
Verifying Heap-Manipulating Programs
in an SMT Framework ⋆

Zvonimir Rakamarić2, Roberto Bruttomesso1, Alan J. Hu2, and Alessandro Cimatti1

1 ITC-IRST, Povo, Trento, Italy
{bruttomesso,cimatti}@itc.it

2 Department of Computer Science, University of British Columbia, Canada
{zrakamar,ajh}@cs.ubc.ca

Abstract. Automated software verification has made great progress recently,
and a key enabler of this progress has been the advances in efficient, automated
decision procedures suitable for verification (Boolean satisfiability solvers and
satisfiability-modulo-theories (SMT) solvers). Verifying general software, how-
ever, requires reasoning about unbounded, linked, heap-allocated data structures,
which in turn motivates the need for a logical theory for suchstructures that in-
cludes unbounded reachability. So far, none of the available SMT solvers supports
such a theory. In this paper, we present our integration of a decision procedure that
supports unbounded heap reachability into an available SMTsolver. Using the
extended SMT solver, we can efficiently verify examples of heap-manipulating
programs that we could not verify before.

1 Introduction

Automated software verification has made great progress recently, with several success-
ful tools developed in both industry and academia. A key enabling technology for this
success has been the advances in automated decision procedures — the software verifi-
cation tools almost all rely on some form of automatic logical reasoning engine. Some
rely on SAT (Boolean satisfiability) or BDDs (binary decision diagrams) to maintain
bit-accurate precision (e.g., [16, 22, 2]), whereas othersuse SMT solvers (satisfiability
modulo theories — decision procedures for combinations of decidable theories) in order
to capitalize on the natural abstractions present in software verification, such as integer
and real linear arithmetic, arrays, and uninterpreted functions (e.g., [4, 20, 18, 5]).

To be broadly applicable, however, software verification tools must be able to verify
programs with dynamic memory allocation, i.e., that manipulate potentially unbounded,
heap-allocated, linked data structures via pointers. Although verification of suchheap-
manipulating programs(HMPs) is obviously undecidable in general, careful crafting
can produce a logic that is expressive enough to verify important properties of programs,
yet is still decidable. In particular, a crucial feature forsuch logics is the ability to
specify unbounded reachability (e.g., from nodex, is it possible to reach nodey by

⋆ Supported by(1) a research grant from the Natural Sciences and Engineering Research Coun-
cil of Canada,(2) a University of British Columbia Graduate Fellowship,(3) ORCHID, a
project sponsored by Provincia Autonoma di Trento, and(4) a research grant from Intel.

following pointers) and related concepts such as betweenness. Slightly more expressive
logics, however, are undecidable [21].

Logics for HMP verification have long been a topic of research. Even Nelson’s sem-
inal work on software verification with SMT solvers supported a theory of unbounded
S-expressions, although without reachability [35, 37], and soon thereafter, Nelson pro-
posed a first-order axiomatization that approximated unbounded reachability [36]. The
past few years, however, have seen a blossoming of research in this area, with nu-
merous proposed logics and decision procedures for HMPs, with varying degrees of
expressiveness and efficiency, e.g., [3, 6, 9, 15, 21, 24, 27–29,33, 34, 39–41]. Research
progress has been great, with verification examples that were beyond the reach of
methods just a few years ago now being verified in seconds. However, the research
on HMP verification has focused almost exclusively on the heap-verification aspects,
while mainstream software verification research has largely ignored HMP verification
— an understandable division, given the difficulty of both problems.

With the logics and decision procedures for HMPs maturing, the time is right to
integrate them back into a general SMT solver, to enable verification of more general
software. We want to verify software, including software that manipulates heaps, not
just software thatonly manipulates heaps! A few researchers have started in this di-
rection. For example, Lahiri and Qadeer have expressed an incomplete axiomatization
of unbounded reachability as universally quantified axiomsin the Simplify first-order
prover [17], allowing verification of heap and non-heap properties and their interactions,
but with a substantial performance penalty [27]. Beyer et al. [7] take a different ap-
proach, making calls to a specialized HMP verification system (the TVLA system [30])
to handle the heap aspects of the verification from within their non-heap-aware soft-
ware verification tool. They report excellent performance,but such a loose combination
doesn’t allow verification of general interactions betweenheap properties and other pro-
gram properties. In very recent follow-on work [8], they adda “strengthening” operator
to propagate additional information between the heap and non-heap theories, but still
not all interactions are captured. Similarly, Charlton andHuth [14] propose a software
model checker in which separate analysis plugins (such as for heaps and for other theo-
ries) can cooperate, but the communication is ad hoc, so there are no guarantees that all
interactions between theories are propagated. Closest to our work is extremely recent
work by Lahiri and Qadeer [28]: Instead of their previous first-order axiomatization,
they present a decision procedure based on a complete set of rewrite rules, inspired by
our previous work [9]. However, they prototype an implementation of the rewrite rules
by using the same trick of modeling rewrite rules as universally-quantified first-order
axioms inside the theorem prover, as before. Practical implementation of their decision
procedure into an SMT solver has not yet been done. The obviously promising next
step is a tight integration of an efficient decision procedure for an HMP logic directly
into a modern SMT solver, making all of the theories, and their interactions, efficiently
available for the verification task. So far, however, nobodyhas actually done such an
integration.

In this paper, we present the theory, methodology, and results of such an integra-
tion. In particular, we integrate our recent, efficient decision procedure for an HMP
logic that supports unbounded reachability [39] into the established SMT solver MATH-

1: procedure INIT-ADD-FLAG(head,val)
2: assume reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ oldSum =

data int(sum,t)∧oldFlag=data bool(f lag,t)
3: curr := head;
4: while ¬curr=nil do
5: if ¬(curr→f lag) then
6: curr→sum:= curr→sum+val;
7: curr→f lag := true;
8: end if
9: curr := curr→next;

10: end while
11: assert reach(next,head,t) ∧ reach(next,head,nil) ∧ ¬t = nil ∧ data bool(f lag,t) ∧

(oldFlag∨data int(sum,t)=oldSum+val)
12: end procedure

Fig. 1. HMP (Heap-Manipulating Program) Example. The procedure INIT-ADD-FLAG adds the
integer variableval to integer fieldsumof every node whose boolean fieldf lag is false in an
acyclic singly-linked list. Also, boolean fieldf lag of those nodes is set totrue. We denote an
integer data field namedsumof a nodex by data int(sum,x), a boolean data field namedf lag of
a nodex by data bool(f lag,x), and the node pointed to by a pointer field namednextof nodex
by next(next,x). Subformulas of the formreach(next,x,y) express that node y is reachable from
node x by following a sequence of any number ofnextpointer fields. We will formally define these
predicates in Sect. 3. The fact thatnil is reachable fromheadenforces the acyclicity assumption.
VariablesoldSumandoldFlag are used to store values of fieldssumand f lag of nodet before
the procedure starts, respectively. In theassumeandassertstatements, variablet represents an
arbitrary node (Skolem constant). Since our framework doesn’t support quantification, we use the
trick of introducing Skolem constants to represent universally quantified variables.

SAT [12].3 Our results indicate that the integration was fairly straightforward (as was
hypothesized in [39] and thanks to the design of MATHSAT [10, 11]), the performance
overhead of the integration was reasonable, and the integration enabled verification of
many example HMPs that we could not verify before.

2 Motivating HMP Example

In our framework, theheapconsists of an unbounded number of heapnodes. HMPs
can have program variables that are pointer variables (pointers) and data variables of
different types. Similarly, heap nodes can have any number of pointer fields (i.e. links
to other nodes) and data fields of different types.

We’ll motivate the work presented in this paper with an illustrative HMP example
given in Fig. 1. The procedure INIT-ADD-FLAG adds the value of the integer variable
val to integer fieldsumof every node whose boolean fieldf lag is false in the non-
empty acyclic singly-linked input listhead. Furthermore, boolean fieldf lag of those
nodes is set totrue. Necessary assumptions are formalized by theassumestatement on
line 2 of the program. The body of the procedure is simple; it traverses the list, finds

3 The extended MATHSAT is available athttp://mathsat.itc.it/.

head prev curr

next

10sum

TRUEflag

next

10sum

TRUEflag

next

10sum

TRUEflag

next

33sum

flag

next

FALSE

nil

Fig. 2.Heap Structure Example. In this example, each list node has apointer fieldnext, an integer
data fieldsum, and a boolean data fieldflag. We modelnil as just a node wherenext(f ,nil) = nil

for all pointer fieldsf .

nodes whose fieldf lag is false, and on line 6 addsval to the data fieldsumat each
iteration. Also, it assigns fieldf lag to true on line 7. The specification is expressed
by the assert statement on line 11, and indicates that whenever line 11 is reached,
head points to an acyclic singly-linked list with fieldsumof all nodes whosef lag
field was false incremented byval. The verification problem we are solving can be
stated as follows: given an HMP, determine whether it is the case that all executions
that satisfy allassumestatements also satisfy allassertstatements. Note that even this
simple example is beyond the capability of typical softwaremodel-checking tools: it
is infinite-state due to both the unbounded integers as well as the unbounded heap. To
verify such programs, we employ abstraction, using an SMT framework extended with
a suitable logical theory described in the next section.

3 Logic for Verifying Heap-Manipulating Programs

Before we define our logic, we’ll intuitively illustrate basic concepts on the example
of a heap structure shown in Fig. 2. In this heap structure,head, prev, curr, andnil are
pointer variables,nextis a pointer field used to link nodes in the acyclic list,sumis an
integer data field, andflag is a boolean data field. The node to which we get by following
the nextpointer field from the node pointed to byheadis denoted in our syntax with
next(next,head). The data fieldflag of the node pointed to byprev is accessed with
data bool(f lag, prev). The node pointed to bycurr is reachable from the node pointed
to byheadby following nextpointer fields, and that concept of unbounded reachability
in our syntax is written asreach(next,head,curr).

The syntax of our logic is presented in Fig. 3. It is a quantifier-free fragment of
first-order logic that contains two equational theories:

1. Theory of data fields with the signature{=,data,update dfield}. The theory of
data fields can be easily translated into the theory of uninterpreted functions as
described in Sect. 4.3. For the simplicity of presentation,in this section we give
a single untyped theory of data fields. However, without the loss of generality,
we can extend this to a family of theories of data fields whose signatures are pa-
rameterized using the respective data types. Currently, wesupport only boolean
and integer data fields with the signatures{=,data bool,update dfield bool} and
{=,data int,update dfield int}, but that can easily be extended to other data types
supported by the SMT solver (e.g. reals).

c ∈ Constants
x ∈ DataVariables v∈ PointerVariables

d,d′ ∈ DataFields f, f ′ ∈ PointerFields
NodeTerm ::= v | next(f ,NodeTerm)
DataTerm ::= c | x | data(d,NodeTerm)

Atom ::= NodeTerm=NodeTerm| DataTerm=DataTerm |
reach(f ,NodeTerm,NodeTerm) |
between(f ,NodeTerm,NodeTerm,NodeTerm)

Literal ::= Atom | ¬Atom |
update pfield(f ,NodeTerm,NodeTerm, f ′) |
update dfield(d,NodeTerm,DataTerm,d′)

Formula ::= Literal | Formula∧Formula | Formula∨Formula

Fig. 3.Syntax of the Logic. For brevity, we show the logic with untyped data fields.

2. Theory of unbounded reachability, which is defined below,with the signature{=,
next, reach, between, update pfield}.

Clearly, the signatures (other than equality) of these two theories are disjoint, and are
also disjoint from the signatures of the various theories MATHSAT currently supports,
such as difference logic, linear arithmetic over reals, andlinear arithmetic over integers.

3.1 Theory of Unbounded Reachability

The theory of unbounded reachability over heap nodes presented here is essentially the
same as in [39], except that reasoning about data fields is nowmoved into the theory
of data fields and handled by the SMT solver (see Sect. 4.3). The theory assumes a
finite set of pointer variablesPointerVariables, which model program variables that
point to nodes in the heap, and a finite set ofpointer functionsymbolsPointerFields,
which model pointer fields from a heap node to another heap node. Literals of the form
x=y,¬x=y, reach(f ,x,y), and¬reach(f ,x,y) (wherex andy areNodeTerm) are called
equality, disequality, reachability, andunreachabilityliterals, respectively. Literals of
the formbetween(f ,x,y,z) or its negation are calledbetweenliterals.

The structures over which the semantics of the theory are defined are calledheap
structures. Formally, a heap structureH = (N,Θ) consists of a set ofnodes Nand an
interpretation functionΘ . The interpretation functionΘ interprets each symbolσ in
PointerVariables∪PointerFields, so that:

– Each pointer variable symbolσ ∈PointerVariablesis interpreted as a nodeΘ(σ) ∈
N.

– Each pointer function symbolσ ∈ PointerFieldsis interpreted as a mapping from
nodes to nodesΘ(σ) ∈ N → N.

The interpretation functionΘ extends to interpret any term, atom, or literal of
the theory in a straightforward, inductive way. The interpretation of a node termτ ∈
PointerVariablesis defined above, otherwise,τ has the formnext(f ,τ ′) for some node
termτ ′, and the interpretation isΘ(τ) = Θ(f)(Θ(τ ′)). Atoms are interpreted byΘ as
boolean values:

– An equality atomτ1=τ2 is interpreted astrue iff Θ(τ1) = Θ(τ2).
– A reachability atomreach(f ,τ1,τ2) is interpreted astrue iff there exists somen≥ 0

such thatΘ(f)n(Θ(τ1)) = Θ(τ2).4

– A between atombetween(f ,τ1,τ2,τ3) is interpreted astrue iff there existn0,m0 ≥0
such thatΘ(τ2) = Θ(f)n0(Θ(τ1)), Θ(τ3) = Θ(f)m0(Θ(τ1)), n0 ≤ m0, and for all
n,m such thatΘ(τ2) = Θ(f)n(Θ(τ1)), Θ(τ3) = Θ(f)m(Θ(τ1)), we haven0 ≤ n
andm0 ≤ m.

The interpretation of a pointer field update literalupdate pfield(f ,τ1,τ2, f ′) is defined
using the well-knownupdate operator5 astrue iff

Θ(f ′) = update(Θ(f),Θ(τ1),Θ(τ2)).

Finally, the interpretation of a literal that is of the form¬φ whereφ is an atom is simply
defined asΘ(¬φ) = ¬Θ(φ).

In previous work [9, 39], we described a saturation-based decision procedure for the
theory of unbounded reachability. The decision procedure is based on the exhaustive
application of a set of inference rules and, as we showed on a number of experiments, is
very efficient. Furthermore, we presented some theoreticalresults behind our logic and
decision procedure [38]: our decision procedure is sound and always terminates, and
the decision procedure is complete for the fragment of the logic without updates. The
experiments showed that in practice completeness was not anissue, as we could verify
all examples that we could specify.

3.2 Example

Returning to our example from Fig. 2, we’ll illustrate the semantics of our logic ex-
tended with the boolean and integer data field types on this heap structure with the
interpretation of a few representative literals:

– reach(next,head,curr) is interpreted astrue because the node pointed to bycurr is
reachable from the node pointed to byheadfollowing nextpointer fields.

– reach(next,head,nil) is interpreted astrue because the nodenil is reachable from
the node pointed to byheadfollowing nextpointer fields. The fact thatnil is reach-
able fromheadenforces the acyclicity assumption.

– next(next,curr)= nil is true because the node to which we get by following one
nextpointer field fromcurr is nil.

– data bool(f lag,prev) ↔ true is interpreted astrue because the boolean fieldflag
of the node pointed to byprev is set totrue.

– data int(sum,prev)=10 is interpreted astrue because the integer fieldsumof the
node pointed to byprev is set to 10.

– between(next,head,prev,curr) is true because nodeprevis betweenheadandcurr.
– between(next,head,nil,curr) is interpreted asfalse because nodenil is not between

nodesheadandcurr.
4 Here, function exponentiation represents iterative application: for a functiong and an element

x in its domain,g0(x) = x, andgn(x) = g(gn−1(x)) for all n≥ 1.
5 If g is a function,a is an element ing’s domain, andb is an element ing’s codomain, then

update(g,a,b) is defined to be the functionλx.(if x = a thenb elseg(x)).

prevhead next

nil

tmp

prevhead next

nil

tmp

Fig. 4. An example of a heap structureH (top), and a constructed infinite heap structureH ′

(bottom) which satisfies every quantifier-free formulaΨ that is satisfied byH.

4 Theory Integration into M ATH SAT

In this section, we briefly recall some recent results concerning theory combination in
SMT, and we disclose some details about the integration of the theory of unbounded
reachability into MATHSAT.

4.1 Efficient and Flexible Nelson-Oppen in SMT

Many verification tasks require the specification of properties at a level of expressive-
ness that is better captured by a logic that is the result of the combination (or union)
of simpler theoriesT1 andT2, defined over signaturesΣ1 andΣ2, respectively. In many
situations, decision proceduresDec(Ti) for Ti , i = 1,2, are already available to be used.

Nelson and Oppen [37] showed that given two equational theoriesT1 andT2, it is
possible to derive a procedureDec(T1∪T2) for deciding quantifier-free formulae over
T1∪T2, provided that:

– T1 andT2 are signature-disjoint (i.e.Σ1∩Σ2 = /0);
– T1 andT2 arestably infinite6.

A theory is stably infinite if for every satisfiable quantifier-free formulaφ , there exists
an interpretation satisfyingφ whose domain is infinite. Many theories of interest are
stably infinite, including the theory of integers and the theory of unbounded reachability
from Sect. 3.1:

Theorem 1. The theory of unbounded reachability (Sect. 3.1) is stably infinite.

6 This restriction has been relaxed in the recent work by Krstić et al. [25].

Proof. Let Ψ be a satisfiable quantifier-free formula, and letH = (N,Θ) be a heap
structure satisfyingΨ . We’ll show that one can always construct an infinite heap struc-
tureH ′ = (N′

,Θ ′) satisfyingΨ . Fig. 4 gives an example of how this is done. Basically,
adding to the heap structureH an infinite number of nodes that point to themselves (and
not changing the existing nodes) creates an infinite heap structureH ′ satisfyingΨ .

The heap structureH ′ is formally defined as follows. First, we fix an infinite set of
nodesNIn f disjoint from N. Then, we defineN′ = N∪NIn f , and interpretationΘ ′ as
follows:
Interpretation functionΘ ′ interprets each symbolσ ∈ PointerVariablesso that

Θ ′(σ) = Θ(σ)

Every pointer function symbolf ∈ PointerFieldsis interpreted so that

fΘ ′
(τ) =

{

fΘ (τ) if τ ∈ N
τ otherwise

SinceH is a heap structure satisfyingΨ , the formulaΨ cannot syntactically include
any of the nodes inNIn f . Furthermore, for each type of atom, the additional nodes in
NIn f cannot change the truth values of those atoms inΨ , since the new nodes are dis-
connected from the existing structure, which is unchanged.Therefore,H ′ also satisfies
Ψ , and its domain is infinite.

The Nelson-Oppen combination schema can be summarized as follows (for a more
accurate survey the reader is referred to [32]). The input quantifier-free formulaφ on
T1∪T2 is initially purifiedinto an equisatisfiable formulaφ1∧φ2 such thatφi belongs to
Ti , for i = 1,2. This can be easily achieved with the introduction of a set of fresh vari-
ables. The procedure is then based on an exhaustive communication betweenDec(T1)
and Dec(T2) by means ofinterfaceequalities, i.e. equalities between variables in
vars(φ1)∩ vars(φ2). Roughly speaking, the exchanging of interface equalitiesis suf-
ficient for Dec(T1) andDec(T2) to achieve anagreementon a common model, if
such a model exists. This communication has to be implemented aroundDec(T1) and
Dec(T2) in order to obtain a correctDec(T1∪T2).

The Nelson-Oppen method is not limited to only two theories.In fact, if T1 andT2

are stably infinite, their unionT1∪T2 is stably infinite as well. If we are given a decidable
stably infiniteT3 overΣ3 and(Σ1∪Σ2)∩Σ3 = /0, than we can apply Nelson-Oppen and
obtain aDec(T1∪T2∪T3).

The introduction of a combination framework into an SMT schema can be naively
done by consideringDec(T1∪T2) as a singletheory-solver, by straightforwardly adapt-
ing a DPLL-likeBool+Dec(T) schema into aBool+Dec(T1∪T2) setting.

Delayed Theory Combination(DTC) [10, 11] is an alternative approach specifically
studied for SMT solvers, based on the observation that it is possible to lift to the boolean
level the communication of interface equalities between the theory-solvers, by exploit-
ing the boolean engine on top of them. The new framework,Bool+Dec(T1)+Dec(T2),
can be easily achieved as follows.

Given a purified formulaφ1 ∧ φ2, the atom setE = {x1 = x2 | x1,x2 ∈ vars(φ1)∩
vars(φ2)} is first generated.E is nothing but the set of interface equalities that the two

theory-solvers,Dec(T1) andDec(T2), mightneed to exchange at any point in time.
Any set of theory-atomsΓ assigned to a truth value by the SAT-solver during the search
is divided intoΓ ′

1 = Γ1∪ΓE andΓ ′
2 = Γ2∪ΓE, whereΓi are atoms belonging toTi , for

i = 1,2, whileΓE is a set of atoms inE. The setΓ ′
i is fed to the corresponding solver

Dec(Ti) to be checked for consistency.
Intuitively, the communication inDec(T1∪T2), required for the correctness of the

Nelson-Oppen procedure, is now emulated by the introduction of interface equalities
that are shared by the two theories. In spite of the (potentially) quadratic number of
new atoms generated inE, it is easily possible to control the model enumeration in the
SAT-solver, as shown in [13], in order to avoid an enlargement of the search space.

The implementation of aBool+Dec(T1)+Dec(T2) schema presents several ad-
vantages with respect to a standardBool+Dec(T1∪T2):

– There is no need to build a Nelson-Oppen “box”Dec(T1∪T2) aroundDec(T1)
andDec(T2), because the integration is implicitly handled at the boolean level and
not at the solver level.

– Mixed-conflict generation is automatic.
– Disjunction in case of non-convex theories is automatically handled at the boolean

level, while in Nelson-Oppen it must be handled insideDec(T1 ∪ T2). This re-
sults in a better efficiency, because of the mechanisms of backjumping and learning
implemented in state-of-the-art SAT-solvers.

– The theory-solvers do not need deduction capabilities. In contrast, this is a require-
ment in Nelson-Oppen. This feature greatly simplified the integration, since our
pre-existing decision procedure for the heap logic did not implement deduction.

4.2 Handling Uninterpreted Functions via Ackermann’s Expansion

Ackermann’s expansion [1] is a technique by means of which itis possible to translate
a quantifier-free formula overT ∪EUF into an equisatisfiable formulaφ ′ overT only,
whereEUF is the well-known theory of Uninterpreted Functions with Equality.

Since function symbols are uninterpreted, the only requirement for satisfiability is
functional consistency, i.e. the implication(

∧n
i=1 ti = si) → f (t1, . . . ,tn) = f (s1, . . . ,sn)

must hold for every function symbolf of arity n, whereti andsi are terms.
In Ackermann’s expansion, in order to fulfill the above condition, every distinct

function applicationf (t1, . . . ,tn) in φ is replaced with a fresh variablevf (t1,...,tn). For
each function symbolf of arity n, the obtained formula is then augmented with a set
of axioms of the kind(

∧n
i=1 ti = si) → vf (t1,...,tn) = vf (s1,...,sn), for every pair of distinct

fresh variables. It is easy to prove that the resulting formula φ ′ no longer contains any
UF symbol and it is equisatisfiable to the originalφ .

The same transformation can be used to remove uninterpretedpredicate symbols,
using fresh boolean variables and the logical connective↔ to equate them in the axiom
instantiations.

4.3 Theory Integration

We have integrated the unbounded reachability decision procedure from Sect. 3.1 as a
theory-solverDec(HMP) into MATHSAT, resulting in a framework for the verifica-

tion of HMPs supporting boolean and integer data fields, but potentially also any other
data type already handled by MATHSAT.

The rationale behind our combination is to separate the “heap reachability” part of
the formula from the reasoning about “data”, in order to achieve a modular SMT(HMP∪
T) decision procedure, whereT is the theory for a generic data type. In particular,
in the current implementation, we provide in the input language a binary predicate
data bool(d,h), and a binary functiondata int(d,h) that can be used to select a boolean
or an integer stored ind ∈ DataFieldof h∈ NodeTerm. Notice that both constructs are
uninterpreted, and they merely represent a modular solution to bridge the data and the
heap part.

For boolean data, we can exploit the SAT-solver in MATHSAT to decide subfor-
mulae expressed on boolean data, by the Ackermann’s expansion of thedata bool(., .)
predicate. The interaction between the integer solverDec(LIA) (or in general, the non-
boolean) reasoning andDec(HMP) can be dealt with in two different ways, either us-
ing aBool+Dec(HMP)+Dec(LIA)+Dec(EUF) schema, or aBool+Dec(HMP)
+Dec(LIA) schema, after the Ackermannization ofdata int(., .) symbols.

Update operations on dataupdate dfield(d,t,v,d′) may be eagerly replaced with a
set of axioms{d′(t)≈ v}∪{s 6= t → d′(s) ≈ d(s) | s∈ NT}, where≈ is the equality=
for integer data and↔ for boolean data, andNT is the set ofNodeTerms that appear in
the formula. This solution is far from being optimal, but it worked well in practice for
our experiments, where only a few updates were required.

Dec(HMP), as any other theory-solver, also benefits of theEUF-layer of MATH-
SAT. Our experiments show that in many cases this layer is sufficient to determine the
unsatisfiability of a query.

Example 1.We are given the following quantifier-free unsatisfiable SMT(HMP∪LIA)
formulaφ :

(data int(d,h1)+data int(d,h2) = 1)∧ (h1 = h2)

Using Delayed Theory Combination:We first purifyφ into φ ′ with the introduction of
two new fresh variablesv1 andv2, obtainingφ ′:

(v1 = data int(d,h1))∧ (v2 = data int(d,h2))∧ (v1 +v2 = 1)∧ (h1 = h2).

The interface equalityv1 = v2 is also generated. The atoms are assigned to the theories
as follows:

HMP {h1 = h2}
LIA {v1 +v2 = 1,v1 = v2}
EUF {v1 = data int(d,h1),v2 = data int(d,h2),h1 = h2,v1 = v2}.

The SAT-solver assigns every atom inφ ′ to true. The contradiction is derived because
Dec(LIA) immediately impliesv1 6= v2, which falsifies the functional consistency in
Dec(EUF).

Using Ackermann’s Expansion:The original formula is expanded intoφ ′:

(h1 = h2)∧ (v1 +v2 = 1)∧ (h1 = h2 → v1 = v2).

Again,Dec(LIA) impliesv1 6= v2 that contradictsh1 = h2∧ (h1 = h2 → v1 = v2).

program property predsDP callsold time (s)new time (s)

L IST-REVERSE NL 8 184 0.2 0.2
L IST-ADD NL∧AC∧IN 8 66 0.1 0.1

ND-INSERT NL∧AC∧IN 13 259 0.5 0.6
ND-REMOVE NL∧AC∧RE 12 386 0.9 1.2

ZIP [23] NL∧AC 22 9153 17.3 27.3
SORTED-ZIP NL∧AC∧SO∧IN 22 14251 22.8 46.2

SORTED-INSERT[27] NL∧AC∧SO∧IN 20 5990 13.8 25.3
BUBBLE-SORT [3] NL∧AC 18 3444 11.1 16.5
BUBBLE-SORT [3] NL∧AC∧SO 24 31446 114.9 209.0

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 8.8 14.9
REMOVE-SEGMENT [31] CY 15 944 2.2 10.0

SEARCH-AND-SET NL∧CY∧DT 16 4892 5.3 10.8
SET-UNION [36] NL∧CY∧DT∧IN 21 374 1.4 2.2
CREATE-INSERT NL∧AC∧IN 24 3020 14.8 15.6

CREATE-INSERT-DATA NL∧AC∧IN 27 8710 39.7 47.3
CREATE-FREE NL∧AC∧IN∧RE 31 52079 457.4 489.2

INIT-L IST NL∧AC∧DT 9 81 0.1 0.1
INIT-L IST-VAR NL∧AC∧DT 11 244 0.2 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.2 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 7918 77.9 108.1
REMOVE-DOUBLY NL∧DL∧RE 34 3238 24.3 33.0

REMOVE-CYCLIC-DOUBLY [27] NL∧CD∧RE 27 1695 15.6 15.7
L INUX -L IST-ADD NL∧CD∧IN 25 1240 6.4 8.9

L INUX -L IST-ADD-TAIL NL∧CD∧IN 27 1638 7.3 10.0
L INUX -L IST-DEL NL∧CD∧RE 29 2057 24.7 25.2

Table 1.Performance Comparison Against Previous Work [39]. The column “property” specifies
the verified property; “preds” is the number of predicates required for verification; “DP calls” is
the number of decision procedure queries; “old time” is the total execution time from [39]; “new
time” is the total execution time using MATHSAT. Our technical report [38] provides pseudocode
and lists the required predicates for these examples. Some of the examples have been taken from
related work, while the last three are from Linux kernel listcontainer.

5 Experimental Results

We ran MATHSAT extended with the unbounded reachability theory on a number of
HMP verification queries. The queries are from a simple predicate abstraction [19]-
based model checker that we are using to verify HMPs. This tool is a straightfor-
ward implementation of the software model checking algorithm with predicate abstrac-
tion [4], and is described in previous work [9, 39]. The experiments were executed on a
2.6 GHz Pentium 4 machine.

The first question is how much overhead the greater complexity of an integrated
SMT solver imposes. Table 1 gives a performance comparison with the previous re-
sults from [39], using the standalone decision procedure for the unbounded reachability
logic. The examples have either no data fields or only booleandata fields, so the pre-
vious work could handle them. The safety properties we checked (when applicable) of
the HMPs are:

– no leaks(NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic(AC) – the final list is acyclic, i.e.nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked(DL) – the final list is a doubly-linked list.
– cyclic doubly-linked(CD) – the final list is a cyclic doubly-linked list.
– sorted(SO) – list is a sorted linked list, i.e. each node’s data fieldis less than or

equal to its successor’s.
– data(DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements(RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed.

The comparison shows that the integration isn’t a serious overhead. Although MATH-
SAT, with the integrated unbounded reachability theory, isa more heavyweight tool
than the pure unbounded reachability decision procedure wewere using previously, the
performance penalty is reasonable.

The next question is whether the integration allows effectively verifying example
HMPs that could not be handled previously, such as the example in Fig. 1 from Sect. 2.

Without the integration into an SMT solver, we handled integer data fields by bit-
blasting them into a fixed number of boolean data fields that represented integers of a
certain bit width. We used 1-bit integers in most examples (except for SEARCH-AND-
SET where we used 2-bit integers) because the number of states (and therefore the
number of decision procedure queries) grows exponentiallywith integer bit width. Fur-
thermore, for HMP examples that use addition and multiplication, we would also have
had to implement n-bit integer addition and multiplication, which would add even more
complexity to the verification problem. We didn’t even attempt to verify such examples
in our previous work.

With the integration into MATHSAT, a rich set of other theories is available to
the verifier. Table 2 shows performance using MATHSAT on the HMP examples that
contain (unbounded) integer data fields. In the verificationof these examples, we are
using a combination of multiple theories, including unbounded reachability, uninter-
preted functions, and linear arithmetic. Some examples arethe same as before, but
with integers expanded from 1 or 2 bits to true integers. There is some slow-down for
verification with unbounded integers, but the runtimes are quite comparable to the cor-
responding versions in Table 1. Several additional examples use arithmetic operators on
the unbounded integers and have no analogue in Table 1. Overall, we see that we can
efficiently verify many examples using the combined theories.

6 Conclusions and Future Work

The paper describes integration of the unbounded reachability theory described in our
previous work into MATHSAT, a general purpose SMT solver. Integrating the theory
into MATHSAT — easily accomplished through its theory combination framework —

program property predsDP callstime (s)

SORTED-ZIP NL∧AC∧SO∧IN 22 5758 53.9
SORTED-INSERT NL∧AC∧SO∧IN 20 2972 40.4
BUBBLE-SORT NL∧AC 17 2348 16.9
BUBBLE-SORT NL∧AC∧SO 23 17427 371.3

REMOVE-ELEMENTS NL∧CY∧RE 17 3124 16.4
REMOVE-SEGMENT CY 15 944 10.3
SEARCH-AND-SET NL∧CY∧DT 16 5120 13.7

SET-UNION NL∧CY∧DT∧IN 22 766 5.8
CREATE-INSERT-DATA NL∧AC∧IN 27 8710 53.6

INIT-L IST NL∧AC∧DT 9 81 0.1
INIT-L IST-VAR NL∧AC∧DT 11 244 0.4
INIT-CYCLIC NL∧CY∧DT 11 200 0.4

SORTED-INSERT-DNODES NL∧AC∧SO∧IN 25 3636 175.7
LAZY-SIMPLE [7]* AC∧DT 21 9290 33.4

LAZY-SIMPLE-BACKW [7]* AC∧DT 15 1127 2.2
INIT-INCREMENT* AC∧DT 11 354 1.6

INIT-ADD* AC∧DT 11 354 1.8
INIT-ADD-FLAG* AC∧DT 12 499 1.4

INIT-MULT* AC∧DT 11 354 1.8
Table 2. Performance on Examples with Integer Data Fields. These examples could
not be verified without the SMT integration. Some examples are the same as in Ta-
ble 1, except with integer data fields; other examples, marked with *, are completely
new. Pseudocode and the required predicates for these examples can be downloaded from
http://www.cs.ubc.ca/∼zrakamar/software/hmp-examples.tar.gz.

provides access to the rich set of theories it supports. Using a combination of different
theories of the extended MATHSAT, we verified HMP examples we couldn’t handle
before. Comparing running times to our previous work shows that the much greater ex-
pressiveness comes with only a minor performance penalty. We believe this integration
of an HMP-verification logic into a general SMT solver will bebroadly applicable to
many software verification tools, allowing them to be easilyextended to handle both
heap-related and other software verification properties.

The primary direction for future work is to improve our predicate abstraction frame-
work to make better use of the capabilities of the combined SMT prover. Our simple
predicate abstraction engine eagerly enumerates a huge number of small queries to the
SMT solver and is therefore not benefiting from the solver’s powerful search algorithm.
Using techniques similar to theAllSAT approach to predicate abstraction [26] should
substantially improve performance.

References

1. W. Ackermann.Solvable Cases of the Decision Problem. Studies in Logic and the Founda-
tions of Mathematics. North-Holland, Amsterdam, 1954.

2. D. Babić and A. J. Hu. Structural abstraction of softwareverification conditions. InConf.
on Computer Aided Verification (CAV), pages 371–383, 2007.

3. I. Balaban, A. Pnueli, and L. Zuck. Shape analysis by predicate abstraction. InConf. on
Verification, Model Checking and Abstract Interpretation (VMCAI), 2005.

4. T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction
of C programs. InConf. on Programming Language Design and Implementation (PLDI),
pages 203–213, 2001.

5. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In Intl. Workshop on Construction and Analysis of Safe, Secureand Interoperable Smart
devices (CASSIS), 2004.

6. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describing linked data structures.
In European Symposium on Programming (ESOP), 1999.

7. D. Beyer, T. A. Henzinger, and G. Théoduloz. Lazy shape analysis. InConf. on Computer
Aided Verification (CAV), pages 532–546, 2006.

8. D. Beyer, T. A. Henzinger, and G. Théoduloz. Configurablesoftware verification: Concretiz-
ing the convergence of model checking and program analysis.In Conf. on Computer Aided
Verification (CAV), pages 504–518, 2007.

9. J. Bingham and Z. Rakamarić. A logic and decision procedure for predicate abstraction
of heap-manipulating programs. InConf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), pages 207–221, 2006.

10. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum, S. Ranise, and R. Sebas-
tiani. Efficient satisfiability modulo theories via delayedtheory combination. InConf. on
Computer Aided Verification (CAV), pages 335 – 349, 2005.

11. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum, S. Ranise, and R. Se-
bastiani. Efficient theory combination via boolean search.Information and Computation,
204:1493 – 1525, 2006.

12. M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. V. Rossum, S. Schulz, and R. Se-
bastiani. The MathSAT 3 system. InIntl. Conf. on Automated Deduction (CADE), pages
315–321, 2005.

13. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, andR. Sebastiani. Delayed theory
combination vs. Nelson-Oppen for satisfiability modulo theories: A comparative analysis. In
Intl. Conf. on Logic for Programming Artificial Intelligence and Reasoning (LPAR), pages
527–541, 2006.

14. N. Charlton and M. Huth. Hector: Software model checkingwith cooperating analysis plu-
gins. InConf. on Computer Aided Verification (CAV), 2007.

15. S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A reachability predicate for an-
alyzing low-level software. InTools and Algorithms for the Construction and Analysis of
Systems (TACAS), pages 19–33, 2007.

16. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI–C pro-
grams using SAT.Formal Methods in System Design, 25(2-3):105–127, 2004.

17. D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program checking, 2003.
Technical Report HPL-2003-148, HP Labs, Palo Alto, CA.

18. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended
static checking for Java. InConf. on Programming Language Design and Implementation
(PLDI), pages 234–245, 2002.

19. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. InConf. on Computer
Aided Verification (CAV), 1997.

20. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazyabstraction. InSymp. on
Principles of Programming Languages (POPL), pages 58–70, 2002.

21. N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between de-
cidability and undecidability for transitive closure logics. InWorkshop on Computer Science
Logic (CSL), pages 160–174, 2004.

22. F. Ivančić, I. Shlyakhter, A. Gupta, M. K. Ganai, V. Kahlon, C. Wang, and Z. Yang. Model
checking C programs using F-Soft. InIntl. Conf. on Computer Design (ICCD), pages 297–
308, 2005.

23. J. L. Jensen, M. E. Jørgensen, N. Klarlund, and M. I. Schwartzbach. Automatic verification
of pointer programs using monadic second-order logic. InConf. on Programming Language
Design and Implementation (PLDI), pages 226–236, 1997.

24. N. Klarlund, A. Møller, and M. I. Schwartzbach. MONA implementation secrets. InConf.
on Implementation and Application of Automata (CIAA), 2000.

25. S. Krstić, A. Goel, J. Grundy, and C. Tinelli. Combined satisfiability modulo parametric
theories. InTools and Algorithms for the Construction and Analysis of Systems (TACAS),
pages 618–631, 2007.

26. S. K. Lahiri, R. Nieuwenhuis, and A. Oliveras. SMT techniques for fast predicate abstraction.
In Conf. on Computer Aided Verification (CAV), pages 413–426, 2006.

27. S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. InSymp. on
Principles of Programming Languages (POPL), pages 115–126, 2006.

28. S. K. Lahiri and S. Qadeer. A decision procedure for well-founded reachability, 2007. Mi-
crosoft Research Tech Report MSR-TR-2007-43.

29. T. Lev-Ami, N. Immerman, T. W. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating
reachability using first-order logic with applications to verification of linked data structures.
In Conf. on Automated Deduction (CADE), 2005.

30. T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. InStatic
Analysis Symposium (SAS), pages 280–301, 2000.

31. R. Manevich, E. Yahav, G. Ramalingam, and M. Sagiv. Predicate abstraction and canonical
abstraction for singly-linked lists. InConf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), pages 181–198, 2005.

32. Z. Manna and C. G. Zarba. Combining decision procedures.In B. K. Aichernig and
T. S. E. Maibaum, editors,10th Anniversary Colloquium of UNU/IIST, volume 2757 ofLec-
ture Notes in Computer Science, pages 381–422. Springer, 2002.

33. S. McPeak and G. C. Necula. Data structure specificationsvia local equality axioms. In
Conf. on Computer Aided Verification (CAV), pages 476–490, 2005.

34. A. Møller and M. I. Schwartzbach. The pointer assertion logic engine. InConf. on Program-
ming Language Design and Implementation (PLDI), pages 221–231, 2001.

35. G. Nelson.Techniques for program verification. PhD thesis, Stanford University, 1979.
36. G. Nelson. Verifying reachability invariants of linkedstructures. InSymp. on Principles of

Programming Languages (POPL), pages 38–47, 1983.
37. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.ACM Trans.

Program. Lang. Syst., 1(2):245–257, 1979.
38. Z. Rakamarić, J. Bingham, and A. Hu. A better logic and decision procedure for predicate

abstraction of heap-manipulating programs, 2006. UBC Dept. Comp. Sci. Tech Report TR-
2006-02, http://www.cs.ubc.ca/cgi-bin/tr/2006/TR-2006-02.

39. Z. Rakamarić, J. Bingham, and A. J. Hu. An inference-rule-based decision procedure for
verification of heap-manipulating programs with mutable data and cyclic data structures. In
Conf. on Verification, Model Checking and Abstract Interpretation (VMCAI), pages 106–121,
2007.

40. S. Ranise and C. G. Zarba. A theory of singly-linked listsand its extensible decision proce-
dure. InIEEE Intl. Conf. on Software Engineering and Formal Methods(SEFM), 2006.

41. G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable patterns
in linked data-structures. InFoundations of Software Science and Computation Structures
(FOSSACS), 2006.

