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Abstract. Context-bounded analysis is an attractive approach to verification of
concurrent programs. Bounding the number of contexts executed per thread not
only reduces the asymptotic complexity, but also the complexity increases grad-
ually from checking a purely sequential program.
Lal and Reps [14] provided a method for reducing the context-bounded verifica-
tion of a concurrent boolean program to the verification of a sequential boolean
program, thereby allowing sequential reasoning to be employed for verifying con-
current programs. In this work, we adapt the encoding to work for systems pro-
grams written in C with the heap and accompanying low-level operations such
as pointer arithmetic and casts. Our approach is completely automatic: we use
a verification condition generator and SMT solvers, instead of a boolean model
checker, in order to avoid manual extraction of boolean programs and false alarms
introduced by the abstraction. We demonstrate the use of field slicing for improv-
ing the scalability and (in some cases) coverage of our checking. We evaluate our
tool STORM on a set of real-world Windows device drivers, and has discovered a
bug that could not be detected by extensive application of previous tools.

1 Introduction
Context-bounded analysis is an attractive approach to verification of concurrent pro-
grams. This approach advocates analyzing all executions of a concurrent program in
which the number of contexts executed per thread is bounded by a given constant K.
Bounding the number of contexts executed per thread reduces the asymptotic complex-
ity of checking concurrent programs: while reachability analysis of concurrent boolean
programs is undecidable, the same analysis under a context-bound is NP-complete [18,
15]. Moreover, there is ample empirical evidence that synchronization errors, such
as data races and atomicity violations, are manifested in concurrent executions with
small number of context switches [19, 16]. These two properties together make context-
bounded analysis an effective approach for finding concurrency errors. At the same
time, context-bounding provides for a useful trade-off between the cost and coverage
of verification.

In this work, we apply context-bounded verification to concurrent C programs such
as those found in low-level systems code. In order to deal with the complexity of low-
level concurrent C programs, we take a three-step approach. First, we eliminate all the
? This work was supported by a Microsoft Research Graduate Fellowship.



complexities of C, such as dynamic memory allocation, pointer arithmetic, casts, etc.
by compiling into the Boogie programming language (BoogiePL) [9], a simple pro-
cedural language with scalar and map data types. Thus, we obtain a concurrent Boo-
giePL program from a concurrent C program. Second, we eliminate the complexity
of concurrency by appealing to the recent method of Lal and Reps [14] for reducing
context-bounded verification of a concurrent boolean program to the verification of a
sequential boolean program. By adapting this method to the setting of concurrent Boo-
giePL programs, we are able to construct a sequential BoogiePL program that captures
all behaviors of the concurrent BoogiePL program (and therefore of the original C pro-
gram as well) up to the context-bound. Third, we generate a verification condition from
the sequential BoogiePL program and check it using a Satisfiability Modulo Theories
(SMT) solver [8].

In order to scale our verification to realistic C programs, we introduce the idea of
field slicing. The main insight is that the verification of a given property typically de-
pends only on a small number of fields in the data structures of the program. Our algo-
rithm partitions the set of fields into tracked and untracked fields; we only track accesses
to the tracked fields and abstract away accesses to the untracked fields. This approach
not only reduces the complexity of sequential code being checked, but also allows us to
soundly drop context-switches from the program points where only untracked fields are
accessed. Our approach is similar to localization-reduction [13], but adapted to work
with arrays. We present an algorithm for refining the set of tracked fields based on the
counterexample-guided-abstraction-refinement (CEGAR) loop, starting with the fields
in the property of interest. Our refinement algorithm is effective; on a number of exam-
ples it discovered the field abstraction that was carefully picked by a manual inspection
of the program.

We implemented our ideas in a prototype tool called STORM. We applied STORM
on several real-life Windows device drivers that operate in a highly concurrent setting,
and we clearly demonstrate its usability and scalability. Furthermore, we assess the
effect of code size, number of contexts, and number of places where a context-switch
could happen on STORM’s performance. In the process, we found a bug in one of the
drivers that could not be detected by extensive application of previous tools. The bug
was confirmed and fixed by the driver developers.

2 Translation

In earlier work, Lal and Reps [14] presented a mechanism for transforming a multi-
threaded program operating on scalar variables into a sequential program, with a fixed
context-bound. In this section, we show the main steps to transform a multithreaded
program written in C into a sequential program, using Lal and Reps method. The in-
put C programs support pointers, dynamic memory allocation, unbounded arrays, and
low-level operations such as casts and pointer arithmetic that are prevalent in systems
software. Our translation is performed in two steps:

1. Translate a multithreaded C program into a multithreaded BoogiePL program us-
ing the HAVOC tool [3]. The resultant BoogiePL program contains scalars and
maps, and operations on them. The translation compiles away the complexities of C



Locs l ::= ∗e | e→ f
Expr e ::= x | n | l | &l | e1 op e2 | e1⊕n e2

Command c ::= skip | c1;c2 | x := e | l := e | if e then c | while e do c

Fig. 1. A simplified subset of C.

E(x) = x
E(n) = n
E(e→ f ) = Mem f [E(e)+Offset( f )]
E(∗(e : τ)) = Memτ [E(e)]
E(&e→ f ) = E(e)+Offset( f )
E(&∗ e) = E(e)
E(e1 op e2) = E(e1) op E(e2)
E(e1⊕n e2) = E(e1)+n∗E(e2)

C(skip) = skip
C(c1;c2) = C(c1);C(c2)
C(x := e) = x := E(e);
C(l := e) = E(l) := E(e);
C(if e then c) = if E(e) then C(c)
C(while e do c) = while E(e) do C(c)

Fig. 2. Translation from C into BoogiePL.

programs related to pointers, dynamic memory allocation, casts, and pointer arith-
metic.

2. Translate the multithreaded BoogiePL program into a sequential BoogiePL pro-
gram, for a fixed context-bound. We show how to extend Lal and Reps method to
deal with programs with maps or arrays.

In the next two subsections, we describe these two steps in details.

2.1 Translating from C into BoogiePL

We present a translation of a simplified subset of C into BoogiePL programs. The trans-
lation is similar to the one presented earlier [6]; the main difference lies in splitting
the C heap into multiple maps corresponding to different fields and types in the pro-
gram, by assuming a field-safe C program — the field-safety can be justified formally
in HAVOC and we explain it in this section.

Figure 1 shows a simplified subset of C for illustrating the translation from C into
BoogiePL. We assume that the input program is well-typed in the original C type sys-
tem. Furthermore, all structures, global variables, and local variables whose address
can be taken are allocated on the heap. The field names are assumed to be unique and
Offset( f ) provides the offset of a field f in its enclosing structure. For this presentation,
we do not show how we handle nested structures and unions. The tool supports all the
features of C programming language and details of the translation can be found in ear-
lier work [6]. In the figure, Locs denotes the set of heap expressions that can be used or
assigned to, and Expr denotes the set of C expressions. The expressions include vari-
ables (x), constants (n), Locs and their addresses, binary operations (such as ≤), and
pointer arithmetic ⊕n over n-byte pointers. The language contains skip, sequential
composition, assignments, conditional statements, and loops.

Figure 2 shows our translation from C into BoogiePL. Initially, ignore the super-
script to Mem and assume there is a single Mem map. We represent the C heap using
the map Mem : int→ int that maps an address to a value. The operator E(e) describes
the translation of a C expression e. We use e : τ to denote that τ is the static type of



e. Addresses of fields and pointer arithmetic are compiled away in terms of arithmetic
operations. Finally, a dereference is translated as a lookup into the Mem map. The oper-
ator C(c) translates a C statement into BoogiePL and is self-explanatory. Assignments
to heap expressions result in updates to the Mem map.

The benefit of the translation with a single map Mem is that it does not rely on the
types and the type-safety of a C program. However, the lack of types can make disam-
biguating locations in the heap difficult. For example, the following assertion cannot be
proved without knowledge about the layout of the pointers x and y:
x->f = 1; y->g = 0; assert(x->f == 1);

To disambiguate heap locations, we had earlier proposed the use of a map Type : int→
type that maintains a “type” with each location in the heap [6]. A global quantified type-
safety invariant relating the contents of Mem and Type is asserted after every update
to the heap; the assertion ensures that the runtime type of a pointer corresponds to its
static type. The type safety invariant helps disambiguate pointers and fields of different
types, such as the pointers &x->f and &y->g in the example above.

Although the scheme described above provides an accurate memory model for C,
using the type invariant while checking other properties is computationally expensive
as this invariant makes use of quantifiers. Therefore, we have adopted the following
strategy that provides a way for a separation of concerns. We split the Mem map into a
set of maps where there is a map Mem f for each (word-valued) field f and Memτ for
each pointer type τ , and use the translation shown in Figure 2. We then add assertions
for each memory dereference as follows: for a dereference e→ f in a statement, we
assert Type[E(e)+Offset( f )] = f , and for a dereference ∗e, we assert Type[E(e)] = τ .
These assertions are checked during the type-checking phase. If the assertions can be
proved by the type-safety checker in HAVOC or other orthogonal techniques [21], we
say that the resultant program is field-safe with respect to our choice of memory splits.
This allows us to have a high-level (Java-like) view of the C heap while proving the
concurrency related properties, without sacrificing soundness. Besides, as we show in
the next section, the ability to split the C heap into independent maps allows us to
perform scalable bug detection using SMT solvers.

The type-safety checker may fail to prove the introduced assertions in programs that
take the address of fields in structures and dereference them directly, as in the following
example:
x->f = 1; int *y = &x->f ; *y = 0; assert(x->f == 0);

In this case, the pointers y and &x->f are aliased and the type-safety checker would
complain. To get around this problem, the user can specify that the maps for field f and
type int∗ should be unified into a single map.3

2.2 Eliminating Concurrency Under a Context-Bound

The previous section showed how to convert a concurrent C program into a concurrent
BoogiePL program. In this section, we show how to reduce a concurrent BoogiePL

3 In our examples from Section 4.1, we only had to unify three fields in the serial driver.
HAVOC automatically issued field-safety warnings, and we introduced three annotations to
merge the fields (no code changes are required).



program into a sequential BoogiePL program while capturing all behaviors within a
context-bound, i.e. within a certain number of contexts per thread [14].

For the rest of this section, we fix the number of threads in the input program
to a positive number n and the context-bound to a positive number K. Note that the
number of possible context-switches in that case is n ∗K − 1. Without loss of gen-
erality, we assume that the input concurrent program is provided as a collection of
procedures containing n + 1 distinguished procedures Init, T1, . . ., Tn, each of which
takes no parameters and returns no value. The concurrent program is then given by
P , Init();(T1()|| · · · ||Tn()). Our goal is to create a sequential program Q that captures
all behaviors of P up to the context-bound K. More precisely, Q will capture all round-
robin schedules of P starting from thread T1 in which each thread can execute at most K
times. Each thread is allowed to stutter in each turn, thereby enabling Q to model even
those schedules that are not round-robin.

The global store of the concurrent C program is captured in the BoogiePL program
as a collection of global maps from integers to integers, as described in the previous
section. We assume that the program has been transformed so that every statement either
reads (into a local variable) or writes (from a local variable) a global map at a single
index, and that the condition for every branch depends entirely on local variables. We
will also assume that each such read or write to the global memory executes atomically.
To model synchronization constructs, the grain of atomicity can be explicitly increased
by encapsulating statements inside an atomic block. For example, the acquire operation
on a lock stored at the address a is modeled using a global map variable Lock and a
local scalar variable tmp as follows:

atomic { tmp := Lock[a]; assume tmp = 0; Lock[a] := 1; }

Finally, we assume that assertions in the program are modeled using a special global
boolean variable error that is set to true whenever the condition in the assert statement
evaluates to false.

To convert the concurrent program P into the semantically-equivalent sequential
program Q, we introduce several extra global variables. First, we introduce a global
variable k to keep track of the number of contexts executed by each thread. Second,
for each global map G, we introduce K−1 new symbolic map constants named V G

2 to
V G

K . Finally, we replace each global map G with K new global maps named G1 to GK .
Intuitively, the sequential program Q mimics a concurrent execution of P as follows.
First, each map Gi is initialized to the arbitrary symbolic constant V G

i for all 2 ≤ i ≤
K. The initialization procedure Init runs using the global map G1 (with an arbitrary
initial value) and initializes it. Then, the procedure T1 starts executing using the global
map G1. Context switches in T1 are simulated by a sequence of K−1 nondeterministic
choices. The i-th such choice enforces that the program stops using the map Gi and
starts using the map Gi+1. Then, each of T2 to Tn is executed sequentially one after
another under the same policy. Note that when T j+1 starts executing on the map Gi, the
value of this map is not arbitrary; rather, its value is left there by T j when it made its i-th
context switch. Finally, when Tn has finished executing, we ensure that the final value
of map Gi is equated to V G

i+1, which was the arbitrary initial value of the map Gi+1 at
the beginning of the i+1-th context of T1.



We capture the intuition described above by performing the following transforma-
tions in sequence:

1. Replace each statement of the form tmp := G[a] with
atomic {

if (k = 1) tmp := G1[a]
elsif (k = 2) tmp := G2[a]
. . .
else tmp := GK [a]

}

and each statement of the form G[a] := tmp with
atomic {

if (k = 1) G1[a] := tmp
elsif (k = 2) G2[a] := tmp
. . .
else GK [a] := tmp

}

2. After each atomic statement that is not within the lexical scope of another atomic
statement, insert a call to procedure Schedule with the following specification:

modifies k
ensures old(k)≤ k∧ k ≤ K
exsures true
void Schedule(void);

Here, exsures true means that Schedule may terminate either normally or excep-
tionally; under normal termination, k is incremented by an arbitrary amount but
remains within the context-bound K. The possibility of incrementing k by more
than one allows the introduction of stuttering into the round-robin schedules. The
possibility of exceptional termination allows a thread to stop executing at any point.
The raised exception is caught by handlers (as shown below) that wrap the invoca-
tion of each Ti. We assume that Init does not share any code with the threads and
we do not add a call to Schedule to any of the procedures called from Init.

For each procedure f , let the procedure obtained by the transformation above be de-
noted by f ′. Let us assume that there is a single map variable G in the original program.
The sequential program Q is then defined to be as follows:

G2 := V G
2 ; . . . ; GK := V G

K ;
Init();
error := f alse; k := 1;
try { Schedule(); T ′1() } finally k := 1;
. . .
try { Schedule(); T ′n() } finally k := 1;
assume G1 = V G

2 ; . . . ; assume GK−1 = V G
K ;

assert ¬error



Note that all constraints involving the symbolic map constants are assumed equal-
ities. These equalities can be handled by the select-update theory of arrays without
requiring the axiom of extensionality. Consequently, these constraints do not present
any impediment to the use of an off-the-shelf SMT solver. The transformed program
contains control flow due to exceptions which can be easily compiled away if the un-
derlying verification-condition generator does not understand it. Furthermore, since the
transformed program is sequential, the verification-condition generator can ignore the
atomic annotations in the code.

3 Field Slicing

Once we have the sequential BoogiePL program generated from the multithreaded C
program, the next step is to try to verify the program using BOOGIE. BOOGIE performs
precise reasoning across loop-free and call-free code, but needs loop invariants and pro-
cedure contracts to deal with loops and procedure calls modularly. In order to have an
automatic tool, we inline procedures and unroll loops (with some exception discussed
later).4 Since recursion is rare in system programs, inlining procedures is acceptable;
however, the size of inlined procedures can be very large. Our initial attempt at verify-
ing these inlined programs did not succeed. On the other hand, we may lose coverage
when we unroll loops a fixed number of times. In this section, we illustrate the use of
a simple field slicing technique to achieve scalability when checking large inlined call-
free programs without sacrificing precision; in some cases, our method enables us to
avoid unrolling loops and therefore obtain greater coverage.

3.1 Abstraction with Tracked Fields

The high-level idea of this section is fairly simple: our translation of C programs de-
scribed in Section 2.1 uses a map Mem f for dereferencing a field f , and a map Memτ

for dereferencing pointers of type τ . We assume that the input C program has been
proven field-safe for this split, i.e. the type checker has verified the assertions about
the Type map as described earlier. We guess a subset of these fields and types as rel-
evant and slice the program with respect to these fields. If the abstracted program can
be proved correct, then we have proved the correctness of the sequential BoogiePL pro-
gram. Otherwise, we have to refine the set of relevant fields and try again. While proving
the abstracted program, we can skip loops (without the need to unroll them) that do not
modify any of the relevant fields.

In this section, we formalize how we perform the slicing with respect to a set of
fields, while in the next section we show how to refine the set of fields we track. Let
us define the operation Abstract(P, F) that takes a BoogiePL program P generated in
the last section and a set of fields F , and performs the following operations:

1. For any field g 6∈ F , translate the writes Memg
i [e] := tmp for all 1≤ i≤ K as skip.

2. For any field g 6∈F , translate the reads tmp := Memg
i [e] for all 1≤ i≤K as havoc tmp,

which scrambles the value of tmp.

4 Inference of loop invariants and procedure contracts is an important area of future work.



Input: Program P
Output: Program P checked or error trace
1: allFields← all fields in P
2: trackedFields← /0
3: loop
4: A← Abstract(P, trackedFields)
5: (checked,absErrTrace)← Check(A)
6: if checked = true then
7: return CHECKED

8: else
9: concTrace← Concretize(P, absErrTrace)

10: checked← Check(concTrace)
11: if checked = true then
12: F ← allFields
13: for all f ∈ allFields do
14: absTrace← Abstract(concTrace, trackedFields ∪ F \{ f})
15: checked← Check(absTrace)
16: if checked = true then
17: F ← F \{ f}
18: else
19: trackedFields← trackedFields∪{ f}
20: end if
21: end for
22: else
23: return BUG(concTrace)
24: end if
25: end if
26: end loop

Fig. 3. Algorithm for tracked fields refinement based on the CEGAR loop.

3. Finally, remove the call to Schedule that was inserted after the atomic section for a
read or write from a field g 6∈ F .

It is easy to see that the first two steps are property-preserving, i.e. they do not result
in missed bugs. Since statements such as havoc tmp and skip do not access any global
state, context switches after them will not introduce any extra behavior. Consequently,
the trailing calls to Schedule can be removed, thereby eliminating a significant number
of redundant context switches.

In addition to reducing code size and eliminating context switches, checking the
abstraction Abstract(P, F) has another benefit. It enables us to create simple sum-
maries for loops whose body does not contain any reads or writes from F . The sum-
mary leaves the memory maps unchanged and puts nondeterministic values into the
local variables modified by the loop. This simple heuristic for creating loop summaries
is precise enough for our examples: it worked for 5 out of a total of 15 loops in our
benchmarks from Section 4.1.

Both of these factors improve the scalability of our approach and improve coverage
by not requiring every loop to be unrolled. In particular, we can avoid the problem with



unrolling loops whose exit condition does not depend on any input values (e.g. a loop
that goes from 1 to 100) — for such loops any unrolling less than 100 times would
block the execution after the loop.

3.2 Refining Tracked Fields

In this section, we provide an algorithm for inferring the set of relevant fields that affect
the property being checked. Our inference algorithm is a variant of the counterexample-
guided abstraction refinement (CEGAR) framework [5, 13]. Figure 3 gives the pseudo-
code for the algorithm. The algorithm takes a program P and checks if the assertion in
the program holds. We start with initializing trackedFields with an empty set, and then
we add fields to the set based on the analysis of counterexamples. The outer loop in
lines 3 to 26 refines trackedFields from a single abstract counterexample absErrTrace
obtained by checking the abstract program A. If the abstract program A is not correct,
we concretize the abstract counterexample trace absErrTrace and check if the trace is
spurious. If the trace is not spurious, then we have a true error in line 23. The operation
Concretize simply restores the reads and writes of fields that were abstracted away
(we do not add the context switches back, although adding them would not break the
algorithm). The inner loop in lines 13 to 21 greedily finds a minimal set of fields from
allFields such that abstracting them would result in a spurious counterexample. Those
fields are added to trackedFields and the outer loop is iterated again. Since each iteration
of the inner loop increases the size of trackedFields and the total number of fields is
finite, the algorithm terminates.

4 Implementation and Results

In this section, we describe our prototype implementation STORM, and our experience
with applying the tool on several real-life benchmarks. As described earlier, STORM
first uses HAVOC to translate a multithreaded C program along with a set of relevant
fields into a multithreaded BoogiePL program (Section 2.1), then reduces it to a sequen-
tial BoogiePL program (Section 2.2), and finally uses BOOGIE to check the sequential
program. The BOOGIE verifier [2] generates a verification condition from the BoogiePL
description, and uses the SMT solver Z3 [8] to check the resulting verification condi-
tion.

4.1 Benchmarks

We evaluated STORM on a set of real-world Windows device driver benchmarks. Ta-
ble 1 lists the device drivers used in our experiments and the corresponding driver dis-
patch routines we checked. It also provides their size, total number of fields, number
of threads, and the scenario in which they are checked. STORM found a bug in the
usbsamp driver (see Section 4.3) and usbsamp fix is the fixed version of the example.

We implemented a common harness for putting device drivers through different con-
current scenarios. Each driver is checked in a scenario possibly involving concurrently
executing driver dispatch routines, driver request cancellation and completion routines,



Driver LOC Routine #F #T Scenario
daytona 105 ioctl 53 2 D | CA

mqueue 494
read

72 4 D | CA | CP | DPCwrite

ioctl

usbsamp 644
read

113 3 D | CA | CPwrite

ioctl

usbsamp fix 643
read

113 3 D | CA | CPwrite

ioctl

serial 1089
read

214 3 D | CA | DPC
write

Table 1. Windows device drivers used in the experiments. “LOC” is the bare number of lines
of code in the scenarios we check, excluding whitespaces, comments, variable and function dec-
larations, etc.; “Routine” lists the dispatch routines we checked; “#F” gives the total number of
fields; “#T” is the number of threads in the checked scenario; “Scenario” shows the concurrent
scenario being checked, i.e. which driver routines are executed concurrently as threads (D – dis-
patch routine, CA – cancel routine, CP – completion routine, DPC – deferred procedure call).

and deferred procedure calls (column “Scenario” in Table 1). The number of threads and
the complexity of a scenario depend on the given driver’s capabilities. For example, for
the usbsamp driver, the harness executes a dispatch, cancel, and completion routine
in three threads. Apart from providing a particular scenario, our harness also models
synchronization provided by the device driver framework, as well as synchronization
primitives, such as locks, that are used for driver-specific synchronization.

STORM has the ability to check any user-specified safety property. In our experi-
ments, we checked the use-after-free property for the IRP (IO Request Packet) data
structure used by the device drivers. A driver may complete and free an IRP it receives
by calling a request completion routine (e.g. WdfRequestComplete in Figure 4),
and must not access an IRP object once it has been completed. To check this prop-
erty, we introduced assertions via automatic instrumentation before each access to an
IRP object; our examples have up to a hundred of such assertions. Typically, drivers
access and may complete the same request in multiple routines executing concurrently.
To satisfy our crucial use-after-free property, the code must follow the proper and of-
ten complex synchronization protocol. Bugs often manifest only in highly concurrent
scenarios; consequently, this property is difficult to check with static analysis tools for
sequential programs.

4.2 Evaluation

Our empirical evaluation of STORM consists of two sets of experiments. In the first one
(Table 2 and Table 3), we run STORM on the benchmarks described in the previous
section using manually provided fixed set of tracked fields. We assess the scalability of
STORM with respect to code size, number of threads, number of contexts, and number
of locations where a context switch could potentially happen. In the second set of ex-



Example Routine # of contexts per thread
1 2 3 4 5

daytona ioctl 3.4 3.8 4.2 4.5 5.6

mqueue
read 62.1 161.5 236.2 173.0 212.4
write 48.6 113.4 171.2 177.4 192.3
ioctl 120.6 198.6 204.7 176.1 199.9

usbsamp
read 17.9 37.7 65.8 66.8 85.2
write 17.8 48.8 52.3 74.3 109.7
ioctl 4.4 5.0 5.1 5.3 5.4

usbsamp fix
read 16.9 28.2 38.6 46.7 47.5
write 18.1 32.2 46.9 52.5 63.6
ioctl 4.8 4.7 5.1 5.1 5.2

serial
read 36.5 95.4 103.4 240.5 281.4
write 37.3 164.3 100.8 233.0 649.8

Table 2. Varying the number of
contexts per thread.

Example Routine #CS % of switches removed
0 40 80 100

daytona ioctl 26 3.9 3.7 3.6 3.5

mqueue
read 201 161.1 121.3 112.1 57.8
write 198 112.7 101.5 100.6 25.2
ioctl 202 197.7 192.8 168.5 73.1

usbsamp
read 90 37.7 42.2 *22.6 *17.9
write 90 48.9 37.7 *22.7 *18.9
ioctl 22 5.0 4.8 4.5 4.4

usbsamp fix
read 89 28.2 25.9 22.6 17.0
write 89 32.2 28.2 22.5 16.5
ioctl 21 4.7 4.7 4.5 4.3

serial
read 307 95.4 92.7 66.3 47.6
write 309 164.8 120.2 94.3 29.7

Table 3. Varying the number of
locations where a context switch
could happen. The number of
contexts per thread is fixed to 2.
“CS” represents the total number
of places where a context switch
could happen. The examples
where we missed the usbsamp

bug because of randomly (un-
soundly) removing context switch
locations are marked with *.

periments (Table 4), instead of using manually provided tracked fields, we determine
the usability of our tracked fields refinement algorithm by using it to completely au-
tomatically check our benchmark drivers. All experiments were conducted on an Intel
Pentium D at 2.8GHz running Windows XP, and all runtimes are in seconds.

Table 2 shows the result of varying the number of contexts per thread from 1 (se-
quential case) to 5. We managed to successfully check all of our benchmarks with up
to 5 contexts per thread, which clearly demonstrates the scalability of our approach. In
the process, our tool discovered a bug in the usbsamp driver (details can be found in
Section 4.3).

Table 3 demonstrates how the runtimes vary with the number of places in the code
where a context switch can be introduced. For the usbsamp example that has a bug,
removing the context switches results in the bug not being discovered. The runtime de-
creases as the number of context-switch locations decreases. This observation justifies
that removing context switches during field slicing is important for scalability.



Table 4. Results of the tracked fields
refinement algorithm. “#F” gives the
total number of fields; “#MF” is
the number of manually provided
tracked fields; “#AF” denotes the
number of tracked fields generated
by the refinement algorithm; “#IT”
is the number of CEGAR loop iter-
ations; “Time” is the total running
time.

Example Routine #F #MF #AF #IT Time(s)
daytona ioctl 53 3 3 3 244.3

mqueue
read

72 7
9 9 3446.3

write 8 8 3010.0
ioctl 9 9 3635.6

usbsamp fix
read

113 1
3 3 4382.4

write 4 4 2079.2
ioctl 0 0 21.7

serial
read 214 5 5 5 3013.7
write 4 3 1729.4

Table 4 describes the results of applying the abstraction-refinement algorithm from
Section 3 to discover the set of relevant fields and completely automatically check the
examples. Using the refinement algorithm, we were always able to obtain a set of rel-
evant fields that is just a small fraction of the set of all fields and that closely matches
the set of manual fields that we used previously. Most of the runtime is actually spent in
scripts to perform the abstraction, and can be significantly reduced. Without the use of
field slicing, STORM was unable to run on large examples. For example, even checking
the mqueue read routine with only two contexts does not terminate in one hour if we
do not use field slicing.

4.3 Bug Found

By applying STORM on the Windows device drivers listed in Table 1, we found a con-
currency bug in the usbsamp driver. We reported the bug, and driver developers con-
firmed and fixed it. Figure 4 illustrates the bug with a simplified code excerpt from the
driver. It contains two routines, the UsbSamp EvtIoRead dispatch routine and the
UsbSamp EvtRequestCancel cancellation routine. The routines get executed by
threads T1 and T2, respectively. The example proceeds as follows:

1. Thread T1 starts executing on a request Request, while thread T2 is blocked
since cancellation for Request has not been enabled.

2. T1 enables cancellation and sets the cancellation routine with the call to the driver
framework routine WdfRequestMarkCancelable on line 8. Then the context
switch on line 10 occurs.

3. T2 can now start executing UsbSamp EvtRequestCancel, and another con-
text switch happens on line 7 of T2.

4. T1 completes Request on line 11 and context switches again on line 12.
5. On line 9, T2 tries to access Request that has been completed in the previous

step, which is an error.

It is important to note that although the scenario leading to this bug might seem sim-
ple, the bug has not been found before by extensively applying other software checkers
on usbsamp. For instance, SLAM [1] failed to discover this bug since SLAM can check
only sequential code. KISS [19], on the other hand, can check concurrent code, but only



1 // Thread T1
2 VOID UsbSamp_EvtIoRead(
3 WDFQUEUE Queue,
4 WDFREQUEST Request,
5 size_t Length
6 ) {
7 ...
8 WdfRequestMarkCancelable(
9 Request, UsbSamp_EvtRequestCancel);

10 ... // SWITCH 1: T1->T2
11 WdfRequestComplete(Request, status);
12 ... // SWITCH 3: T1->T2
13 }

1 // Thread T2
2 VOID
3 UsbSamp_EvtRequestCancel(
4 WDFREQUEST Request
5 ) {
6 PREQUEST_CONTEXT rwContext;
7 ... // SWITCH 2: T2->T1
8 rwContext =
9 GetRequestContext(Request);
10 ...
11 }

Fig. 4. Simplified version of the code illustrating the concurrency bug STORM found in the
usbsamp example. Places where context switches happen when the bug occurs are marked with
SWITCH.

up to 2 context switches, and would therefore also miss this bug since the bug occurs
only after at least 3 context switches.

5 Related Work

We roughly divide the related work into two areas — bounded approaches to concur-
rency and other techniques for analysis of concurrent C programs.

Bounded approaches to concurrency. The idea of context-bounded analysis of
concurrent programs was proposed by Qadeer and Wu [19], and later context-bounded
reachability analysis for concurrent boolean programs was shown to be decidable [18].
Many subsequent approaches have relied on bounding the number of contexts to tackle
the complexity and scalability issues of concurrent program analysis [18, 19, 16, 20, 14].

KISS [19] transforms a concurrent program with up to two context switches into
a sequential one by mimicking context switches using procedure calls. However, re-
stricting the number of context switches can be limiting, as evidenced by the bug in
Section 4.3 that STORM discovered.

Rabinovitz and Grumberg [20] propose a context bounded verification technique
for concurrent C programs based on bounded model checking and SAT solving. The
algorithm applies traditional BMC on each thread separately and generates sets of con-
straints for each. The constraints are instrumented to account for concurrency, by in-
troducing copies of global variables and additional constraints for context switches.
The resulting formula is solved by a SAT solver. Our work offers several important
advantages: we support memory maps to deal with a possibly unbounded heap; our
source-to-source program transformation allows us to leverage any sequential verifi-
cation technique, including annotation-based modular reasoning; our experiments are
performed on real-world benchmarks, whereas the authors apply the technique to hand-
crafted microbencmarks. Finally, it is unclear how to exploit techniques such as field
slicing using their method.

Bounded model checking of concurrent programs was also explored by Ganai and
Gupta [10], where concurrency constraints are added lazily and incrementally during



bounded unrolling of programs. The number of context switches is not bounded a priori,
but heap and stack are, and the number of program steps the bounded model checker
explores is limited by the available resources.

Suwimonteerabuth et al. [22] present a context-bounded analysis of multithreaded
Java programs. Their approach is different from ours because it translates a multi-
threaded Java program to a concurrent pushdown system by bounding the size of the
program heap and using finite bitvector encoding for integers.

CHESS [16] is a tool for testing multithreaded programs that dynamically explores
thread interleavings by iteratively bounding the number of contexts. On the other hand,
STORM is a static analysis tool and therefore does not have to execute the code using
tests and offers more coverage since it explores all possible paths in a program up to a
given context bound.

Analysis of concurrent C programs. Kahlon et al. [12] focus their efforts on itera-
tively reducing the number of thread interleavings using invariants generated by abstract
interpretation. The described techniques are complementary to our approach, since we
could also use them to reduce the number of interleavings in our instrumented program.
The authors then apply model checking, but only on program slices in order to resolve
data-race warnings, and therefore fair comparison with our experiments would be hard.

Witkowski et al. [23] describe their experience with applying CEGAR-based pred-
icate abstraction on concurrent Linux device drivers. Their results indicate that con-
currency rapidly increases the number of predicates inferred by the refinement loop,
which in turn causes a fast blow-up in the model checker. Before we derived our current
technique based on SMT solvers, we attempted a similar approach where we used the
Lal-Reps method to create a source-to-source transformation from a multithreaded to a
sequential C program, which is then analyzed by the SLAM [1] verifier. Our experience
was similar as we could not scale this approach beyond even simple microbenchmarks.
Henzinger et al. [11] present a more scalable approach for CEGAR-based predicate
abstraction of concurrent programs; their method checks each thread separately in an
abstract stateful context that is iteratively constructed by a refinement loop.

Chugh et al. [4] introduce a framework for converting a sequential dataflow analysis
into a concurrent one using a race detection engine. The race detection engine is used
to ensure soundness of the sequential analysis by invalidating the dataflow facts influ-
enced by concurrent writes. The analysis is scalable, but yields many false positives;
our approach is much more precise, but not as scalable.

There also exists work that targets analysis of concurrent boolean program mod-
els [7, 17]. However, these approaches do not clarify how to obtain these models from
real-world programs, while our approach can automatically analyze C programs.
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