from the sequence of received messages, and

stores it into local message variable m. Statement publish tid m
publishes message m on topic tid. A process can publish only one

message per topic during each activation. Statement return denotes

the end of an execution period of a process. Figure 3 shows example

source code for the motivating example from Section 2.1.

2.3 Basic Definitions

A process p ∈ Procs is a tuple ⟨pid, r , ρ, publish, subscribe⟩, where
pid is a unique identifier, r is the period at which the process is

activated, ρ is the maximum clock drift, publish is the set of topics

(defined next) on which p publishes, and subscribe is the set of topics
to which p subscribes. We refer to each tuple element using [] no-

tation, e.g., p[r] denotes the nominal period of p. A topic t ∈ Topics
is a tuple ⟨tid, pub, subs⟩, where tid is a unique identifier, pub is the
publisher process, and subs is the set of subscriber processes. We de-

note with m ∈ Msgs a message of an unspecified type transmitting

between processes in the system. Let κ : (Procs × Topics)⇀ Msgs∗

be a partial mapping capturing the contents of buffers; then, κ(p, t)
is the sequence of received messages in the buffer corresponding to

topic t in process p before it gets activated. Let len : Msgs∗ → Z≥0

be a function that returns the number of messages in a buffer. Then,

len ◦ κ returns the number of messages in a receiving buffer. Let

lost : (Procs × Topics) ⇀ Z≥0 be a partial mapping capturing the

number of messages lost in transit on a topic due to a full receiving

buffer; then, lost(p, t) is the number of lost messages published to

process p on topic t. Let size : (Procs × Topics) ⇀ N be a partial

mapping capturing the sizes of buffers; then, size(p, t) is the size
of the buffer corresponding to topic t in process p. Furthermore,

let max_loss : (Procs × Topics)⇀ Z≥0 be a partial mapping, where

max_loss(p, t) is the maximum number of consecutive messages

that can be lost due to an insufficient message buffer size while

transmitting from a publisher process to the subscriber process p
through topic t.

We denote the set of all statements with Stmts, while for ev-

ery process p we denote its top-level statement with Sp . Then,
S : Procs → Stmts captures the remaining statement to be executed

in a processes. Let Variables be the set of all local variables in all

processes, and Variables |p the set of local variables in p. For sim-

plicity, we assume that all variables have the same domain Domain.
We insist that every process has one local buffer qtid per topic it is

subscribed to, which we use to copy locally the contents of message

buffers. Then, we define program store µ : Variables → Domain
such that µ(x) is the valuation of variable x . Finally, we define a
program state σ ∈ States as a tuple ⟨µ,κ, lost⟩.

3 CALENDAR MODEL

In this section, we present the calendar model as a discrete-time

quasi-synchronous abstraction of QPDSs, thereby allowing for the

verification of real-time systems without relying on continuously

varying clocks [18, 19, 29].

3.1 Soundness Properties of QPDSs for

Quasi-Synchrony

A QPDS consists of a finite set of processes Procs. Each process

p ∈ Procs periodically performs a task with a nominal period p[r]
and a possible jitter due to the clock drift bounded by p[ρ]. Hence,
the actual period at any step varies between p[r](1 − p[ρ]) and
p[r](1 + p[ρ]). We allow for messages to be transmitted between

processes with a delay between the minimum delay Dmin and the

maximum delay Dmax , where 0 ≤ Dmin ≤ Dmax .

Caspi [9–11] first introduced the quasi-synchronous approach

as a discrete-time abstraction of single-rate QPDSs. Then, Larrieu

and Shankar [28] presented a computation model for multi-rate

QPDSs based on this quasi-synchronous abstraction. A QPDS has

to satisfy the following properties for their model to be a sound

abstraction of it.

(P1) A message published by process p′ is processed by a sub-

scriber process pwithin timeDmin andDmax +p[r](1+p[ρ])
if it is not lost.

(P2) Messages are delivered in their publishing order, which the

constraint Dmax < Dmin + p[r](1 − p[ρ]) ensures for every
publisher process p.

(P3) Buffer sizes have to be sufficient to limit the maximum num-

ber of lost messages: size(p, t) ≥ p[r](1+p[ρ])+Dmax−Dmin
p′[r](1−p′[ρ]) −

max_loss(p, t). The fraction captures the scenario where a

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Maryam Dabaghchian and Zvonimir Rakamarić

publisher is activated as many times as possible and a sub-

scriber as few times as possible, so that the subscriber deliv-

ers the maximum number of messages (see Figure 6).

In a complementary paper, Baudart et al. [4] prove that the

original idea of quasi-synchronous abstraction is not sound, though

soundness is recoverable. More recently, Baudart [3] presented

soundness conditions for a discrete model of a QPDS, where a

discrete model is called N /M-quasi-synchronous if a process is

activated at most N times between M consecutive activations of

another process. He proves that a QPDS isN /M-quasi-synchronous

if it satisfies the following two properties in addition to P1–P3

above.

(P4) A process p can receive at most N messages published by

p′ between M consecutive activations, which the follow-

ing constraint ensures: N (p′[r](1 − p′[ρ])) + Dmin ≥ (M −

1)(p[r](1 + p[ρ])) + Dmax . In addition, a process p is acti-

vated at most N times betweenM messages received from p′,
which the following constraint ensures: N (p[r](1 − p[ρ])) +
Dmin ≥ (M − 1)(p′[r](1 + p′[ρ])) + Dmax . Note that, as

in previous work [28], we assume that M = 2; then, the

former constraint in this property reduces to P3, where

N = size(p, t) + max_loss(p, t), and is therefore its gener-

alization.

(P5) The communication topology of the system satisfies the

following conditions: (1) every elementary cycle in the undi-

rected variant of the system’s communication graph (called

u-cycle) is a cycle in the directed graph as well, or the number

of its edges in the both directions is the same (called balance

u-cycle), or Dmax = 0; (2) there is no balanced u-cycle in

the communication graph, or Dmin = Dmax ; (3) there is

no cycle in the communication graph, or for every cycle c
of length

1 |c |, p[r](1 − p[ρ]) ≥ |c |Dmax , where p has the

minimum period among all processes in the cycle.

If a QPDS satisfies these properties, it is amenable to overapproxima-

tion using our calendarmodel since themodel is a quasi-synchronous

abstraction. Furthermore, we also use these properties in our time-

less model to compute the needed buffer sizes and minimum num-

bers of messages each process has in its buffers at the time of

activation; we leverage these to achieve proper synchronization

without relying on time (see Section 4).

3.2 Program Semantics

We denote with ct ∈ R≥0 the current time with respect to an ideal

reference clock. An event e ∈ Procs × Topics × Msgs is either a
message delivery or a process activation event. A message delivery

event ⟨p, t,m⟩ denotes the delivery of message m from topic t by
process p. A process activation event ⟨p, ϵ, ϵ⟩ denotes the activation
of process p. Then, the calendar C is a set of pairs ⟨e, τ ⟩, where
for an event e the timeout τ ∈ R≥0 denotes the earliest future

time at which e is scheduled. The calendar maintains scheduled

events and preserves the invariant ∀⟨e, τ ⟩ ∈ C . ct ≤ τ . We use

min(C) to denote the earliest timeout in the calendar. The enabled

set EnabledDT = {p | ⟨⟨p, ϵ, ϵ⟩, ct⟩ ∈ C} is the set of all processes
that can be activated at the current time.

1
We define a length of a cycle in a directed graph as usual as the number of edges in

the cycle.

A configuration is a tuple c = ⟨S,σ ,C, ct⟩, where S is the remain-

ing statements to be executed, σ is a program state,C is the calendar,

and ct is the global current time. An execution is a sequence of con-

figurations c1c2c3 . . . , where c1 = ⟨S1, ⟨µ1,κ1, lost1⟩,C1, 0⟩ is the

initial configuration and ci −−→
DT

ci+1 as per the calendar-based

operational semantics rules (see Figure 4). Initially, S1 maps every

process p to an empty statement ε , µ1 maps every variable to a

default value, κ1 maps every topic buffer to an empty sequence of

messages in all subscriber processes, and lost1 maps the number of

lost messages for every pair of a subscriber and topic to 0. Further-

more,C1 contains a pair ⟨⟨p, ϵ, ϵ⟩, p[r]d⟩ for every process p, where
d ∈ [1 − p[ρ], 1 + p[ρ]] and hence p[r]d is the initial activation

timeout for p.
Figure 4 gives the operational semantics rules of−−→

DT
. Rule Delay

ensures that if all events in the calendar are scheduled for a future

time, then the current time advances to the timeout of the earliest

event in the calendar. Rule Deliver captures message delivery,

where q ⊕ m denotes the buffer obtained by extending buffer q
with message m. Rule Deliver-Loss captures message loss, where

q[1:]⊕m denotes the buffer obtained by dropping the oldest message

from buffer q and extending it with message m. Rule Activate

starts an enabled process. It copies the contents of all the receiving

message buffers into the corresponding local buffers, denoted by qt
for every subscribing topic t (see Section 2.3); then, it empties the

receiving buffers and resets the number of lost messages for every

subscribing topic. Rule Read reads a received message from a non-

empty local message buffer qt by removing it from the buffer and

storing it into a local message variable m. We use the notation q[0]
to refer to the first element in the buffer object, and q[1:] to refer to
the sequence of elements excluding the first one. Rule Read-Empty

takes care of reading from an empty message buffer by storing

a special value null into local variable m. Rule Publish adds an

appropriately delayed message delivery event to the calendar for

every subscriber of the topic. Rule Reset ensures the periodicity of

a processes by updating its timeout in the calendar based on the

specified period and drift.

Since there is infinitely many choices between any two real-

valued clock valuations, a real-time system contains infinite-delay

transitions in addition to discrete transitions. Hence, researchers

have introduced discrete-time models, such as the calendar model,

to reduce the infinite-delay transitions between two discrete transi-

tions to finite-delay transitions, and have effectively used them to

verify the correctness of real-time systems. However, even finite-

delay transitions in the calendar model introduce extraneous states

since they only update the global clock. In addition, the mono-

tonicity of the global real-valued time variable (i.e., clock) still

ultimately results in an infinite-state system, which hinders verifi-

cation using classical model checkers. Hence, in the next section,

we propose a novel, timeless model that employs predicates over

the lengths of buffers, instead of the real-valued global time, for

process synchronization. Our model has two key advantages over

the calendar model due to the elimination of time: (1) it has no

time and delay transitions, and thereby it reduces the program state

space; (2) it is a finite-state model because it does not contain a

monotonically-increasing global time variable, thereby allowing for

A Timeless Model for the Verification of Quasi-Periodic Distributed Systems MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

Delay

ct < min(C)

⟨S , σ ,C , ct ⟩ −−−→
DT

⟨S , σ ,C ,min(C)⟩

Deliver

⟨⟨p, t,m⟩, ct ⟩ ∈ C q = κ(p, t) len ◦ q < size(p, t)

⟨S , ⟨µ , κ , lost ⟩,C , ct ⟩ −−−→
DT

⟨S , ⟨µ , κ′, lost ⟩,C′, ct ⟩

κ′ = κ[(p, t) ↦→ q ⊕ m] C′ = C \ { ⟨⟨p, t,m⟩, ct ⟩ }

Deliver-Loss

⟨⟨p, t,m⟩, ct ⟩ ∈ C len ◦ κ(p, t) = size(p, t) q = κ(p, t) l = lost(p, t)

⟨S , ⟨µ , κ , lost ⟩,C , ct ⟩ −−−→
DT

⟨S , ⟨µ , κ′, lost′ ⟩,C′, ct ⟩

κ′ = κ[(p, t) ↦→ q[1:] ⊕ m] C′ = C \ { ⟨⟨p, t,m⟩, ct ⟩ } lost′ = lost[(p, t) ↦→ l + 1]

Activate

p ∈ EnabledDT
⟨S [p ↦→ ε], ⟨µ , κ , lost ⟩,C , ct ⟩ −−−→

DT
⟨S [p ↦→ Sp ⟨µ′, κ′, lost′ ⟩,C , ct ⟩

µ′ = µ[qt ↦→ κ(p, t)] for every t ∈ p[subscribe] κ′ = κ[(p, t) ↦→ []] for every t ∈ p[subscribe]
lost′ = lost[(p, t) ↦→ 0] for every t ∈ p[subscribe]

Read

m ∈ Variables |p q = µ(qt) q ≠ []

⟨S [p ↦→ readm := tid; stmt], ⟨µ , κ , lost ⟩,C , ct ⟩ −−−→
DT

⟨S [p ↦→ stmt], ⟨µ′, κ , lost ⟩,C , ct ⟩

µ′ = µ[m ↦→ q[0], qt ↦→ q[1:]]

Read-Empty

m ∈ Variables |p µ(qt) = []

⟨S [p ↦→ readm := tid; stmt], ⟨µ , κ , lost ⟩,C , ct ⟩ −−−→
DT

⟨S [p ↦→ stmt], ⟨µ′, κ , lost ⟩,C , ct ⟩

µ′ = µ[m ↦→ null]

Publish

d ∈ [Dmin , Dmax]

⟨S [p ↦→ publish(t,m); stmt], σ ,C , ct ⟩ −−−→
DT

⟨S [p ↦→ stmt], σ ,C′, ct ⟩

C′ = C ∪ {⟨⟨p′, t,m⟩, ct + d ⟩ | p′ ∈ t[subs]}

Reset

d ∈ [1 − p[ρ], 1 + p[ρ]]

⟨S [p ↦→ return], σ ,C , ct ⟩ −−−→
DT

⟨S [p ↦→ ε], σ ,C′, ct ⟩

C′ = C \ { ⟨⟨p, ϵ , ϵ ⟩, ct ⟩ } ∪ { ⟨⟨p, ϵ , ϵ ⟩, ct + p[r]d ⟩ }

Figure 4: Operational semantics of the calendar-based transition relation −−→
DT

.

efficient verification using classical model-checkers for finite-state

systems.

4 TIMELESS MODEL

In this section, we propose a timeless model for QPDSs. The main

idea behind this model is to achieve proper synchronization be-

tween processes using predicates over message buffers (e.g., a pro-

cess is activated only when a certain number of messages is present

in its buffer), instead of relying on a clock. First, we formalize a

constraint satisfaction problem using the user-provided parameters

of the system, such as periods, drifts, delays, and buffer sizes. If the

generated constraints are satisfiable, then the system is amenable

to sound modeling using our timeless model. Second, we generate

buffer predicates from the system parameters, and use them for pro-

cess synchronization in the operational semantics of the timeless

model.

4.1 Constraint Satisfaction Problem

Figure 5 shows our constraint satisfaction problem. Its inputs are

all periods, drifts, delays, sizes of buffers, minimum numbers of

messages required in buffers at activations, and maximum numbers

of messages that could be lost due to insufficient buffer sizes. These

are all specified by a user using the annotations our language pro-

vides. The satisfiability of the constraints implies that the QPDS it

encodes can be overapproximated using our timeless model. Note

that while we present the constraints using quantifiers, all are over

finite domains and can hence be instantiated ahead of time. Next,

we motivate each constraint and related them to the properties

described in Section 3.1.

Constraint (1) guarantees that the publishing order of messages

is preserved, as specified by property P2. A message delay, which in

the worst case is Dmax , must be less than the time required for the

next message delivery, which in the best case is when a publisher

process p′ is activated at its minimum period and the message is

delayed by Dmin . Constraint (2) guarantees that the sizes of buffers

are sufficient to bound the maximum number of lost messages, as

specified by property P3. Since in our timeless model we use the

sizes of buffers for process synchronization, they have to be equal

(and not greater than!) the smallest integer that satisfies property

P3 (see Figure 6). Constraint (3) guarantees that the minimum

required number of messages is present in the receiving buffers

when a process is activated. (We formally introduce min_new(p, t)
in the next section.) Figure 7 illustrates this constraint by showing a

scenario where a publisher is activated as few times and a subscriber

as many times as possible, which is when the subscriber receives

the minimum number of messages before it is activated.

Constraints (4), (5), and (6) correspond to property P5. Let Cycles
be the set of all subsets of processes that form an elementary cycle

in the undirected variant of the communication graph of the system.

We assume that the weight of a clockwise edge in a cycle is 1 and

otherwise it is −1. Then, function weight : Cycles → Z≥0 maps

cycles to their weights, and weight(c) is the absolute value of the
sum of weights of its edges. Constraint (4) guarantees that if there

is an unbalanced u-cycle (i.e., a cycle whose weight is greater than

0 and less than the number of processes in the cycle) in the com-

munication graph, transmission delay must be zero. Constraint (5)

guarantees that if there is a balanced u-cycle (i.e., a cycle whose

weight is 0) in the communication graph, Dmin and Dmax must be

equal. Finally, constraint (6) guarantees that for every cycle in the

communication graph, the minimum period of all processes in the

cycle must be greater than or equal to |c |Dmax .

4.2 Program Semantics

Let ζ : (Procs × Topics) ⇀ Msgs∗ be a partial mapping capturing

the contents of communication channels (i.e., messages in transit);

then, ζ (p, t) is the sequence of messages published to topic t and
waiting in a communication channel to be delivered to process

p. Let min_new : (Procs × Topics) ⇀ Z≥0 be a partial mapping

specifying the minimum number of messages that must be present

in the subscriber process receiving buffer of a topic when that

subscriber is activated. The enabled set EnabledNT = {p | ∀t ∈

p[subscribe] . len◦κ(p, t) ≥ min_new(p, t)} is the set of all processes
that can be activated, i.e., all their receiving buffers have the re-

quired minimum number of messages. The publishable predicate

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Maryam Dabaghchian and Zvonimir Rakamarić

∀t ∈ Topics . p = t[pub] ∧ Dmax < p[r](1 − p[ρ]) + Dmin (P2) (1)

∀t ∈ Topics, p ∈ t[subs] . p′ = t[pub] ∧ size(p, t) +max_loss(p, t) =
⌈︂
p[r](1+p[ρ])+Dmax−Dmin

p′[r](1−p′[ρ])

⌉︂
(P3) (2)

∀t ∈ Topics, p ∈ t[subs] . p′ = t[pub] ∧min_new(p, t) =
⌊︂
p[r](1−p[ρ])−(Dmax−Dmin)

p′[r](1+p′[ρ])

⌋︂
(P3) (3)

(∀c ∈ Cycles .weight(c) = 0 ∨ weight(c) = |c |) ∨ Dmax = 0 (P5) (4)

(∀c ∈ Cycles .weight(c) > 0) ∨ Dmin = Dmax (P5) (5)

(∀c ∈ Cycles .weight(c) < |c |) ∨ (∀c ∈ Cycles .weight(c) = |c | =⇒ min{p[r](1 − p[ρ]) | p ∈ c} ≥ |c |Dmax) (P5) (6)

Figure 5: Constraint satisfaction problem that ensures a QPDS is amenable to overapproximation using our timeless model.

The problem inputs are r, ρ, Dmin , Dmax , size, min_new, max_loss, Topics, and Cycles.

!"#$!"%&

'′

'
') (1 + ' ρ)

/012′ = '′) (1 − '′ ρ)
/012′ /012′ /012′ /012′

Figure 6: Maximum number of messages p receives from p′

between two consecutive activations.

!"#$!"%&
'′

'
') (1 − ' ρ)

/012′ = '4) (1 + '′ ρ)
/012′ /012′ /012′ /012′

Figure 7: Minimum number of messages p receives from p′

between two consecutive activations.

determines if a process can publish to a topic given the current

state of its buffers, channels, and the number of lost messages, i.e.,

whether publishing would violate the maximum number of possible

lost messages: Publishable(t,κ, ζ , lost) ≡ ∀p ∈ t[subs] . len◦κ(p, t)+
len ◦ ζ (p, t) + lost(p, t) < size(p, t) + max_loss(p, t). A configura-

tion is a tuple c = ⟨S,σ , ζ ⟩, where S is the remaining statements

to be executed, σ is a program state, and ζ is the communication

channels. An execution is a sequence of configurations c1c2c3 . . . ,
where c1 = ⟨S1, ⟨µ1,κ1, lost1⟩, ζ1⟩ is the initial configuration and

ci −−−→
NT

ci+1 as per the timeless operational semantics rules (see

Figure 8). Initially, S1 maps every process p to an empty statement ε ,
µ1 maps every variable to a default value,κ1 maps every topic buffer

to an empty sequence of messages in all subscriber processes, lost1
maps the number of lost messages for every pair of a subscriber

and topic to 0, and ζ1 maps every pair of a subscriber and topic to

an empty sequence of messages.

Figure 8 gives the operational semantics rules of −−−→
NT

. Apart

from Delay that updates the global clock, there is a corresponding

transition rule in−−−→
NT

for every rule in−−→
DT

(see Figure 4). In the next

section, we show that our timeless model is an overapproximation

of the calendar model.

5 PROOF OF OVERAPPROXIMATION

In this section, we prove that our timeless model is an overapprox-

imation of the calendar model, which has been used for efficient

modeling of QPDSs. We do this by showing that when starting

from equivalent initial states, the set of all possible executions in

the calendar model is a subset of the set of all possible executions

in the timeless model.

Definition 1 (State Eqivalence). Two states σ = ⟨µ,κ, lost⟩
and σ ′ = ⟨µ ′,κ ′, lost ′⟩ are equivalent, denoted by σ ≡ σ ′, if and only
if µ = µ ′, κ = κ ′, and lost = lost ′.

Definition 2 (C-ζ Eqivalence). The calendar C and the com-
munication channels ζ are equivalent, denoted by C ≡ ζ , if and only
if:

(1) ∀t ∈ Topics, p ∈ t[subs], i ∈ Z, j ∈ Z . 0 ≤ i < j < len(ζ (p, t))
=⇒ ∃τ1, τ2 ∈ R . τ1 < τ2 ∧ ⟨⟨p, t, ζ (p, t)[i]⟩, τ1⟩ ∈ C ∧

⟨⟨p, t, ζ (p, t)[j]⟩, τ2⟩ ∈ C
(2) ∀⟨⟨p, t,m1⟩, τ1⟩, ⟨⟨p, t,m2⟩, τ2⟩ ∈ C . τ1 < τ2 =⇒ ∃i, j ∈

Z . i < j ∧ ζ (p, t)[i] = m1 ∧ ζ (p, t)[j] = m2.

Definition 3 (Execution Projections). We denote with
EDT

|︁|︁
⟨σ ,C ⟩

the projection of an execution EDT in the calendar model

on the components σ and C , and with ENT
|︁|︁
⟨σ ,ζ ⟩ the projection of

an execution ENT in the timeless model on the components σ and ζ .
Furthermore, EDT

|︁|︁u
⟨σ ,C ⟩

and ENT
|︁|︁v
⟨σ ,ζ ⟩ denote executions of lengths

u and v in the corresponding models.

Definition 4 (Stuttering Eqivalence). Two executions EDT

and ENT are stuttering equivalent with respect to σ ,C , and ζ , denoted
by EDT

|︁|︁
⟨σ ,C ⟩

∼ ENT
|︁|︁
⟨σ ,ζ ⟩ , if and only if:

(1) The number of updates to σ andC/ζ (in terms of state andC-ζ
equivalence) is the same in both executions;

(2) The corresponding updates in both executions are equivalent.

A Timeless Model for the Verification of Quasi-Periodic Distributed Systems MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

Deliver

t ∈ Topics p ∈ t[subs] len ◦ ζ (p, t) > 0 m = ζ (p, t)[0] q = κ(p, t) len ◦ q < size(p, t)

⟨S , ⟨µ , κ , lost ⟩, ζ ⟩ −−−→
NT

⟨S , ⟨µ , κ′, lost ⟩, ζ ′ ⟩

κ′ = κ[(p, t) ↦→ q ⊕ m] ζ ′ = ζ [(p, t) ↦→ ζ (p, t)[1:]]

Deliver-Loss

t ∈ Topics p ∈ t[subs] len ◦ ζ (p, t) > 0 m = ζ (p, t)[0] q = κ(p, t) len ◦ q = size(p, t) l = lost(p, t)

⟨S , ⟨µ , κ , lost ⟩, ζ ⟩ −−−→
NT

⟨S , ⟨µ , κ′, lost′ ⟩, ζ ′ ⟩

κ′ = κ[(p, t) ↦→ q[1:] ⊕ m] ζ ′ = ζ [(p, t) ↦→ ζ (p, t)[1:]] lost′ = lost[(p, t) ↦→ l + 1]

Activate

p ∈ EnabledNT
⟨S [p ↦→ ε], ⟨µ , κ , lost ⟩, ζ ⟩ −−−→

NT
⟨S [p ↦→ Sp], ⟨µ′, κ′, lost′ ⟩, ζ ⟩

µ′ = µ[qt ↦→ κ(p, t)] for every t ∈ p[subscribe] κ′ = κ[(p, t) ↦→ []] for every t ∈ p[subscribe]
lost′ = lost[(p, t) ↦→ 0] for every t ∈ p[subscribe]

Read

m ∈ Variables |p q = µ(qt) q ≠ []

⟨S [p ↦→ readm := tid; stmt], ⟨µ , κ , lost ⟩, ζ ⟩ −−−→
NT

⟨S [p ↦→ stmt], ⟨µ′, κ , lost ⟩, ζ ⟩

µ′ = µ[m ↦→ qt [0], qt ↦→ qt [1:]]

Read-Empty

m ∈ Variables |p µ(qt) = []

⟨S [p ↦→ readm := tid; stmt], ⟨µ , κ , lost ⟩, ζ ⟩ −−−→
NT

⟨S [p ↦→ stmt], ⟨µ′, κ , lost ⟩, ζ ⟩

µ′ = µ[m ↦→ null]

Publish

Publishable(t, κ , ζ , lost)

⟨S [p ↦→ publish(t,m); stmt], σ , ζ ⟩ −−−→
NT

⟨S [p ↦→ stmt], σ , ζ ′ ⟩

ζ ′ = ζ [(p′, t) ↦→ ζ (p′, t) ⊕ m] for every p′ ∈ t[subs]

Reset

⟨S [p ↦→ return], σ , ζ ⟩ −−−→
NT

⟨S [p ↦→ ε], σ , ζ ⟩

Figure 8: Operational semantics of the timeless transition relation −−−→
NT

.

Theorem 1. For every execution EDT in the calendar model, there
exists an execution ENT in the timeless model such that EDT

|︁|︁
⟨σ ,C ⟩

∼

ENT
|︁|︁
⟨σ ,ζ ⟩ .

Proof. We prove the theorem by induction on the execution

length.

Base Case:We assume that EDT
|︁|︁1
⟨σ ,C ⟩

= ⟨σDT
1
,C1⟩ and ENT

|︁|︁1
⟨σ ,ζ ⟩ =

⟨σNT
1
, ζ1⟩, where σ

DT
1

≡ σNT
1

and C1 ≡ ζ1. Hence, EDT
|︁|︁1
⟨σ ,C ⟩

∼

ENT
|︁|︁1
⟨σ ,ζ ⟩ .

Induction Hypothesis: We assume that EDT
|︁|︁u
⟨σ ,C ⟩

∼ ENT
|︁|︁v
⟨σ ,ζ ⟩ for

u,v ∈ N, where

EDT
|︁|︁u
⟨σ ,C ⟩

= ⟨σDT
1
,C1⟩ . . . ⟨σ

DT
u ,Cu ⟩ with

σDT
u = ⟨µDTu ,κ

DT
u , lost

DT
u ⟩ and

ENT
|︁|︁v
⟨σ ,ζ ⟩ = ⟨σNT

1
, ζ1⟩ . . . ⟨σ

NT
v , ζv ⟩ with

σNT
v = ⟨µNTv ,κ

NT
v , lost

NT
v ⟩.

Induction step:We prove that EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+k
⟨σ ,ζ ⟩ for k ∈ {0, 1},

where

EDT
|︁|︁u+1
⟨σ ,C ⟩

= ⟨σDT
1
,C1⟩ . . . ⟨σ

DT
u+1,Cu+1⟩ with

σDT
u+1 = ⟨µDTu+1,κ

DT
u+1, lost

DT
u+1⟩ and

ENT
|︁|︁v+k
⟨σ ,ζ ⟩ = ⟨σNT

1
, ζ1⟩ . . . ⟨σ

NT
v+k , ζv+k ⟩ with

σNT
v+k = ⟨µNTv+k ,κ

NT
v+k , lost

NT
v+k ⟩.

We proceed by showing for every transition rule (1) if the rule can

trigger in theuth calendar model configuration, then its correspond-

ing rule can trigger in the vth timeless model configuration as well;

(2) triggering the corresponding rules in both models preserves the

stuttering equivalence relation between executions.

Delay This rule does not exist in the timeless model, and it

only updates the current time in the calendar model while

leaving the program state and calendar unchanged. There-

fore, it preserves stuttering equivalence as EDT
|︁|︁u+1
⟨σ ,C ⟩

∼

ENT
|︁|︁v
⟨σ ,ζ ⟩ .

Deliver If the rule can trigger in the calendar model, there

is a message delivery event ⟨⟨p, t,m⟩, ct⟩ ∈ Cu and len ◦

κDTu (p, t) < size(p, t). Hence, m has already been published

to t and is the oldest message that is going to be delivered by

p. Then, the induction hypothesis implies m ∈ ζv (p, t) and
len ◦ κNTv (p, t) < size(p, t). In addition, since m is the oldest

message on t waiting to be delivered by p, it is also the first

message in ζv (p, t). Therefore, m on topic t can be delivered

by p without dropping a message in the timeless model as

well. The rule in the calendar model removes ⟨⟨p, t,m⟩, ct⟩
fromCu and insertsm intoκDTu (p, t). In the timeless model, it

removes m from ζv (p, t) and inserts it into κNTv (p, t). There-
fore, κDTu+1 = κNTv+1 and since µDTu , µNTv , lostDTu , and lostNT

v
remain unchanged, σDT

u+1 ≡ σNT
v+1. In addition, removing m

from ζv (p, t) and its corresponding event from Cu ensures

that Cu+1 ≡ ζv+1, and thereby EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ .

Deliver-Loss If the rule can trigger in the calendar model,

there is a message delivery event ⟨⟨p, t,m⟩, ct⟩ ∈ Cu and

len ◦ κDTu (p, t) = size(p, t). By following the same line of

reasoning as for Deliver, the induction hypothesis implies

m ∈ ζv (p, t) and len ◦ κNTv (p, t) = size(p, t). In addition,

m is the first message in ζv (p, t). Therefore, m on topic

t can be delivered by p and the oldest message dropped

from the receiving buffer in the timeless model as well. The

rule in the calendar model removes ⟨⟨p, t,m⟩, ct⟩ from Cu ,
inserts m into κDTu (p, t) by removing the oldest message,

and increments lostDTu (p, t). In the timeless model, it re-

moves m from ζv (p, t), inserts it into κNTv (p, t) by remov-

ing the oldest message, and increments lostNT
v (p, t). There-

fore, κDTu+1 = κNTv+1, lost
DT
u+1 = lostNT

v+1, and since µDTu and

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Maryam Dabaghchian and Zvonimir Rakamarić

µNTv remain unchanged, σDT
u+1 ≡ σNT

v+1. Similarly to Deliver,

Cu+1 ≡ ζv+1, and thereby EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ .

Activate If the rule can trigger in the calendar model, then

there is a process p ∈ EnabledDT . Since the modeled QPDS

satisfies our constraint satisfaction problem, process p has

the required minimum number of messages in its receiving

buffers when it is activated (see Constraint (3) in Section 4.1).

Then, the induction hypothesis implies that for every topic

t to which p subscribes, len ◦ κNTv (p, t) ≥ min_new(p, t) in
the timeless model, meaning that p ∈ EnabledNT . Hence, the
rule can trigger in the timeless model as well. The rule in

both models only moves the contents of receiving buffers

into local buffers, i.e., it updates σDT
u and σNT

v in the same

way, and thus σDT
u+1 ≡ σNT

v+1. In addition, Cu in the calendar

model and ζv in the timeless model remain unchanged, so

Cu+1 ≡ ζv+1. Hence, EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ .

Read, Read-Empty If rule Read can trigger in the calendar

model, µDTu (qt) is a non-empty sequence of messages. Since

the induction hypothesis implies µNTv (qt) is also a non-empty

sequence of messages, the rule can trigger in the timeless

model as well. Rule Read removes the first message from

µDTu (qt) and µNTv (qt) and assigns it to a local variable m
in the corresponding models. According to the induction

hypothesis, the first elements in µDTu (qt) and µNTv (qt) are

equal. Hence, µDTu+1(qt) = µNTv+1(qt) and µDTu+1(m) = µNTv+1(m).

In addition, Cu , κ
DT
u , lostDTu in the calendar model and ζv ,

κNTv , lostNT
v in the timeless model remain unchanged. We

conclude that EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ . Using the same line

of reasoning, we can prove this for rule Read-Empty as well.

Publish Suppose the rule can trigger in the calendar model

such that process p publishes m to topic t. Our constraint
satisfaction problem guarantees that for every process p′

that subscribes to t, the number of possible lost messages

lostDTu does not exceed max_loss(p′, t). Therefore, the num-

ber of messages published to t for every subscriber p′, which
is equal to the sum of the number of messages in κDTu (p′, t),
message delivery events for p′ through t in Cu , and

lostDTu (p′, t) is less than size(p′, t) + max_loss(p′, t). In ad-

dition, the induction hypothesis implies that the number

of published messages in the calendar and timeless model

is the same, since otherwise either Cu ≢ ζv , κ
DT
u (p′, t) ≠

κNTv (p′, t), or lostDTu ≠ lostNT
v . Hence, we conclude that the

number of published messages in the timeless model, which

is len ◦κNTv (p′, t)+ len ◦ ζv (p′, t)+ lostNT
v (p′, t), is less than

size(p′, t) +max_loss(p′, t) as well. Then, as defined earlier,

Publishable(t,κNTv , ζv , lost
NT
v) holds, and the rule can trig-

ger in the timeless model as well. In the calendar model,

if the rule triggers for a process p that publishes message

m to topic t, it adds ⟨⟨p′, t,m⟩, τ ⟩, where τ ≥ ct, to Cu for

every p′ that subscribes to t. In the timeless model, the rule

inserts m into ζv (p′, t) for every p′ that subscribes to t, and
thus Cu+1 ≡ ζv+1. Furthermore, the rule leaves the program

state unchanged in both models. Hence, we conclude that

EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ .

Reset If the rule can trigger in the calendar model, it can ob-

viously trigger in the timeless model as well, as its premise is

true. In the calendar model, the rule leaves the program state

unchanged and it does not add (resp. remove) message deliv-

ery events to (resp. from) the calendar. In the timeless model,

the rule leaves the program state and communication chan-

nels unchanged. That concludes σDT
u+1 ≡ σNT

v+1 and Cu+1 ≡

ζv+1 since according to Definition 2 we do not take process

activation events in the calendar into account when deter-

mining this equivalence. Hence, EDT
|︁|︁u+1
⟨σ ,C ⟩

∼ ENT
|︁|︁v+1
⟨σ ,ζ ⟩ .

□

Completeness Our timeless model allows executions that the cal-

endar model does not. Hence, it could introduce false alarms for

safety properties, and it is also not suitable for checking of liveness

properties. The most obvious situation that introduces such exe-

cutions is when, in the calendar model, a subscriber process p to

a topic t is activated more often than its publisher p′, and t is the
only topic it is subscribed to. In that case,min_new(p, t) = 0, which

results in p being always enabled in the timeless model. For exam-

ple, the Actuator process in our example in Section 2.1 is always

enabled in the timeless model since min_new(Actuator, Power) = 0.

One such execution that exists in the timeless but not in the calen-

dar model is: Sensor , Sensor , Actuator , Actuator , Actuator , Sensor ,
Sensor , Actuator , Sensor , Controller , Actuator We conjecture

that such executions would rarely introduce false alarms since such

processes must be implemented to be able to handle the case when

zero messages are present at their activation.

6 IMPLEMENTATION AND EVALUATION

Our prototype implementation uses SMT solver Z3 [14] to solve

the constraint satisfaction problems we generate (see Figure 5)

and SPIN [24] to perform model checking. We developed several

benchmarks to evaluate our proposed timeless model.

Pilot Flying System consists of two left and right Flight Guid-

ance Systems (FGS), which need to agree on which side is

the pilot flying side of the aircraft. A pilot may transfer the

control between sides at any time. We implemented the time-

less model of this example based on its previously published

quasi-synchronous model [30]. A FGS compares the mea-

sured position, speed, and altitude of an aircraft with the

desired state, and generates pitch and roll guidance com-

mands to minimize the difference between the measured

and desired state. The two redundant FGSs communicate

through a cross-channel bus. We implement each FGS as a

process, where two redundant sides communicate through

delaying topics. We check the property that at least one side

is always the pilot flying side (at_least_one_side).

Ground Vehicle is the example we introduced in Section 2.1.

The controller process maintains the speed of the vehicle

in a valid range by controlling the power of the engine. We

check the property that the speed of the vehicle remains in

the valid range if there is no obstacle and the operator does

not push the stop button (speed_in_range).

House Thermostat ensures the room temperature is within a

preset range. In a home thermostat controller, a thermometer

A Timeless Model for the Verification of Quasi-Periodic Distributed Systems MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

Table 1: Experimental results. Column Storage Mode is the mode used for storing of the visited states; #P is the number of

processes in the SPIN model; #Stored is the number of states stored; #Matched is the number of states matched;Memory is the

total memory consumption of model checking; Time is the verification time.

Benchmark Property

SPIN AGREE

Storage Mode #P #Stored #Matched Memory (MB) Time (s) Time (s)

Pilot Flying System at_least_one_side exhaustive 4 8819899 30143418 1352 10 276

Ground Vehicle speed_in_range bitstate 5 3918658 12486754 763 148 —

House Thermostat temperature_in_range bitstate 6 3936344 11547677 1957 155 —

measures the room temperature, based on which the ther-

mostat regulates the temperature by controlling the heater.

We check the property that if a user does not change the

temperature, it remains within the preset range (tempera-

ture_in_range).

Table 1 shows the verification results for our benchmarks. We

performed our experiments on a 4.00 GHz Intel Core i7 Linux ma-

chine with 62 GB of memory; note that the SPIN model checker

uses only one core. We use the pilot flying system benchmark to

compare the performance of our timeless model we implemented in

SPIN with AGREE [1] as published in Miller et al. [30]. AGREE [1]

model checker uses Kind [27] or JKind [25] (a lighter version of

Kind) to perform k-induction. Since we failed to install AGREE on

our machine in order to perform a completely fair comparison [20],

we report the running times of AGREE from the paper [30], which

were obtained on a slower machine. This is also the reason why we

did not implement the ground vehicle and house thermostat bench-

marks in AGREE. We model checked all benchmarks in less than 3

minutes each. These preliminary results show the promise of our

timeless model since it is (at least) comparable to a state-of-the-art

tool (AGREE).

Due to a large number of processes and topics, SPIN cannot

complete the exploration of search space of the ground vehicle and

house thermostat benchmarks. Hence, we model check them with

bitstate hashing enabled [23]. Bitstate hashing is a well-known

technique that tries to improve the state space coverage using a

hashtable. A hash function maps a program state to an entry in

the hashtable, which is marked if the corresponding state is visited.

The technique may cause bugs to be missed, but when using a

large memory for the bitstate space and several hash functions, it

typically covers a large portion of the state space (99% or more).

Due to the blocking publish in SPIN, deadlocks can occur in the

timeless model. That happens when a process is trying to publish

more messages than it is allowed. Such executions are infeasible in

the calendar model due to tracking of time and timing constraints of

a QPDS, and they do not expose quasi-periodic behavior. Therefore,

we can safely recover from such deadlocks by enforcing that one

of the processes with the maximum number of messages in its

inbox skips the rest of its current step and continues the execution.

Since we only address deadlocks in non-quasi-periodic executions,

we do not interfere with the proof that the timeless model is an

overapproximation of the calendar model.

7 RELATEDWORK

In the most closely related work [28], Larrieu and Shankar propose

a quasi-synchronous model for QPDSs, which is inspired by the

Robot Operating System (ROS). They also prove the soundness

properties of their model. Based on this computational model, Li

et al. [29] more recently present the RADL framework for design-

ing and verifying QPDSs. They also provide an encoding of such

systems using calendar automata in the Symbolic Analysis Labo-

ratory (SAL) [6]. Then, Baudart et al. [3, 4] show that the quasi-

synchronous abstraction, introduced by Caspi [9–11], is not sound

for general systems of more than two processes. They propose

conditions on the communication topologies and timing parame-

ters to recover soundness. In our work, we leverage the soundness

properties of the computational model proposed by Larrieu and

Shankar and the soundness recovery conditions proposed by Bau-

dart et al. to build our constraint satisfaction problem and design

our timeless model (see Section 3.1). All quasi-synchronous models,

such as the calendar model, have a discrete notion of time, while

our finite-state model completely eliminates it by instead using

buffer predicates for process synchronization.

Saha et al. [35] present a finitary reduction technique to formal-

ize clockless finite-state timeout and calendar-based models. They

consider the timeout value is an integer between zero and the max-

imum of the upper bounds of timeouts for all processes. Although

this work reduces the infinite-state of the calendar model to finite-

state, it still uses a discrete-time model and addresses only general

real-time systems. On the other hand, we propose a customized

timeless model for QPDSs. Roy et al. [34] formalize the timeout-

based clockless model and prove that it simulates the timeout-based

real-time model. They claim that using a similar approach one can

also prove that the calendar-based clockless model simulates the

calendar-based real-time model. Loosely Time-Triggered Architec-

ture (LTTA) [7, 36] is another abstract model for QPDSs, which

uses shared memory for communication between processes and

models delays as part of process periods. Unlike our timeless model,

LTTA models clocks as Boolean variables; it also assumes that the

memory is shared between all processes.

Bhattacharyya et al. [8] and Miller et al. [30] present a trans-

lator from a subset of SysML, which is a common system archi-

tecture modeling language, into the Architectural Analysis and

Description Language (AADL). They also provide translators from

AADL models into the input language of the UPPAAL [5] and

Kind [27] model checkers. UPPAAL model checks timed-automata-

based models, while Kind is a k-induction-based model checker. To

MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA Maryam Dabaghchian and Zvonimir Rakamarić

verify quasi-synchronous systems in Kind, they define an accep-
tor automaton in Lustre [21] that ensures quasi-synchrony. Halb-

wachs and Mandel [22] model and validate quasi-synchronous pro-

cesses using synchrony. They model an acceptor automaton of two

quasi-synchronous processes and a scheduler based on the accep-

tor, which generates process activation conditions for those two

processes. These approaches leverage discrete clocks and acceptor

automata to ensure the quasi-synchrony requirements, while our

work totally eliminates time from the model.

Obermaisser et al. [31] extend finite state machines to include

the sparse global time base (if events can occur in only some section

of the timeline, the time base is said to be sparse), which is called Pe-
riodic Finite State Machines (PFSM). Then, the PFSM model includes

global time, periodic clock constraints, and time-triggered activities

as well, and it is useful in modeling distributed real-time systems.

The specification of an application as a set of PFSMs is verified

using SAL, which accepts discrete transition systems. PFSMs allow

users to model and verify real-time systems as discrete-time models,

whereas our work considers QPDSs, a specific kind of real-time

systems, and allows users to model them without time.

N-synchrony [13] is another relaxed clock equivalence princi-

ple, which bounds the difference between the cumulative process

activation counts. Desai et al. [17] formalize a similar model, called

approximate synchrony, and compute this bound using parame-

ters of a real-time system. This is unlike quasi-synchrony, which

bounds drifts, and hence also the number of process activations be-

tween two consecutive activations of another process. Their work

synchronizes processes by applying a constant delay to one of

them and introducing a global buffer of size N. DRONA [16] is a

software framework built on top of the P language [15] for devel-

oping reliable distributed mobile robotic systems; it also leverages

approximate synchrony.

8 CONCLUSIONS AND FUTUREWORK

In this paper, we introduced a simple domain-specific language for

QPDSs, and formalized the operational semantics of the calendar

model, which had been proposed by others for the verification

such systems. Then, we defined a constraint satisfaction problem

to check whether a QPDS is amenable to sound modeling using

the user-provided parameters of the system. We use it to formalize

the operational semantics of the timeless model we proposed; we

also proved that the timeless model is an overapproximation of the

calendar model. To the best of our knowledge, our model is the first

finite-state timeless model for QPDSs. Since it completely eliminates

time from the model, it is amenable to verification using model

checkers for finite-state systems.We prototyped our approach using

the SPIN model checker, and our preliminary experimental results

show its promise in reducing the verification runtime. We plan to

leverage property P4 in Section 3.1 to devise a complete model, and

thereby enable the verification of liveness properties. We expect

this to be feasible at the cost of enlarging the program state.

ACKNOWLEDGMENTS

This workwas supported in part by the National Science Foundation

(NSF) awards CCF 1552975 and CCF 1837051. We thank Ankush

Desai for introducing us to the problem of the verification of quasi-

periodic distributed systems. We also thank Natarajan Shankar for

insightful discussions that helped us to improve this paper.

REFERENCES

[1] agree [n.d.]. Assume Guarantee Reasoning Environment. http://loonwerks.com/

tools/agree.html.

[2] Rajeev Alur and David L. Dill. 1994. A Theory of Timed Automata. Theoretical
Computer Science 126, 2 (1994), 183–235. https://doi.org/10.1016/0304-3975(94)

90010-8

[3] Guillaume Baudart. 2017. Synchronous Approach to Quasi-Periodic Systems. Ph.D.
Dissertation. PSL Research University.

[4] Guillaume Baudart, Timothy Bourke, and Marc Pouzet. 2016. Soundness of the

Quasi-synchronous Abstraction. In Proceedings of the 16th International Confer-
ence on Formal Methods in Computer-Aided Design. 9–16. https://doi.org/10.1109/

FMCAD.2016.7886655

[5] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.

1996. UPPAAL — a Tool Suite for Automatic Verification of Real-time Systems. In

Proceedings of the DIMACS/SYCON Workshop on Hybrid Systems III : Verification
and Control. 232–243. https://doi.org/10.1007/BFb0020949

[6] Saddek Bensalem, Vijay Ganesh, Yassine Lakhnech, César Muñoz, Sam Owre,

Harald Rueß, John Rushby, Vlad Rusu, Hassen Saïdi, N. Shankar, Eli Singerman,

and Ashish Tiwari. 2000. An Overview of SAL. In Proceedings of the 5th NASA
Langley Formal Methods Workshop. 187–196.

[7] Albert Benveniste, Paul Caspi, Paul Le Guernic, Hervé Marchand, Jean-Pierre

Talpin, and Stavros Tripakis. 2002. A Protocol for Loosely Time-Triggered Archi-

tectures. In Proceedings of the 2nd International Conference on Embedded Software.
252–265. https://doi.org/10.1007/3-540-45828-X_19

[8] S. Bhattacharyya, S. Miller, J. Yang, S. Smolka, B. Meng, C. Sticksel, and C. Tinelli.

2014. Verification of quasi-synchronous systems with UPPAAL. In Proceedings of
the 33rd Digital Avionics Systems Conference. 8A4–1–8A4–12. https://doi.org/10.

1109/DASC.2014.6979532

[9] Paul Caspi. 2000. The quasi-synchronous approach to distributed control systems.
Technical Report. Verimag, Crysis Project.

[10] Paul Caspi. 2001. Embedded Control: From Asynchrony to Synchrony and Back.

In Proceedings of the 1st International Workshop on Embedded Software. 80–96.
https://doi.org/10.1007/3-540-45449-7_7

[11] Paul Caspi, Christine Mazuet, and Natacha Reynaud Paligot. 2001. About the

Design of Distributed Control Systems: The Quasi-Synchronous Approach. In

Proceedings of the 20th International Conference on Computer Safety, Reliability
and Security. 215–226. https://doi.org/10.1007/3-540-45416-0_21

[12] Edmund M. Clarke and E. Allen Emerson. 1982. Design and Synthesis of Syn-

chronization Skeletons Using Branching-Time Temporal Logic. In Proceedings of
the Workshop on Logic of Programs. 52–71. https://doi.org/10.1007/BFb0025774

[13] Albert Cohen, Marc Duranton, Christine Eisenbeis, Claire Pagetti, Florence

Plateau, and Marc Pouzet. 2006. N-synchronous Kahn Networks: A Relaxed

Model of Synchrony for Real-time Systems. In Proceedings of the 33rd Sympo-
sium on Principles of Programming Languages. 180–193. https://doi.org/10.1145/

1111320.1111054

[14] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In

Proceedings of the 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. 337–340. https://doi.org/10.1007/978-3-

540-78800-3_24

[15] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and

Damien Zufferey. 2013. P: Safe Asynchronous Event-driven Programming. In

Proceedings of the 34th International Conference on Programming Language Design
and Implementation. 321–332. https://doi.org/10.1145/2491956.2462184

[16] Ankush Desai, Indranil Saha, Jianqiao Yang, Shaz Qadeer, and Sanjit A. Seshia.

2017. DRONA: A Framework for Safe Distributed Mobile Robotics. In Proceedings
of the 8th International Conference on Cyber-Physical Systems. 239–248. https:

//doi.org/10.1145/3055004.3055022

[17] Ankush Desai, Sanjit A. Seshia, Shaz Qadeer, David Broman, and John C. Ei-

dson. 2015. Approximate Synchrony: An Abstraction for Distributed Almost-

Synchronous Systems. In Proceedings of the 27th International Conference on Com-
puter Aided Verification. 429–448. https://doi.org/10.1007/978-3-319-21668-3_25

[18] Bruno Dutertre and Maria Sorea. 2004. Modeling and Verification of a Fault-

Tolerant Real-Time Startup Protocol Using Calendar Automata. In Proceedings of
the 8th International Symposium on Formal Techniques, Modelling and Analysis of
Timed and Fault-Tolerant Systems. 199–214. https://doi.org/10.1007/978-3-540-

30206-3_15

[19] Bruno Dutertre and Maria Sorea. 2004. Timed Systems in SAL. Technical Report.
SRI International.

[20] githubissue [n.d.]. GitHub Issue We Reported About Failing AGREE Installation.

https://github.com/loonwerks/formal-methods-workbench/issues/24.

[21] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. 1991. The synchronous

data flow programming language LUSTRE. Proc. IEEE 79, 9 (1991), 1305–1320.

http://loonwerks.com/tools/agree.html
http://loonwerks.com/tools/agree.html
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1109/FMCAD.2016.7886655
https://doi.org/10.1109/FMCAD.2016.7886655
https://doi.org/10.1007/BFb0020949
https://doi.org/10.1007/3-540-45828-X_19
https://doi.org/10.1109/DASC.2014.6979532
https://doi.org/10.1109/DASC.2014.6979532
https://doi.org/10.1007/3-540-45449-7_7
https://doi.org/10.1007/3-540-45416-0_21
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1145/1111320.1111054
https://doi.org/10.1145/1111320.1111054
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1145/2491956.2462184
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1145/3055004.3055022
https://doi.org/10.1007/978-3-319-21668-3_25
https://doi.org/10.1007/978-3-540-30206-3_15
https://doi.org/10.1007/978-3-540-30206-3_15
https://github.com/loonwerks/formal-methods-workbench/issues/24

A Timeless Model for the Verification of Quasi-Periodic Distributed Systems MEMOCODE ’19, October 9–11, 2019, La Jolla, CA, USA

https://doi.org/10.1109/5.97300

[22] Nicolas Halbwachs and Louis Mandel. 2006. Simulation and Verification of

Asynchronous Systems by Means of a Synchronous Model. In Proceedings of the
6th International Conference on Application of Concurrency to System Design. 3–14.
https://doi.org/10.1109/ACSD.2006.24

[23] Gerard J. Holzmann. 1998. An Analysis of Bitstate Hashing. Formal Methods in
System Design 13, 3 (1998), 289–307. https://doi.org/10.1023/A:1008696026254

[24] Gerard J. Holzmann. 2004. The Spin Model Checker: Primer and Reference Manual
(1 ed.). Addison-Wesley.

[25] jkind [n.d.]. An infinite-state model checker for safety properties. http:

//loonwerks.com/tools/jkind.html.

[26] Neil D. Jones. 1997. Computability and Complexity: From a Programming Perspec-
tive. MIT Press.

[27] Temesghen Kahsai and Cesare Tinelli. 2011. PKIND: A parallel k-induction based

model checker. In Proceedings of the 10th International Workshop on Parallel and
Distributed Methods in Verification (EPTCS), Vol. 72. 55–62. https://doi.org/10.

4204/EPTCS.72.6

[28] R. Larrieu and N. Shankar. 2014. A framework for high-assurance quasi-

synchronous systems. In Proceedings of the 12th International Conference on Formal
Methods and Models for Codesign. 72–83. https://doi.org/10.1109/MEMCOD.2014.

6961845

[29] W. Li, L. Gérard, and N. Shankar. 2015. Design and verification of multi-rate

distributed systems. In Proceedings of the 13th International Conference on Formal

Methods and Models for Codesign. 20–29. https://doi.org/10.1109/MEMCOD.2015.

7340463

[30] Steven P. Miller, Sidhartha Bhattacharyya, Cesare Tinelli, Scott Smolka, Christoph

Sticksel, Baoluo Meng, and Junxing Yang. 2015. FORMAL VERIFICATION OF
QUASI-SYNCHRONOUS SYSTEMS. Technical Report. Rockwell Collins.

[31] R. Obermaisser, C. El-Salloum, B. Huber, and H. Kopetz. 2007. Modeling and

verification of distributed real-time systems using periodic finite state machines.

Computer Systems Science and Engineering 22, 6 (2007).

[32] Jean-Pierre Queille and Joseph Sifakis. 1982. Specification and Verification of

Concurrent Systems in CESAR. In Proceedings of the International Symposium on
Programming. 337–351. https://doi.org/10.1007/3-540-11494-7_22

[33] ros [n.d.]. Robot Operating System (ROS). http://www.ros.org.

[34] Suman Roy, Janardan Misra, and Indranil Saha. 2016. A Simplification of a Real-

time Verification Problem. Software Testing, Verification and Reliability 26, 8

(2016), 548–571. https://doi.org/10.1002/stvr.1622

[35] Indranil Saha, Janardan Misra, and Suman Roy. 2007. Timeout and Calendar

Based Finite State Modeling and Verification of Real-time Systems. In Proceedings
of the 5th International Conference on Automated Technology for Verification and
Analysis. 284–299. https://doi.org/10.1007/978-3-540-75596-8_21

[36] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincent, P. Caspi, and M. Di

Natale. 2008. Implementing Synchronous Models on Loosely Time Triggered

Architectures. IEEE Trans. Comput. 57, 10 (2008), 1300–1314. https://doi.org/10.

1109/TC.2008.81

https://doi.org/10.1109/5.97300
https://doi.org/10.1109/ACSD.2006.24
https://doi.org/10.1023/A:1008696026254
http://loonwerks.com/tools/jkind.html
http://loonwerks.com/tools/jkind.html
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.4204/EPTCS.72.6
https://doi.org/10.1109/MEMCOD.2014.6961845
https://doi.org/10.1109/MEMCOD.2014.6961845
https://doi.org/10.1109/MEMCOD.2015.7340463
https://doi.org/10.1109/MEMCOD.2015.7340463
https://doi.org/10.1007/3-540-11494-7_22
http://www.ros.org
https://doi.org/10.1002/stvr.1622
https://doi.org/10.1007/978-3-540-75596-8_21
https://doi.org/10.1109/TC.2008.81
https://doi.org/10.1109/TC.2008.81

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Simple Example
	2.2 Program Syntax
	2.3 Basic Definitions

	3 Calendar Model
	3.1 Soundness Properties of QPDSs for Quasi-Synchrony
	3.2 Program Semantics

	4 Timeless Model
	4.1 Constraint Satisfaction Problem
	4.2 Program Semantics

	5 Proof of Overapproximation
	6 Implementation and Evaluation
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	References

