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Abstract. Automated software verification has made great progresantige
and a key enabler of this progress has been the advancesciergffautomated
decision procedures suitable for verification (BoolearsBability solvers and
satisfiability-modulo-theories (SMT) solvers). Verifgiigeneral software, how-
ever, requires reasoning about unbounded, linked, héapa&td data structures,
which in turn motivates the need for a logical theory for setfuctures that in-
cludes unbounded reachability. So far, none of the avail8MT solvers supports
such atheory. In this paper, we present our integration etestbn procedure that
supports unbounded heap reachability into an available Sbier. Using the
extended SMT solver, we can efficiently verify examples adgienanipulating
programs that we could not verify before.

1 Introduction

Automated software verification has made great progressitiycwith several success-
ful tools developed in both industry and academia. A key énglbechnology for this
success has been the advances in automated decision prexedthe software verifi-
cation tools almost all rely on some form of automatic logreasoning engine. Some
rely on SAT (Boolean satisfiability) or BDDs (binary decigsidiagrams) to maintain
bit-accurate precision (e.g., [16, 22, 2]), whereas otheesSMT solvers (satisfiability
modulo theories — decision procedures for combinationgoidhble theories) in order
to capitalize on the natural abstractions present in soétwarification, such as integer
and real linear arithmetic, arrays, and uninterpretedtfans (e.g., [4, 20, 18, 5]).

To be broadly applicable, however, software verificatiasigonust be able to verify
programs with dynamic memory allocation, i.e., that matafipotentially unbounded,
heap-allocated, linked data structures via pointers.cigh verification of sucheap-
manipulating programgHMPSs) is obviously undecidable in general, careful crafti
can produce alogic that is expressive enough to verify itgmbproperties of programs,
yet is still decidable. In particular, a crucial feature farch logics is the ability to
specify unbounded reachability (e.g., from nodas it possible to reach nodgby
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following pointers) and related concepts such as betwesn&ightly more expressive
logics, however, are undecidable [21].

Logics for HMP verification have long been a topic of reseakslen Nelson’s sem-
inal work on software verification with SMT solvers suppadrtetheory of unbounded
S-expressions, although without reachability [35, 378 aoon thereafter, Nelson pro-
posed a first-order axiomatization that approximated unded reachability [36]. The
past few years, however, have seen a blossoming of reseattlisiarea, with nu-
merous proposed logics and decision procedures for HMREB, warying degrees of
expressiveness and efficiency, e.g., [3,6,9,15,21,22233, 34,39-41]. Research
progress has been great, with verification examples tha¢ Wweyond the reach of
methods just a few years ago now being verified in seconds.eMenythe research
on HMP verification has focused almost exclusively on thephesification aspects,
while mainstream software verification research has lgrgglored HMP verification
— an understandable division, given the difficulty of botblgdems.

With the logics and decision procedures for HMPs maturihg,ttme is right to
integrate them back into a general SMT solver, to enabldiwation of more general
software. We want to verify software, including softwarattmanipulates heaps, not
just software thabnly manipulates heaps! A few researchers have started in this di
rection. For example, Lahiri and Qadeer have expressedcamiplete axiomatization
of unbounded reachability as universally quantified axigmihe Simplify first-order
prover [17], allowing verification of heap and non-heap @migs and their interactions,
but with a substantial performance penalty [27]. Beyer e{@ltake a different ap-
proach, making calls to a specialized HMP verification sysfine TVLA system [30])
to handle the heap aspects of the verification from withirir then-heap-aware soft-
ware verification tool. They report excellent performarmé,such a loose combination
doesn't allow verification of general interactions betwheap properties and other pro-
gram properties. In very recent follow-on work [8], they adtstrengthening” operator
to propagate additional information between the heap amdhaap theories, but still
not all interactions are captured. Similarly, Charlton &hdh [14] propose a software
model checker in which separate analysis plugins (suchrdeefps and for other theo-
ries) can cooperate, but the communication is ad hoc, se #rerno guarantees that all
interactions between theories are propagated. Closestriovark is extremely recent
work by Lahiri and Qadeer [28]: Instead of their previoustfosder axiomatization,
they present a decision procedure based on a complete satiterrules, inspired by
our previous work [9]. However, they prototype an implenagion of the rewrite rules
by using the same trick of modeling rewrite rules as uniMgrspuantified first-order
axioms inside the theorem prover, as before. Practicaldmphtation of their decision
procedure into an SMT solver has not yet been done. The oslyiguomising next
step is a tight integration of an efficient decision procedior an HMP logic directly
into a modern SMT solver, making all of the theories, andrtimééractions, efficiently
available for the verification task. So far, however, nobbdg actually done such an
integration.

In this paper, we present the theory, methodology, and tesfilsuch an integra-
tion. In particular, we integrate our recent, efficient dem procedure for an HMP
logic that supports unbounded reachability [39] into thalelsshed SMT solver MTH-



1: procedure INIT-ADD-FLAG(head val)

2: assume reach(nextheadt) A reach(nextheadnil) A -t = nil A oldSum =
data_int(sumt) A oldFlag=data_bool(flag,t)
3: curr :=head
4: while —curr=nil do
5: if =(curr—flag) then
6: curr—sum:= curr—sum+-val;
7: curr—flag:= true;
8: end if
9: curr ;= curr—next
10: end while
11: assert reach(nextheadt) A reach(nextheadnil) A =t = nil A data_bool(flag,t) A

(oldFlagV data_int(sumt) =oldSum-val)
12: end procedure

Fig. 1. HMP (Heap-Manipulating Program) Example. The procedung-l/ADD-FLAG adds the
integer variableval to integer fieldsumof every node whose boolean fiefdiag is false in an
acyclic singly-linked list. Also, boolean fielfllag of those nodes is set toue. We denote an
integer data field namezlimof a nodex by data_int(sumx), a boolean data field namédtiag of

a nodex by data_bool( flag, x), and the node pointed to by a pointer field namedt of nodex
by next(next x). Subformulas of the formeach(next x,y) express that node y is reachable from
node x by following a sequence of any numbenektpointer fields. We will formally define these
predicates in Sect. 3. The fact thdtis reachable fronmeadenforces the acyclicity assumption.
VariablesoldSumandoldFlag are used to store values of fielsismand flag of nodet before
the procedure starts, respectively. In #ssumeandassertstatements, variablerepresents an
arbitrary node (Skolem constant). Since our framework abegpport quantification, we use the
trick of introducing Skolem constants to represent unaysjuantified variables.

SAT [12].2 Our results indicate that the integration was fairly stnéigrward (as was
hypothesized in [39] and thanks to the design ofMASAT [10, 11]), the performance
overhead of the integration was reasonable, and the iiegrenabled verification of
many example HMPs that we could not verify before.

2 Motivating HMP Example

In our framework, theheapconsists of an unbounded number of hemges HMPs
can have program variables that are pointer variables {g@sihand data variables of
different types. Similarly, heap nodes can have any numbpoioter fields (i.e. links
to other nodes) and data fields of different types.

We'll motivate the work presented in this paper with an iltaive HMP example
given in Fig. 1. The procedureilT-ADD-FLAG adds the value of the integer variable
val to integer fieldsumof every node whose boolean fiefdag is false in the non-
empty acyclic singly-linked input lishead Furthermore, boolean fieltlag of those
nodes is set torue. Necessary assumptions are formalized byatbsumestatement on
line 2 of the program. The body of the procedure is simpleaitarses the list, finds

3 The extended MTHSAT is available aht t p: / / mat hsat .itc.it/.



head prev curr nil

next | net || net || net | next
sum 10 sum 10 sum 10 sum 33
flag TRUE flag TRUE flag TRUE flag FALSE

Fig. 2. Heap Structure Example. In this example, each list node pager fieldnext an integer
data fieldsum and a boolean data fiefthg. We modelnil as just a node whereext(f, nil) = nil
for all pointer fieldsf.

nodes whose fieldlag is false, and on line 6 addsal to the data fieldsumat each
iteration. Also, it assigns fieldlag to true on line 7. The specification is expressed
by the assert statement on line 11, and indicates that whenever line 1gdshed,
head points to an acyclic singly-linked list with fieldumof all nodes whoselag
field wasfalse incremented byval. The verification problem we are solving can be
stated as follows: given an HMP, determine whether it is igechat all executions
that satisfy allassumestatements also satisfy alssertstatements. Note that even this
simple example is beyond the capability of typical softwaredel-checking tools: it
is infinite-state due to both the unbounded integers as wdh@unbounded heap. To
verify such programs, we employ abstraction, using an SMméwork extended with
a suitable logical theory described in the next section.

3 Logic for Verifying Heap-Manipulating Programs

Before we define our logic, we’ll intuitively illustrate biasconcepts on the example
of a heap structure shown in Fig. 2. In this heap structuead, prev, currandnil are
pointer variablespextis a pointer field used to link nodes in the acyclic Imimis an
integer data field, anitegis a boolean data field. The node to which we get by following
the nextpointer field from the node pointed to neadis denoted in our syntax with
next(next head). The data fieldlag of the node pointed to bgrevis accessed with
data_bool(flag, prev). The node pointed to bgurr is reachable from the node pointed
to by headby following nextpointer fields, and that concept of unbounded reachability
in our syntax is written agach(next head curr).

The syntax of our logic is presented in Fig. 3. It is a quantiiee fragment of
first-order logic that contains two equational theories:

1. Theory of data fields with the signatufe-,data, update_dfield}. The theory of
data fields can be easily translated into the theory of urpné¢ed functions as
described in Sect. 4.3. For the simplicity of presentatiorthis section we give
a single untyped theory of data fields. However, without th&slof generality,
we can extend this to a family of theories of data fields whaogeasures are pa-
rameterized using the respective data types. Currentlysupport only boolean
and integer data fields with the signatufes, data_bool, update_dfield_bool} and
{=,data_int,update_dfield_int}, but that can easily be extended to other data types
supported by the SMT solver (e.g. reals).



¢ < Constants
x € DataVariables \e PointerVariables
d,d < DataFields f f’ ¢ PointerFields
NodeTerm ::= v | next(f,NodeTerm
DataTerm ::= c | x | data(d,NodeTerm
Atom ::= NodeTerm=NodeTerm| DataTerm=DataTerm |
reach(f,NodeTermNodeTerm |
between(f,NodeTermNodeTermNodeTerm
Literal ::= Atom| —Atom |
update_pfield(f,NodeTermNodeTermf’) |
update_dfield(d, NodeTermDataTermd’)
Formula ::= Literal | Formulan Formula | Formulav Formula

Fig. 3. Syntax of the Logic. For brevity, we show the logic with urggpdata fields.

2. Theory of unbounded reachability, which is defined belwith the signaturg =,
next, reach, between, update_pfield}.

Clearly, the signatures (other than equality) of these tvamties are disjoint, and are
also disjoint from the signatures of the various theoriestMISAT currently supports,
such as difference logic, linear arithmetic over reals, larehr arithmetic over integers.

3.1 Theory of Unbounded Reachability

The theory of unbounded reachability over heap nodes presdere is essentially the
same as in [39], except that reasoning about data fields isnmaved into the theory
of data fields and handled by the SMT solver (see Sect. 4.3).th&ory assumes a
finite set of pointer variableBointerVariables which model program variables that
point to nodes in the heap, and a finite sepointer functionsymbolsPointerFields
which model pointer fields from a heap node to another heap.riatérals of the form
x=Yy, =x=Yy, reach(f,x,y), and—-reach(f,x,y) (wherexandy areNodeTermare called
equality, disequality reachability, andunreachabilityliterals, respectively. Literals of
the formbetween(f,x,y,z) or its negation are calldoetweeriterals.

The structures over which the semantics of the theory areetbfire calledheap
structures Formally, a heap structutd = (N,©) consists of a set afodes Nand an
interpretation functior®. The interpretation functio® interprets each symbat in
PointerVariablesJ PointerFields so that:

— Each pointer variable symbal € PointerVariabless interpreted as a nod®(o) €
N.

— Each pointer function symbat € PointerFieldsis interpreted as a mapping from
nodes to node®(o) € N — N.

The interpretation functio® extends to interpret any term, atom, or literal of
the theory in a straightforward, inductive way. The intetation of a node termm €
PointerVariabless defined above, otherwise has the forrmext(f,1’) for some node
term 1/, and the interpretation i®(1) = ©(f)(©(1’)). Atoms are interpreted b§ as
boolean values:



— An equality atont; =17 is interpreted asrue iff O(11) = O(12).

— Areachability atonmreach(f, 11, T2) is interpreted asrue iff there exists soma > 0
such tha®(f)"(O(11)) = O(12).4

— Abetween atonbetween(f, 11, T2, T3) is interpreted asrue iff there existng, mg > 0
such that®(12) = ©(f)(O(11)), O(13) = O(f)™(O(11)), N < My, and for all
n,m such thato(1z) = O(f)"(O(11)), O(13) = O(F)™(O(11)), We haveny < n
andmg < m.

The interpretation of a pointer field update litetaldate_pfield(f, 11,12, f') is defined
using the well-knownipdate operato? astrue iff

O(f') = update(O(f),0(11),0(12)).

Finally, the interpretation of a literal that is of the forap whereg is an atom is simply
defined a®© (—¢@) = -O(@).

In previous work [9, 39], we described a saturation-basesam procedure for the
theory of unbounded reachability. The decision procedsiteased on the exhaustive
application of a set of inference rules and, as we showed amédbar of experiments, is
very efficient. Furthermore, we presented some theoretisalts behind our logic and
decision procedure [38]: our decision procedure is sountladways terminates, and
the decision procedure is complete for the fragment of thelaithout updates. The
experiments showed that in practice completeness was ris$a®, as we could verify
all examples that we could specify.

3.2 Example

Returning to our example from Fig. 2, we'll illustrate thevsantics of our logic ex-
tended with the boolean and integer data field types on thap ls&ructure with the
interpretation of a few representative literals:

— reach(next head curr) is interpreted asrue because the node pointed todyr is
reachable from the node pointed to lgadfollowing nextpointer fields.

— reach(next head nil) is interpreted asrue because the nodel is reachable from
the node pointed to bigeadfollowing nextpointer fields. The fact thatil is reach-
able fromheadenforces the acyclicity assumption.

— next(next curr) = nil is true because the node to which we get by following one
nextpointer field fromcurr is nil.

— data_bool(flag,prev) < true is interpreted asrue because the boolean fiefldg
of the node pointed to byrevis set totrue.

— data_int(sumprev) =10 is interpreted ague because the integer fietkdimof the
node pointed to bprevis set to 10.

— between(next head prev, curr) is true because noderevis betweerheadandcurr.

— between(next head nil, curr) is interpreted aflse because nodel is not between
nodesheadandcurr.

4 Here, function exponentiation represents iterative apfithn: for a functiorg and an element
xin its domain,g®(x) = x, andg"(x) = g(g"1(x)) for all n > 1.

5If g is a function,a is an element irg’s domain, and is an element irg’s codomain, then
update(g,a,b) is defined to be the functiohx.(if x = athenb elseg(x)).
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Fig. 4. An example of a heap structut¢ (top), and a constructed infinite heap structtte
(bottom) which satisfies every quantifier-free formtahat is satisfied byA.

4 Theory Integration into M ATH SAT

In this section, we briefly recall some recent results camiogrtheory combination in
SMT, and we disclose some details about the integrationeothibory of unbounded
reachability into MaTHSAT.

4.1 Efficient and Flexible Nelson-Oppen in SMT

Many verification tasks require the specification of projeerat a level of expressive-
ness that is better captured by a logic that is the resultetdmbination (or union)
of simpler theorie§; andT,, defined over signatures and>»,, respectively. In many
situations, decision proceduresc ( T;) forT;,i = 1,2, are already available to be used.

Nelson and Oppen [37] showed that given two equational teedt andTy, it is
possible to derive a procedubec( T, UT,) for deciding quantifier-free formulae over
T1 UT,, provided that:

— T1 andT; are signature-disjoint (i.&1 N 2, = 0);
— Ty andT, arestably infinité.

A theory is stably infinite if for every satisfiable quantifiigee formulag, there exists
an interpretation satisfying whose domain is infinite. Many theories of interest are
stably infinite, including the theory of integers and theottysof unbounded reachability
from Sect. 3.1:

Theorem 1. The theory of unbounded reachability (Sect. 3.1) is statfipite.

6 This restriction has been relaxed in the recent work by Kestial. [25].



Proof. Let ¥ be a satisfiable quantifier-free formula, and fet= (N,©) be a heap
structure satisfying/. We'll show that one can always construct an infinite heajcstr
tureH’ = (N', @) satisfying¥. Fig. 4 gives an example of how this is done. Basically,
adding to the heap structulrban infinite number of nodes that point to themselves (and
not changing the existing nodes) creates an infinite heaptatieH’ satisfyingW.

The heap structure’ is formally defined as follows. First, we fix an infinite set of
nodesNin¢ disjoint fromN. Then, we define\’ = NU Ny, and interpretatio®’ as
follows:

Interpretation functio®’ interprets each symbat € PointerVariablesso that

©'(0)=0(0)
Every pointer function symbdl € PointerFieldsis interpreted so that

, fO(r) ifteN
o1\ _
=)= { T otherwise

SinceH is a heap structure satisfyirtf), the formula’ cannot syntactically include
any of the nodes itNj¢. Furthermore, for each type of atom, the additional nodes in
Ninf cannot change the truth values of those atoni#isince the new nodes are dis-
connected from the existing structure, which is unchangbdreforeH’ also satisfies

W, and its domain is infinite. []

The Nelson-Oppen combination schema can be summarizetl@g<¢for a more
accurate survey the reader is referred to [32]). The inpantjfier-free formulap on
T1UTyis initially purifiedinto an equisatisfiable formulta A ¢ such thatp belongs to
T;, fori =1,2. This can be easily achieved with the introduction of a $étesh vari-
ables. The procedure is then based on an exhaustive comationibetweemec ( T;)
and Dec( T,) by means ofinterface equalities, i.e. equalities between variables in
vars @) Nvars @). Roughly speaking, the exchanging of interface equaliiesuf-
ficient for Dec( T;) andDec( T,) to achieve aragreemenbn a common model, if
such a model exists. This communication has to be implerdertaundDec ( T;) and
Dec( Ty) in order to obtain a corre@ec( T UT) .

The Nelson-Oppen method is not limited to only two theoriegact, if T; andT,
are stably infinite, their uniofy U T, is stably infinite as well. If we are given a decidable
stably infiniteT; over 23 and(2, U 2Z,) N 23 = 0, than we can apply Nelson-Oppen and
obtain aDec( TLUT,UTs) .

The introduction of a combination framework into an SMT golaecan be naively
done by considerinBec( T,UT,) as a singléheory-solverby straightforwardly adapt-
ing a DPLL-likeBool +Dec(T) schema into 800l +Dec( T,UT,) setting.

Delayed Theory CombinatididTC) [10, 11] is an alternative approach specifically
studied for SMT solvers, based on the observation that @ssiple to lift to the boolean
level the communication of interface equalities betweenthieory-solvers, by exploit-
ing the boolean engine on top of them. The new framewBwk| +Dec( T1) +Dec( T2) ,
can be easily achieved as follows.

Given a purified formulap, A @, the atom seE = {X; = Xz | X1,%2 € varg(@y) N
vars(@,)} is first generatecE is nothing but the set of interface equalities that the two



theory-solversbec( T;) andDec( T,) , mightneed to exchange at any point in time.
Any set of theory-atomE assigned to a truth value by the SAT-solver during the search
is divided intol; = I Ulg andl, = I, U, wherel; are atoms belonging @, for

i = 1,2, while g is a set of atoms ifE. The setl}’ is fed to the corresponding solver
Dec(T;) to be checked for consistency.

Intuitively, the communication iDec( T; UTy) , required for the correctness of the
Nelson-Oppen procedure, is now emulated by the introdonafdnterface equalities
that are shared by the two theories. In spite of the (potéyjtiquadratic number of
new atoms generated i it is easily possible to control the model enumeration & th
SAT-solver, as shown in [13], in order to avoid an enlargetoéthe search space.

The implementation of ool +Dec( T;) +Dec( T,) schema presents several ad-
vantages with respect to a standBabl +Dec( TiUTy) :

— There is no need to build a Nelson-Oppen “b®&c( Ty UTy) aroundDec( Ty)
andDec( T,) , because the integration is implicitly handled at the baolevel and
not at the solver level.

— Mixed-conflict generation is automatic.

— Disjunction in case of non-convex theories is automatjdadindled at the boolean
level, while in Nelson-Oppen it must be handled insic( T UTy) . This re-
sults in a better efficiency, because of the mechanisms &flraping and learning
implemented in state-of-the-art SAT-solvers.

— The theory-solvers do not need deduction capabilitiesoirirast, this is a require-
ment in Nelson-Oppen. This feature greatly simplified thegnation, since our
pre-existing decision procedure for the heap logic did mytlement deduction.

4.2 Handling Uninterpreted Functions via Ackermann’s Expansion

Ackermann’s expansion [1] is a technique by means of whichpbssible to translate
a quantifier-free formula ovef UEUF into an equisatisfiable formulgl overT only,
whereEUF is the well-known theory of Uninterpreted Functions withuadty.

Since function symbols are uninterpreted, the only requénet for satisfiability is
functional consistengy.e. the implication A1t =s) — f(t1,...,ta) = f(S1,...,S)
must hold for every function symbdl of arity n, wheret; ands are terms.

In Ackermann’s expansion, in order to fulfill the above cdiwi, every distinct
function applicationf (t,...,tn) in @ is replaced with a fresh variabig, . t.). For
each function symbof of arity n, the obtained formula is then augmented with a set
of axioms of the kind A\l ;ti =s) — Vi, tn) = Vi(s,...sn)» TOT €very pair of distinct
fresh variables. It is easy to prove that the resulting fdangri no longer contains any
UF symbol and it is equisatisfiable to the origiral

The same transformation can be used to remove uninterppe¢elicate symbols,
using fresh boolean variables and the logical conneetite equate them in the axiom
instantiations.

4.3 Theory Integration

We have integrated the unbounded reachability decisiooeohare from Sect. 3.1 as a
theory-solveiDec( HMP) into MATHSAT, resulting in a framework for the verifica-



tion of HMPs supporting boolean and integer data fields, btemtially also any other
data type already handled byAviH SAT.

The rationale behind our combination is to separate theg'meachability” part of
the formula from the reasoning about “data”, in order to eebia modular SMTH{MPU
T) decision procedure, wherE is the theory for a generic data type. In particular,
in the current implementation, we provide in the input laage a binary predicate
data_bool(d, h), and a binary functiodata_int(d, h) that can be used to select a boolean
or an integer stored id € DataFieldof h € NodeTermNotice that both constructs are
uninterpreted, and they merely represent a modular solttidridge the data and the
heap part.

For boolean data, we can exploit the SAT-solver inTM SAT to decide subfor-
mulae expressed on boolean data, by the Ackermann’s exjpamisihedata_bool(.,.)
predicate. The interaction between the integer sdbeer( LIA) (orin general, the non-
boolean) reasoning adkc( HMP) can be dealt with in two different ways, either us-
ing aBool +Dec( HMP) +Dec( LIA) +Dec( EUF) schema, or 8ool +Dec( HMP)
+Dec( LIA) schema, after the Ackermannizationdata_int(.,.) symbols.

Update operations on dati@date_dfield(d,t,v,d’) may be eagerly replaced with a
set of axiomg{d'(t) ~ v} U{s#t — d'(s) ~ d(s) | s€ NT}, wherex is the equality=
for integer data and- for boolean data, and T is the set oNodeTerrs that appear in
the formula. This solution is far from being optimal, but ibsked well in practice for
our experiments, where only a few updates were required.

Dec( HMP) , as any other theory-solver, also benefits ofEue--layer of MATH -
SAT. Our experiments show that in many cases this layer fcgirit to determine the
unsatisfiability of a query.

Example 1.We are given the following quantifier-free unsatisfiable SMWMP ULIA)
formula g:
(data_int(d,h1) 4+ data_int(d,hp) = 1) A (hy = hp)

Using Delayed Theory Combinatione first purify @ into ¢’ with the introduction of
two new fresh variableg, andv,, obtainingg’:
(Vj_ = data_int(d, hl)) A (V2 = data_int(d, hz)) A (V1+V2 = 1) A (hl = hz).

The interface equality; = v» is also generated. The atoms are assigned to the theories
as follows:

HMP {h; = hy}
LIA {V1+V2 =1lvi= Vz}
EUF {Vl e data_int(d, hl),Vz = data_int(d, hz), hy =hy,vp = Vz}.

The SAT-solver assigns every atomghto true. The contradiction is derived because
Dec( LIA) immediately impliess; # Vo, which falsifies the functional consistency in
Dec( EUF) .

Using Ackermann’s Expansiorhe original formula is expanded intg:
(hh=h)A(Vi+Vv2=1) A (M =hy—vi=v).
Again,Dec( LIA) impliesvy # v, that contradictéy = hp A (hy =hy — vi = vy).



program | property  [pred$DP callgold time (sJnew time (s)

LIST-REVERSE NL 8 184 0.2 0.2
LisT-ADD NLAACAIN 8 66 0.1 0.1
ND-INSERT NLAACAIN 13 259 0.5 0.6
ND-REMOVE NLAACARE 12 386 0.9 1.2
Zip [23] NLAAC 22 9153 17.3 27.3
SORTED-ZIP NLAACASONIN 22| 14251 22.8 46.2
SORTED-INSERT[27] NLAACASONIN 20, 5990 13.8 25.3
BUBBLE-SORT[3] NLAAC 18| 3444 11.1 16.5
BUBBLE-SORT[3] NLAACASO 24 31444 114.9 209.q
REMOVE-ELEMENTS NLACYARE 17| 3124 8.8 14.9
REMOVE-SEGMENT[31] CY 15 944 2.2 10.0
SEARCH-AND-SET NLACYADT 16) 4892 5.3 10.8
SET-UNION [36] NLACYADTAIN 21 374 1.4 2.2
CREATE-INSERT NLAACAIN 24 3020 14.8 15.6
CREATE-INSERT-DATA NLAACAIN 27| 8710 39.7 47.3
CREATE-FREE NLAACAINARE | 31 52079 457.4 489.21
INIT-LIST NLAACADT 9 81 0.1 0.1
INIT-LIST-VAR NLAACADT 11 244 0.2 0.4
INIT-CYCLIC NLACYADT 11 200 0.2 0.4
SORTED-INSERFDNODES NLAACASONIN 25 7918 77.9 108.1
REMOVE-DoOUBLY NLADLARE 34 3238 24.3 33.0
REMOVE-CycLIc-DousLy [27]| NLACDARE 27 1695 15.6 15.7
LINUX-LIST-ADD NLACDAIN 25 1240 6.4 8.9
LINUX-LIST-ADD-TAIL NLACDAIN 27| 1638 7.3 10.0
LiNuX-LIST-DEL NLACDARE 29 2057 24.7 25.2
Table 1.Performance Comparison Against Previous Work [39]. Tharol “property” specifies

the verified property; “preds” is the number of predicategined for verification; “DP calls” is
the number of decision procedure queries; “old time” is tialtexecution time from [39]; “new
time” is the total execution time using MHSAT. Our technical report [38] provides pseudocode
and lists the required predicates for these examples. Sbthe examples have been taken from
related work, while the last three are from Linux kernel éishtainer.

5 Experimental Results

We ran MaTHSAT extended with the unbounded reachability theory on abermof
HMP verification queries. The queries are from a simple wagdi abstraction [19]-
based model checker that we are using to verify HMPs. Thisita straightfor-
ward implementation of the software model checking algaomitvith predicate abstrac-
tion [4], and is described in previous work [9, 39]. The exemts were executed on a
2.6 GHz Pentium 4 machine.

The first question is how much overhead the greater complexian integrated
SMT solver imposes. Table 1 gives a performance comparistinttwe previous re-
sults from [39], using the standalone decision procedurthfounbounded reachability
logic. The examples have either no data fields or only boodizaa fields, so the pre-
vious work could handle them. The safety properties we ob@¢when applicable) of
the HMPs are:



— no leakgNL) — all nodes reachable from the head of the list at therrégg of the
program are also reachable at the end of the program.

— insertion (IN) — a distinguished node that is to be inserted into a #sadtually
reachable from the head of the list, i.e. the insertion “veolk

— acyclic(AC) — the final list is acyclic, i.enil is reachable from the head of the list.

— cyclic (CY) —list is a cyclic singly-linked list, i.e. the head ofehist is reachable
from its successor.

— doubly-linked(DL) — the final list is a doubly-linked list.

— cyclic doubly-linkedCD) — the final list is a cyclic doubly-linked list.

sorted(SO) — list is a sorted linked list, i.e. each node’s data fisltéss than or

equal to its successor’s.

data(DT) — data fields of selected (possibly all) nodes in a listsat to a value.

node(s) was (were) actually removed.

The comparison shows that the integration isn't a serioestmad. Although MTH-
SAT, with the integrated unbounded reachability theory imore heavyweight tool
than the pure unbounded reachability decision procedungeve using previously, the
performance penalty is reasonable.

The next question is whether the integration allows eféetyi verifying example
HMPs that could not be handled previously, such as the exaimlig. 1 from Sect. 2.

Without the integration into an SMT solver, we handled ietedata fields by bit-
blasting them into a fixed number of boolean data fields thaesented integers of a
certain bit width. We used 1-bit integers in most examplesépt for SARCH-AND-
SET where we used 2-bit integers) because the number of statdstitarefore the
number of decision procedure queries) grows exponentiatlyinteger bit width. Fur-
thermore, for HMP examples that use addition and multifibea we would also have
had to implement n-bit integer addition and multiplicatiaich would add even more
complexity to the verification problem. We didn’t even atterno verify such examples
in our previous work.

With the integration into MTHSAT, a rich set of other theories is available to
the verifier. Table 2 shows performance usingm™ SAT on the HMP examples that
contain (unbounded) integer data fields. In the verificatibthese examples, we are
using a combination of multiple theories, including unbded reachability, uninter-
preted functions, and linear arithmetic. Some examplegteesame as before, but
with integers expanded from 1 or 2 bits to true integers. &liesome slow-down for
verification with unbounded integers, but the runtimes alieeqcomparable to the cor-
responding versions in Table 1. Several additional exasnme arithmetic operators on
the unbounded integers and have no analogue in Table 1. iDvezasee that we can
efficiently verify many examples using the combined thexrie

6 Conclusions and Future Work

The paper describes integration of the unbounded readyahiory described in our
previous work into M\THSAT, a general purpose SMT solver. Integrating the theory
into MATHSAT — easily accomplished through its theory combinati@mfework —

remove elementéRE) — for examples that remove node(s), this states that the



| program | property  [pred$DP callgtime (s)

SORTED-ZIP NLAACASONIN 22| 5754 53.9
SORTED-INSERT NLAACASONIN 201 2972 40.4
BUBBLE-SORT NLAAC 17| 2348 16.9
BUBBLE-SORT NLAACASO 23 17427 371.3
REMOVE-ELEMENTS NLACYARE 17] 3124 16.4
REMOVE-SEGMENT CcY 15 944 10.3
SEARCH-AND-SET NLACYADT 16/ 5120 13.7
SET-UNION NLACYADTAIN 22 766 5.8
CREATE-INSERTDATA NLAACAIN 27| 8710 53.q
INIT-LIST NLAACADT 9 81 0.1
INIT-LIST-VAR NLAACADT 11 244 0.4
INIT-CYCLIC NLACYADT 11 200 0.4
SORTED-INSERFDNODES | NLAACASQONN 25| 363§ 175.7
LAZY-SIMPLE [7]* ACADT 21 9290 33.4
LAzy-SIMPLE-BACKwW [7]* ACNDT 15 1127 2.2
INIT-INCREMENT* ACADT 11 354 1.6
INIT-ADD* ACADT 11 354 1.8
INIT-ADD-FLAG* ACADT 12 499 1.4
INIT-MULT* ACADT 11 354 1.8

Table 2. Performance on Examples with Integer Data Fields. Thesemgbes could
not be verified without the SMT integration. Some examples #re same as in Ta-
ble 1, except with integer data fields; other examples, nthrkéth *, are completely
new. Pseudocode and the required predicates for these ksamgn be downloaded from
http://ww. cs. ubc. ca/ ~zr akamar/ sof t war e/ hnp- exanpl es. tar. gz.

provides access to the rich set of theories it supports.dsicombination of different
theories of the extended MHSAT, we verified HMP examples we couldn’t handle
before. Comparing running times to our previous work shdws the much greater ex-
pressiveness comes with only a minor performance penaéiyo&ieve this integration
of an HMP-verification logic into a general SMT solver will beoadly applicable to
many software verification tools, allowing them to be easityended to handle both
heap-related and other software verification properties.

The primary direction for future work is to improve our predlie abstraction frame-
work to make better use of the capabilities of the combined Sivbver. Our simple
predicate abstraction engine eagerly enumerates a hugeemaismall queries to the
SMT solver and is therefore not benefiting from the solveowerful search algorithm.
Using techniques similar to th&lISAT approach to predicate abstraction [26] should
substantially improve performance.
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