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Abstract. Reasoning about program heap, especially
if it involves handling unbounded, dynamically heap-
allocated data structures such as linked lists and ar-
rays, is challenging. Furthermore, sound analysis that
precisely models heap becomes significantly more chal-
lenging in the presence of low-level pointer manipulation
that is prevalent in systems software.

The reachability predicate has already proved to be
useful for reasoning about the heap in type-safe lan-
guages where memory is manipulated by dereferencing
object fields. In this paper, we present a memory model
suitable for reasoning about low-level pointer operations
that is accompanied by a formalization of the reacha-
bility predicate in the presence of internal pointers and
pointer arithmetic. We have designed an annotation lan-
guage for C programs that makes use of the new pred-
icate. This language enables us to specify properties of
many interesting data structures present in the Windows
kernel. We present our experience with a prototype ver-
ifier on a set of illustrative C benchmarks.

1 Introduction

Static software verification has the potential to improve
programmer productivity and reduce the cost of pro-
ducing reliable software. By finding errors at the time of
compilation, these techniques help avoid costly software
changes late in the development cycle and after deploy-
ment. Many successful tools for detecting errors in sys-
tems software have emerged in the last decade [3,22,13,
37,12,1]. These tools can scale to large software systems;
however, this scalability is achieved at the price of pre-
cision. Heap and heap-allocated data structures are one
of the most significant sources of imprecision for these

tools. Fundamental correctness properties, such as con-
trol and memory safety, depend on intermediate asser-
tions about the contents of data structures. Therefore,
imprecise reasoning about the heap usually results in a
large number of annoying false warnings increasing the
probability of missing the real errors. This is a significant
drawback since studies have shown that many of the sys-
tems software code bugs and reported failures with high
impact on availability are still related to memory man-
agement [11,28,36].

Because of the vast size of available memory in todays
computer systems, faithfully representing each memory
allocation and access in a static verifier is not going to
scale. Therefore, verification tools rely on abstract mem-
ory models that trade precision for scalability, and in
turn, they define the operational semantics of their pro-
gramming language with respect to the chosen memory
model. We present in this paper a memory model that is
precise enough to capture most of the low-level pointer
operations, and yet abstracts enough details to enable
verification to scale. We also give the respective opera-
tional semantics of the C language.

The reachability predicate [30] is important for spec-
ifying properties of linked data structures. Informally, a
memory location v is reachable from a memory location
u in a heap if either u = v or u contains the address
of a location x and v is reachable from x. Automated
reasoning about the reachability predicate is difficult for
two reasons. First, reachability cannot be expressed in
first-order logic, the input language of choice for most
modern and scalable automated theorem provers. Sec-
ond, it is difficult to precisely specify the update to the
reachability predicate when a heap location is updated.

Previous work has addressed these problems in the
context of a reachability predicate suitable for verify-
ing programs written in high-level languages such as
Java and C# [34,26,2,23,8]. This predicate is inade-
quate for reasoning about low-level software, which com-
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monly uses programming idioms such as internal point-
ers (addresses of object fields) and pointer arithmetic to
move between object fields. We illustrate this point with
several examples in Section 3.

The goal of our work is to build a scalable verifier
for systems software that can reason precisely about
heap-allocated data structures. To this end, in addi-
tion to the memory model, we introduce in this pa-
per the accompanying reachability predicate suitable
for verifying low-level programs written in C. We de-
scribe how to automatically compute the precise update
for the described predicate and a method for reasoning
about it using automated first-order theorem provers.
With recent noticable performance improvements of the-
orem provers, we believe that the introduced reachablity
predicate could be used for suitably extending theorem-
prover-based static checkers for low-level programs, mak-
ing them therefore more precise.

We have designed a specification language that uses
our reachability predicate, allows succinct specification
of interesting properties of low-level software, and is con-
ducive to modular program verification. We have im-
plemented a modular verifier for annotated C programs
called Havoc (Heap-Aware Verifier fOr C programs).
We report on our preliminary encouraging experience
with Havoc on a set of illustrative C programs.

2 Related work

Havoc is a static assertion checker for annotated C pro-
grams in the same style that ESC/Java [20] is a static
checker for annotated Java programs, and Boogie [4]
is a static checker for Spec# [6] programs.1 However,
Havoc is different in that it deals with the low-level in-
tricacies of C and provides reachability as a fundamen-
tal primitive in its specification language. The ability to
specify reachability properties also distinguishes Havoc
from other assertion checkers for C such as SATABS [12],
SATURN [37], Calysto [1], and VerifiedC [35]. Tradition-
ally, such tools either overapproximate unbounded data
structures, which in turn leads to a lot of false warnings,
or simply treat them unsoundly as bounded data struc-
tures (often with only one element), which causes real
bugs to be missed. The work of McPeak and Necula [29]
allows reasoning about reachability, but only indirectly
using ghost fields in heap-allocated objects. These ghost
fields must be updated manually by the programmer
whereas Havoc provides the update to its reachability
predicate automatically.

There are several verifiers that do allow the verifi-
cation of properties based on the reachability predicate.
TVLA [27] is a verification tool based on abstract in-
terpretation using 3-valued logic [34]. It provides a gen-

1 Spec# is an extension of C# that provides specification prim-
itives for writing method pre- and postconditions and object in-
variants.

eral specification logic combining first-order logic with
reachability. Recently, an axiomatization of reachability
in first-order logic was also added to the system [26].
However, TVLA has mostly been applied to Java pro-
grams and, to our knowledge, cannot handle the inter-
action of reachability with pointer arithmetic.

Caduceus [19] is a modular verifier for C programs.
It allows the programmer to write specifications in terms
of arbitrary recursive predicates, which are axiomatized
in an external theorem prover. It then allows the pro-
grammer to interactively verify the generated verifica-
tion conditions in that prover. Havoc only allows the
use of a fixed set of reachability predicates but provides
much more automation than Caduceus. All the verifica-
tion conditions generated by Havoc are discharged au-
tomatically using SMT (Satisfiability Modulo Theories)
provers. Unlike Caduceus, Havoc understands internal
pointers and the use of pointer arithmetic to move be-
tween fields of an object.

There are many approaches to checking of heap-
manipulating programs that employ the idea of local
reasoning based on the frame rule of separation logic [33,
32]. The frame rule in this context shows that it is sound
to look at only a fragment of the input heap when an-
alyzing each program instruction. This important prop-
erty has been used to speed up and increase scalability
of many analyses [38,7,21,18]. While many of these ap-
proaches infer loop invariants of list-manipulating pro-
grams automatically, they don’t handle low-level fea-
tures of C programs that are prevalent in systems code,
such as pointer arithmetic, at all. Havoc, on the other
hand, supports reasoning about linked data structures
in the presence of low-level pointer manipulations, while
loop invariants currently have to be provided manually.

Calcagno et al. have used separation logic to rea-
son about memory safety and absence of memory leaks
in low-level code [9]. They perform abstract interpre-
tation using rewrite rules that are tailored for “multi-
word lists”, a fixed predicate expressed in separation
logic. Our approach is more general since we provide a
family of reachability predicates, which the programmer
can compose arbitrarily for writing richer specifications
(possibly involving quantifiers); the rewriting involved in
the generation and validation of verification conditions is
taken care of automatically by Havoc. Their tool can in-
fer loop invariants but handles procedures by inlining. In
contrast, Havoc performs modular reasoning, but does
not infer loop invariants.

3 Motivation

Consider the two doubly-linked lists shown in Figure 1.
The list at the top is typical of high-level object-oriented
programs. The linking fields Flink and Blink point to
the beginning of the successor and predecessor objects in
the list. In each iteration of a loop that iterates over the
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Fig. 1. Doubly-linked lists in Java and C.

linked list, the iterator variable points to the beginning
of a list object whose contents are accessed by a simple
field dereference. Existing work would allow properties of
this linked list to be specified using the two reachability
predicates RFlink and RBlink, each of which is a binary
relation on object references. For example, RFlink(a, b)
holds for object references a and b if a.Flinki = b for
some i ≥ 0.

The list at the bottom is typical of low-level systems
software. Such a list is constructed by embedding a struc-
ture LIST ENTRY containing the two fields, Flink and
Blink, into the objects that are supposed to be linked
by the list.

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;

} LIST_ENTRY;

The linking fields, instead of pointing to the beginning
of the list objects, point to the beginning of the embed-
ded linking structure. In each iteration of a loop that
iterates over such a list, the iterator variable contains a
pointer to the beginning of the structure embedded in a
list object. A pointer to the beginning of the list object
is obtained by performing pointer arithmetic captured
with the following C macro.

#define CONTAINING_RECORD(a, T, f) \

(T *) ((int)a - (int)&((T *)0)->f)

This macro expects an internal pointer a to a field f of
an object of type T and returns a typed pointer to the
beginning of the object.

There are two good engineering reasons for this os-
tensibly dangerous programming idiom. First, it be-
comes possible to write all list manipulation code for
operations such as insertion and deletion separately in
terms of the type LIST ENTRY. Second, it becomes easy
to have one object be a part of several different linked
lists; there is a field of type LIST ENTRY in the object cor-
responding to each list. For these reasons, this idiom is
common both in the Windows and the Linux operating
system2.

Unfortunately, this programming idiom cannot be
modeled using the predicates RFlink and RBlink described
earlier. The fundamental reason is that these lists may
link objects via pointers at a potentially non-zero offset
into the objects. Different data structures might use dif-
ferent offsets; in fact, the offset used by a particular data
structure is a crucial part of its specification. This is in
stark contrast to the first kind of linked lists in which
the linking offset is guaranteed to be zero.

The crucial insight underlying our work is that for
analyzing low-level software, the reachability predicate

must be a relation on pointers rather than object ref-

erences. Therefore, we introduce an integer-indexed set
of binary reachability predicates: for each integer n, the

2 In Linux, the CONTAINING RECORD macro corresponds to the
list entry macro.
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predicate Rn is a binary relation on the set of pointers.
Suppose n is an integer and p and q are pointers. Then
Rn(p, q) holds if and only if either p = q, or recursively
Rn(∗(p+n), q) holds, where ∗(p+n) is the pointer stored
in memory at the address obtained by incrementing p by
n.

Our reachability predicate captures the insight that
in low-level programs a list of pointers is constructed
by performing an alternating sequence of pointer arith-
metic (with respect to a constant offset) and memory
lookup operations. For example, let p be the address of
the Flink field of an object in the linked list at the bot-
tom of Figure 1. Then, the forward-going list is captured
by the pointer sequence

p, ∗(p+ 0), ∗(∗(p+ 0) + 0), . . . .

Similarly, assuming that the size of a pointer is 4, the
backward-going list is captured by the pointer sequence

p, ∗(p+ 4), ∗(∗(p+ 4) + 4), . . . .

Our reachability predicate is a generalization of the
existing reachability predicate and can just as well de-
scribe the linked list at the top of Figure 1. Suppose the
offset of the Flink field in the linked objects is k and
q is the address of the start of some object in the list.
Then, the forward-going list is captured by

q, ∗(q + k), ∗(∗(q + k) + k), . . .

and the backward-going list is captured by

q, ∗(q + k + 4), ∗(∗(q + k + 4) + k + 4), . . . .

3.1 Example

We illustrate the use of our reachability predicate in pro-
gram verification with the example in Figure 2. The ex-
ample has a type A and a global structure g with a field
a. The field a in g and the field link in the type A have
the type LIST ENTRY, which was defined earlier. These
fields are used to link together in a circular doubly-linked
list the object g and a set of objects of type A. The field
a in g is the dummy head of this list. For an example
of such a heap structure see Figure 3. The procedure
list iterate iterates over this list, setting the data

field of each list element to 42.
Except for verifying the safety of each memory ac-

cess in list iterate, we would also like to verify two
additional properties. First, the only parts of the caller-
visible state modified by list iterate are the data

fields of the list elements. Second, the data field of each
list element is 42 when list iterate terminates.

To prove these properties on list iterate, it is cru-
cial to have a precondition stating that the list of ob-
jects linked by the Flink field of LIST ENTRY is circular.
To specify this property, we extend the notion of well-
founded lists, first described in an earlier paper [23], to

our new reachability predicate. The predicate Rn is well-
founded with respect to a set BS of blocking pointers if
for all pointers p, the sequence

∗(p+ n), ∗(∗(p+ n) + n), . . .

contains a pointer in BS. This member of BS is called the
blocker of p with respect to the offset n and is denoted
by Bn[p]. Typical members of BS include pointer values
that indicate the end of linked lists, e.g., the null pointer
or the head &g.a of the circular lists in our example.

Our checker Havoc enforces a programming disci-
pline associated with well-founded lists. Havoc provides
an auxiliary variable BS whose value is a set of pointers
and allows program statements to add or remove point-
ers from BS. Further, each heap update in the program
is required to preserve the well-foundedness of Rn with
respect to each offset n of interest.

The first precondition of list iterate uses the no-
tion of well-foundedness to express that &g.a is the head
of a circular list. In this precondition, B(&g.a,0) refers
to B0[&g.a]. We use B0 to specify that the circular
list is formed by the Flink field, which is at offset 0
within LIST ENTRY. The second precondition illustrates
how facts about an entire collection of pointers are ex-
pressed in our specification language. In this precondi-
tion, the expression list(g.a.Flink,0) refers to the
finite and non-empty set of pointers in the sequence

g.a.Flink, ∗(g.a.Flink+ 0), . . .

upto but excluding the pointer B0(g.a.Flink). In Havoc,
we represent a pointer as a pair comprised of an ob-
ject reference and an integer offset into the object,
and the program memory is a map from pointers to
pointers. Therefore, the function Off retrieves the off-
set (or the second component) from a pointer. This
precondition states that the offset of each pointer in
list(g.a.Flink,0), excluding the dummy head, is
equal to 4, the offset of the field sequence link.Flink in
the type A. The third precondition uses the function Obj,
which retrieves the object reference (or the first compo-
nent) from a pointer. This precondition says that the
object of each pointer, excluding the dummy head, in
list(g.a.Flink,0) is different from the object of the
dummy head.

The modifies clause illustrates yet another con-
structor of a set of pointers provided by our language.
If S is a set of pointers, then decr(S, n) is the set of
pointers obtained by decrementing each pointer in S

by n. The modifies clause captures the update of the
data field at relative offset −4 from the members of
list(g.a.Flink,0).

The postcondition of the procedure introduces the
operator deref, which returns the content of the mem-
ory at a pointer address. This postcondition says that
the value of the data field of each object in the list,
excluding the dummy head, is 42.
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typedef struct { int data; LIST_ENTRY link; } A;

struct { LIST_ENTRY a; } g;

requires BS(&g.a) && B(&g.a, 0) == &g.a

requires forall(x, list(g.a.Flink, 0), x == &g.a || Off(x) == 4)

requires forall(x, list(g.a.Flink, 0), x == &g.a || Obj(x) != Obj(&g.a))

modifies decr(list(g.a.Flink, 0), 4)

ensures forall(x, list(g.a.Flink, 0), x == &g.a || deref(x-4) == 42)

void list_iterate() {

LIST_ENTRY *iter = g.a.Flink;

while (iter != &(g.a)) {

A *elem = CONTAINING_RECORD(iter, A, link);

elem->data = 42;

iter = iter->Flink;

}

}

Fig. 2. Motivating example.
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Fig. 3. Example of an input structure for our motivating example.

Using loop invariants provided by us (not shown in
the figure), Havoc is able to verify that the implementa-
tion of this procedure satisfies its specification. Note that
in the presence of potentially unsafe pointer arithmetic
and casts, it is nontrivial to verify that the heap update
operation elem->data := 42 does not change the link-
ing structure of the list. Since Havoc cannot rely on the
static type of the variable elem, it must prove that the
offset of elem before the operation is 0 and therefore the
operation cannot modify either linking field.

4 Operational semantics of C

Our semantics for C programs depends on three funda-
mental types, the uninterpreted type ref of object ref-
erences, the type int of integers, and the type ptr =
ref×int of pointers. In Havoc, each variable from a C
program, regardless of its static type, contains a pointer
value. A pointer is a pair containing an object refer-
ence and an integer offset. An integer value is encoded
as a pointer value whose first component is the spe-
cial constant null of type ref. The constructor function
Ptr : ref× int → ptr constructs a pointer value from
its components. The selector functions Obj : ptr → ref

and Off : ptr → int retrieve the first and second com-
ponent of a pointer value, respectively.

The heap of a C program is modeled using two map
variables, Mem and Alloc, and a map constant Size. The
variable Mem maps pointers to pointers and intuitively
represents the contents of the memory at a pointer loca-
tion. The variable Alloc maps object references to the
set {UNALLOCATED, ALLOCATED, FREED} and is used to
model memory allocation. The constant Size maps ob-
ject references to positive integers and represents the size
of the object. The procedure call malloc(n) for allocat-
ing a memory buffer of size n returns a pointer Ptr(o, 0)
where o is an object such that Alloc[o] = UNALLOCATED

before the call and Size[o] ≥ n. The procedure modifies
Alloc[o] to be ALLOCATED. The procedure call free(p)
for freeing a memory buffer whose address is contained
in p requires that Alloc[Obj(p)] == ALLOCATED and
Off(p) == 0 and updates Alloc[Obj(p)] to FREED.
The full specification of malloc and free is given in
Figure 4.

Currently, Havoc’s memory model understands only
word-aligned memory accesses. For example, writing a
4-byte integer value to the memory location Ptr(o, 20)
is not going to affect the value stored at the memory
location Ptr(o, 21). Similarly, reading a byte from the
memory location Ptr(o, 21) is not going to return the
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procedure malloc(n: ptr) returns new:ptr

requires Obj(n) == null && 0 < Off(n)

modifies Alloc

ensures old(Alloc)[Obj(new)] == UNALLOCATED

ensures Alloc[Obj(new)] == ALLOCATED

ensures Off(new) == 0

ensures Off(n) <= Size(Obj(new))

ensures (forall o:ref :: o == Obj(new) ||

old(Alloc)[o] == Alloc[o])

ensures (forall i: int ::

Obj(Mem[Obj(new),i] ) == null)

ensures (forall i:int :: BS[Obj(new),i])

procedure free(p: ptr)

requires Alloc(Obj(p)) == ALLOCATED && Off(p) == 0

modifies Alloc

ensures alloc[Obj(p)] != UNALLOCATED

ensures alloc[Obj(p)] != ALLOCATED

ensures (forall o:ref :: o == Obj(p) ||

old(Alloc)[o] == Alloc[o])

Fig. 4. Specification of procedures malloc and free that are used to
model memory allocation.

function PLUS(ptr, ptr) returns ptr;

axiom (forall x,y:ptr ::

(Obj(x) == null ==>

PLUS(x,y) == Ptr(Obj(y), Off(x)+Off(y))) &&

(Obj(y) == null ==>

PLUS(x,y) == Ptr(Obj(x), Off(x)+Off(y))) &&

(Obj(x) != null && Obj(y) != null ==>

Obj(PLUS(x,y)) == null))

function MINUS(ptr, ptr) returns ptr;

axiom (forall x,y:ptr ::

(Obj(y) == null ==>

MINUS(x,y) == Ptr(Obj(x), Off(x)-Off(y))) &&

(Obj(y) != null && Obj(x) == Obj(y) ==>

MINUS(x,y) == Ptr(null, Off(x)-Off(y))) &&

(Obj(y) != null && Obj(x) != Obj(y) ==>

Obj(MINUS(x,y)) == null))

function LT(ptr, ptr) returns bool;

axiom (forall x,y:ptr :: LT(x,y) <==>

Off(MINUS(y,x)) > 0)

Fig. 5. Specification of functions PLUS, MINUS, and LT that are
used to model arithmetic and comparison operations on the
type ptr.

C1 typedef struct { int x; int y[10]; } DATA;

C2 DATA *create() {

C3 int a;

C4
C5 DATA *d =

C6 (DATA *) malloc(sizeof(DATA));

C7 init(d->y, 10, &a);

C8
C9 d->x = a;

C10
C11 return d;

C12 }

B1 procedure create() returns d:ptr {

B2 var a:ptr;

B3 call a := malloc(Ptr(null,4));

B4 call d := malloc(Ptr(null,44));

B5
B6 call init(PLUS(d, Ptr(null,4)),

B7 Ptr(null,10), a);

B8 Mem[PLUS(d, Ptr(null,0))] := Mem[a];

B9 call free(a);

B10
B11 }

C13 void init(int *in, int size,

C14 int *out) {

C15 int i;

C16 i = 0;

C17 while (i < size) {

C18 in[i] = i;

C19 *out = *out + i;

C20 i++;

C21 }

C22 }

B12 procedure init(in:ptr, size:ptr,

B13 out:ptr) {

B14 var i:ptr;

B15 i := Ptr(null,0);

B16 while (LT(i, size)) {

B17 Mem[PLUS(in, Ptr(null,Off(i)*4))] := i;

B18 Mem[out] := PLUS(Mem[out], i);

B19 i := PLUS(i, Ptr(null,1));

B20 }

B21 }

Fig. 6. Translation of a simple C example on the left into the slightly simplified (to make it more readable) BoogiePL code on the right.
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second byte of the integer that was written to Ptr(o, 20),
but rather an unconstrained value. We are planning to
address this deficiency in the future.

Havoc takes an annotated C program and translates
it into a BoogiePL [15] program. BoogiePL has been de-
signed to be an intermediate language for program veri-
fication tools that use automated theorem provers. This
language is simple and has well-defined semantics. The
operational semantics of C, as interpreted by Havoc,
is best understood by comparing a C program with its
BoogiePL translation. Figure 6 shows two procedures,
create and init, on the left and their translations on
the right. The example uses the C struct type DATA de-
fined on line C1.

Note that variables of both static type int and int*

in C are translated uniformly as variables of type ptr.
The translation of the first argument d->y of the call to
init on line C7 shows that we treat field accesses and
pointer arithmetic uniformly. Since the array field y is
at an offset 4 in DATA, we treat d->y as d+4 on line B6.
Array accesses are also translated using pointer arith-
metic. For instance, array access on line C18 is trans-
lated as in+i*4 on line B17 since the size of each array
element is 4. The translation uses the function PLUS to
model pointer arithmetic and the function LT on line
B16 to model arithmetic comparison operations on the
type ptr. The definitions of these functions are given in
Figure 5.

The example also shows how we handle the & oper-
ator. In the procedure create, the address of the local
variable a is passed as an out-parameter to the procedure
init. Our translation handles this case by allocating a

on the heap on line B3. Then, the C expression &a on
line C7 is translated as a on line B7, while the expression
a on line C9 is translated as the heap access Mem[a] on
line B8. Note that our translator allocates a static vari-
able on the heap only if the program takes the address
of that variable or if the type of the variable is a struc-
ture or union. We allocate all structures on the heap. For
example, there is no heap allocation for the local vari-
able i in the procedure init. To prevent access to the
heap-allocated object corresponding to a local variable
of a procedure, it is freed at the end of the procedure.
Therefore, the translation freed the local variable a on
line B9.

5 Reachability and pointer arithmetic

We now give the formal definition of our new reachability
predicate in terms of the operational semantics of C as
interpreted by Havoc. As in our previous work [23], we
define the reachability predicate on well-founded heaps.
Let the heap be represented by the function Mem : ptr →
ptr and let BS ⊆ ptr be a set of pointers. We define a se-
quence of functions f i : int×ptr → ptr for i ≥ 0 as fol-
lows: for all n ∈ int and u ∈ ptr, we have f0(n, u) = u

and f i+1(n, u) = Mem[f i(n, u)+n] for all i > 0. Then Mem

is well-founded with respect to the set of blocking point-

ers BS and offset n if for all u ∈ ptr, there is i > 0 such
that f i(n, u) ∈ BS. If a heap is well-founded with respect
to BS and n, then the function idxn maps a pointer u
to the least i > 0 such that f i(n, u) ∈ BS. Using these
concepts, we now define for each n ∈ int, a predicate
Rn ⊆ ptr× ptr and a function Bn : ptr → ptr.

Rn[u, v] ≡ ∃i. 0 ≤ i < idxn(u) ∧ v = f i(n, u)

Bn[u] ≡ f idxn(u)(n, u)

Suppose a program performs the operation Mem[x]

:= y to update the heap. Then Havoc performs the
most precise update to the predicate Rn and the func-
tion Bn by automatically inserting the following code just
before the operation:

assert(Rn[y, x− n] ⇒ BS[y])
Bn := λ u : ptr.

Rn[u, x− n]
? (BS[y] ? y : Bn[y])
: Bn[u]

Rn := λ u, v : ptr.
Rn[u, x− n]
? (Rn[u, v] ∧ ¬Rn[x− n, v]) ∨ v = x− n ∨

(¬BS[y] ∧ Rn[y, v])
: Rn[u, v]

The assertion enforces that the heap stays well-founded
with respect to the blocking set BS and the offset n. It
is inserted for each offset n of interest in the program.
The value of Bn[u] is updated only if x − n is reachable
from u and otherwise remains unchanged. Similarly, the
value of Rn[u, v] is updated only if x−n is reachable from
u and otherwise remains unchanged. These updates are
generalizations of the updates provided in our earlier
paper [23] to account for pointer arithmetic.

We note that the ability to provide such updates as
described above guarantees that if a program’s assertions
—preconditions, postconditions, and loop invariants—
are quantifier-free, then its verification condition is
quantifier-free as well. This property is valuable because
the handling of quantifiers is typically the least complete
and efficient aspect of all theorem provers that combine
first-order reasoning with arithmetic.

6 Annotation language

Our annotation language has three components: basic
expressions that evaluate to pointers, set expressions
that evaluate to sets of pointers, and formulas that eval-
uate to boolean values. The syntax for these expressions
is given in Figure 7.

The set of basic expressions is captured by Expr . The
expression addr(x) represents the address of the vari-
able x. The expression x represents the value of x in the
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[b]

n ∈ int
e ∈ Expr ::= n | x | addr(x) | e + e | e - e | deref(e) | block(e, n) |

old(x) | old deref(e) | old block(e, n)
S ∈ Set ::= {e} | BS | list(e, n) | old list(e, n) | array(e, n, e)
φ ∈ Formula ::= alloc(e) | old alloc(e) | Obj(e) == Obj(e) | Off(e) < Off(e) |

in(e, S) | ! φ | φ && φ | forall(x, S, φ)
C ∈ CmpdSet ::= S | incr(C, n) | decr(C,n) | deref(C) | old deref(C)

union(C,C) | intersection(C,C) | difference(C,C)

Fig. 7. Core annotation language. Syntactic sugar, that allows writing many common idioms succinctly and more conviniently, is added
on top of it.

[|n|] = Ptr(null, n)

[|x|] =



Mem[bpl x], if address of x is taken
bpl x, otherwise

[|addr(x)|] = bpl x

[|e1 + e2|] = Ptr(Obj([|e1|]), Off([|e1|]) + Off([|e2|]))
[|e1 - e2|] = Ptr(null, Off([|e1|]) - Off([|e2|]))

[|deref(e)|] = Mem[[|e|]]
[|block(e, n)|] = Bn[[|e|]]

[|old(x)|] = old([|x|])
[|old deref(e)|] = old(Mem)[[|e|]]

[|old block(e, n)|] = old(Bn)[[|e|]]

[|alloc(e)|] = Alloc[Obj([|e|])] == ALLOCATED

[|old alloc(e)|] = old(Alloc)[Obj([|e|])] == ALLOCATED

[|Obj(e1) == Obj(e2)|] = Obj([|e1|]) == Obj([|e2|])
[|Off(e1) < Off(e2)|] = Off([|e1|]) < Off([|e2|])

[|! φ|] = ! [|φ|]
[|φ1 && φ2|] = [|φ1|] && [|φ2|]

[|forall(x, S, φ)|] = (forall x : ptr :: ! [|in(x, S)|] || [|φ|])

[|in(e, {e′})|] = [|e|] == [|e′|]
[|in(e, BS)|] = BS[[|e|]]

[|in(e, list(e′, n))|] = Rn[[|e′|], [|e|]]
[|in(e, old list(e′, n))|] = old(Rn)[[|e′|], [|e|]]
[|in(e, array(e1, n, e2))|] = (exists i : int :: 0 <= i && i < Off([|e2|]) && [|e|] == [|e1|] + n*i)

[|in(e, incr(C, n))|] = [|in(e - n,C)|]
[|in(e, decr(C, n))|] = [|in(e + n,C)|]
[|in(e, deref(C))|] = (exists x : ptr :: [|in(x, C)|] && Mem[x] == [|e|])

[|in(e, old deref(C))|] = (exists x : ptr :: [|in(x, C)|] && old(Mem)[x] == [|e|])
[|in(e,union(C1, C2))|] = [|in(e,C1)|] || [|in(e, C2)|]

[|in(e, intersection(C1, C2))|] = [|in(e,C1)|] && [|in(e, C2)|]
[|in(e, difference(C1, C2))|] = [|in(e,C1)|] && ! [|in(e, C2)|]

Fig. 8. Translation of expressions from our annotation language into BoogiePL. In this figure, bpl x refers to the BoogiePL variable
corresponding to the C variable x.

post-state and old(x) refers to the value of x in the pre-
state of the procedure. The expressions deref(e) and
old deref(e) refer to the value stored in memory at the
address e in the post-state and pre-state, respectively.3

The expressions block(e, n) and old block(e, n) repre-
sent Bn[e] in the post-state and pre-state of the proce-
dure, respectively. To be able to reason about sets of
pointers, we use the expression forall(x, S, φ) which

3 Note that the translation of old deref(e) wraps only the im-
plicit map Mem with old, which is sometimes necessary. Therefore,
using old(deref(e)) that would wrap old around the whole trans-
lation of expression deref(e) wouldn’t be sufficient.

says that for all elements x of some set of pointers S
formula φ has to hold.

The set expressions are divided into the basic set ex-
pressions in Set and the compound set expressions in
CmpdSet . The expression array(e1, n, e2) refers to the
set of pointers {e1, e1 + n, e1 + 2 ∗ n, . . . , e1 + Off(e2) ∗
n}. The expressions list(e, n) and old list(e, n) rep-
resent the list of pointers described by the reacha-
bility predicate Rn in the post-state and pre-state,
respectively. The compound set expressions include
incr(C, n) and decr(C, n) which respectively incre-
ment and decrement each element of C by n, and
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deref(C) and old deref(C) which read the contents
of memory at the members of C in the post-state and
pre-state, respectively. The expressions union(C,C),
intersection(C,C), and difference(C,C) provide
the basic set-theoretic operations.

The translation function [| ◦ |] that recursively trans-
lates each expression from our annotation language into
the corresponding BoogiePL expression is formally de-
fined in Figure 8. The function translates integer value
n as a pointer whose first component is the constant
null. Based on whether its address has been taken or
not, a variable x is translated into a memory reference
Mem[bpl x] or a BoogiePL variable bpl x, respectively.
Because variables whose address has been taken are al-
located on the heap, the expression addr(x) is simply
translated as a BoogiePL variable. Arithmetic expres-
sions perform corresponding operations on the integer
components of pointers, while pointer dereference ac-
cesses the map Mem that represents contents of the mem-
ory. The block(e, n) expression is translated into ap-
plication of the BoogiePL function Bn. The expressions
old(x), old deref(e), and old block(e, n) simply wrap
x, Mem, and Bn with old(), respectively.

Our annotation language contains the
forall(x, S, φ) expression whose translation uses the
element of set [|in(x, S)|] expression to check whether
pointer x is an element of S. Two important, basic in

checks that we support are in(e, array(e1, n, e2)) and
in(e, list(e′, n)) for arrays and lists of pointers, respec-
tively. The element of array check in(e, array(e1, n, e2))
is translated into a BoogiePL expression that looks for
an index i such that i is at least 0 and less than the
size of the array, and furthermore that the element is at
the appropriate offset. The expression in(e, list(e′, n))
is translated into the Rn predicate to check whether [|e|]
is reachable from [|e′|].

Havoc is designed to be a modular verifier. Conse-
quently, we allow each procedure to be annotated by
four possible specifications, requires φ, ensures ψ,
modifies C, and frees D, where φ, ψ ∈ Formula and
C,D ∈ CmpdSet . The default value for φ and ψ is true,
and for C and D is ∅. The translation of these specifica-
tions is given in Figure 9. The translation refers to the
translation function [| ◦ |] defined in Figure 8.

We also allow each loop to be annotated with a for-
mula representing its invariant.

In Figure 9, the translation of requires φ and
ensures ψ is obtained in a straightforward fashion by
applying the translation function [| ◦ |] to φ and ψ respec-
tively. Then, there are four pairs of modifies and ensures
clauses. The translation of modifies C is captured by
the first three pairs and the translation of frees D is
captured by the fourth pair. Our use of set expressions
in these specifications results in a significant reduction
in the annotation overhead at the C level.

The first pair of modifies and ensures clauses in
Figure 9 states that the contents of Mem remains un-

changed at each pointer that is allocated and not a mem-
ber of C in the pre-state of the procedure. The second
pair is parameterized by an integer offset n and speci-
fies the update of Rn. Similarly, the third pair specifies
the update of Bn. Based on the set C provided by the
programmer in the modifies clause, one such pair is au-
tomatically generated for each offset n of interest. The
postcondition corresponding to Rn says that if the set
of pointers reachable from any pointer x is disjoint from
the set decr(C, n), then that set remains unchanged by
the execution of the procedure. The postcondition corre-
sponding to Bn says that if the set of pointers reachable
from any pointer x is disjoint from the set decr(C, n),
then Bn[x] remains unchanged by the execution of the
procedure. These two postconditions are guaranteed by
our semantics of reachability and the semantics of the
modifies clause. Consequently, Havoc only uses these
postconditions at call sites and does not attempt to ver-
ify them. The set D in the annotation frees D is ex-
pected to contain only pointers with offset 0. Then, the
fourth pair states that the contents of Alloc remain un-
changed at each object that is allocated and is such that
a pointer to the beginning of that object is not a member
of D in the pre-state of the procedure.

7 Implementation

We have developed Havoc, a prototype tool for verifying
C programs annotated with specifications in our anno-
tation language. We use the ESP [13] infrastructure to
construct the control flow graph and parse the annota-
tions. Havoc translates an annotated C program into an
annotated BoogiePL program as described in Section 4
and Section 6. The Boogie verifier [4] generates a veri-
fication condition (VC) from the BoogiePL description,
which implies the partial correctness of the BoogiePL
program. The VC generation in Boogie is performed
using a variation [5] of the standard weakest precondi-

tion transformer [17]. The resulting VC is checked for
validity using the Z3 theorem prover [14]. 4

7.1 Proving verification conditions

The verification condition generated is a formula in first-
order logic with equality, augmented with the following
theories:

1. The theory of integer linear arithmetic with symbols
+,≤ and constants . . . ,−1, 0, 1, 2, . . ..

2. The theory of arrays with the select and update

symbols [31].

4 In the early versions of this work, we used the older Simplify
theorem prover [16], which also supports all of the required theo-
ries, instead of Z3. Currently, Z3 is the best choice performance-
wise, although any other theorem prover that accepts Boogie out-
put format and has the required theories could be used instead of
it.
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// translation of requires φ
requires [|φ|]

// translation of ensures ψ
ensures [|ψ|]

// translation of modifies C
modifies Mem

ensures (forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||

old([|in(x, C)|]) ||

old(Mem)[x] == Mem[x])
modifies Rn

ensures (forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||

(exists y:ptr:: old(Rn)[x,y] && old([|in(y + n,C)|])) ||

(forall z:ptr:: old(Rn)[x,z] == Rn[x,z]))
modifies Bn

ensures (forall x:ptr:: old(Alloc)[Obj(x)] == UNALLOCATED ||

(exists y:ptr:: old(Rn)[x,y] && old([|in(y + n,C)|])) ||

old(Bn)[x] == Bn[x])

// translation of frees D
modifies Alloc

ensures (forall o:ref:: old(Alloc)[o] == UNALLOCATED ||

(old([|in(Ptr(o, 0),D)|]) && Alloc[o] != UNALLOCATED) ||

Alloc[o] == old(Alloc)[o])

Fig. 9. Translation of requires φ, ensures ψ, modifies C, and frees D.

∀u : ptr. u = Ptr(Obj(u), Off(u))
∀x : ref, i : int. x = Obj(Ptr(x, i))
∀x : ref, i : int. i = Off(Ptr(x, i))

Fig. 10. Axioms for the theory of pairs.

[reflexivity] ∀x : Rn[x, x]
[antisymmetry] ∀x, y : Rn[x, y] ∧ Rn[y, x] ⇒ x = y

[transitivity] ∀x, y, z : Rn[x, y] ∧ Rn[y, z] ⇒ Rn[x, z]
[ordering] ∀x, y, z : Rn[x, y] ∧ Rn[x, z] ⇒ Rn[y, z] ∨ Rn[z, y]
[reach1] ∀x : BS[Mem[x+ n]] ∨ Rn[x, Mem[x+ n]]
[reach2] ∀x, z : Rn[x, z] ⇒ x = z ∨ (¬BS[Mem[x+ n]] ∧ Rn[Mem[x+ n], z])
[well-founded1] ∀x : Rn[Mem[x+ n], x] ⇒ BS[Mem[x+ n]]
[well-founded2] ∀x : Rn[x, y] ∧ BS[y] ⇒ x = y

[block1] ∀x : BS[Mem[x+ n]] ⇒ Bn[x] = Mem[x+ n]
[block2] ∀x : BS[Bn[x]]
[block3] ∀x, y : Rn[x, y] ⇒ Bn[x] = Bn[y]

Fig. 11. Reachability axioms. Note that the symbol + is the addition operation on pointers. We have overloaded + for ease of exposition.

3. The theory of pairs, consisting of the symbols for the
pair constructor Ptr, and the selector functions Obj

and Off.
4. The theory of the new low-level reachability predi-

cate, consisting of the symbols Rn, Bn, BS and Mem.

To discharge the verification conditions, a theorem
prover requires axioms about the theory of pairs, and a
way of handling the theory of the new low-level reacha-

bility predicate. The axioms for the theory of pairs are
fairly intuitive and are given in Figure 10. In our previ-
ous paper [10], we described how we initially supported
the theory of the new low-level reachability predicate.
The support for the theory was built on a sound but
incomplete axiomatization of the theory of well-founded
lists without pointers as in Java and C# [23]. To account
for low-level C operations such as pointer arithmetic and
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internal pointers that the new reachability predicate sup-
ports, we suitably generalized the described incomplete
axiomatization for Java/C#. In this work, however, we
turn to a similarly extended decision procedure for well-
founded reachability over objects that has proven to be
much more effective [24,25].

The decision procedure for well-founded reachability
is based on a sound, complete, and terminating set of
rewrite rules. The prototype implementation of the de-
cision procedures emulates the rewrite rules in an SMT
solver by encoding them using universally-quantified
first-order axioms with appropriate matching triggers.
Triggers are subterms of the quantified formula that
are used by the underlying theorem prover in decid-
ing how to instantiate universal quantifiers [16]. Fig-
ure 11 presents the set of axioms. To support the low-
level reachability predicate described in this paper, these
axioms are subtle generalizations of the previously pub-
lished ones [24] to account for low-level C operations such
as pointer arithmetic and internal pointers. The main
difference is that fields are modeled as offsets within an
object and the reachability relation is then defined with
respect to these offsets.

8 Evaluation

In this section, we describe our experience applying
Havoc to a set of small to medium size C examples. Fig-
ure 12 lists the examples considered in this paper. The
examples manipulate singly- and doubly-linked lists. In
addition to performing operations on linked data struc-
tures, the examples also use pointer arithmetic, internal
pointers into objects, and cast operations. The examples
range from 10 to 150 lines of C code. For all these exam-
ples, we check a set of partial correctness properties in-
cluding (but not limited to) the implicit memory-safety
requirements. Next, we’ll give a brief description of each
example and additional properties we check, when ap-
plicable:

iterate – initializes the data elements of a cyclic list.
This is the example from Figure 2 in Section 3.

iterate acyclic – similar to iterate, just initializes
the data elements of an acyclic list.

slist add – adds a node to an acyclic singly-linked list.
reverse acyclic – performs in-place reversal of an

acyclic singly-linked list; we verify that the output
list is acyclic and contains the same set of pointers
as the input list.

slist sorted insert – inserts a node into a sorted (by
the data field) linked list; we verify that the out-
put list is sorted. This example illustrates the use of
arithmetic reasoning (using ≤) on the data fields.

dlist add, dlist remove – insertion and deletion rou-
tines for cyclic doubly-linked lists used in the Win-
dows kernel. The examples using doubly-linked lists

Example Time(s)

iterate 1.50
iterate acyclic 1.43

slist add 1.36
reverse acyclic 1.37

slist sorted insert 4.85
dlist add 1.75

dlist remove 1.65
allocator 2.00
list appl 30.22
muh free 8.20

Fig. 12. Results of assertion checking using Havoc. Z3 was used as
the theorem prover. The experiments were conducted on a 3.6GHz,
2GB machine running Windows XP.

require the use of R0 and R4 to specify the lists
reachable through the Flink and Blink fields of the
LIST ENTRY structure.

allocator – low-level storage allocator that closely re-
sembles the malloc firstfit acyclic example de-
scribed by Calcagno et al. [9]. The allocator main-
tains a list of free blocks within a single large object;
each call to the allocate routine returns either (i) a
block within the object larger than or equal to the re-
quested block size, or (ii) null, otherwise. The acyclic
linked list threads through the free blocks, and each
node in the list maintains a pointer to the next ele-
ment of the list and the size of the free block in the
node. Allocation of a block may result in either re-
moving a node (if the entire free block at the node is
returned) from the list, or readjusting the size of the
free block (in case only a chunk of the free block is
returned). We check two main postconditions: (i) the
allocated block (when a non null pointer is returned)
is a portion of some free block in the input list, and
(ii) the free blocks of the output list do not overlap.
This example required the use of R0 to specify the
list of free blocks.

list appl – simple application with multiple doubly-
linked lists, parent pointers, and usage of the primi-
tive doubly-linked list operations; we verify that the
disjoint lists satisfy certain data invariants.

muh free – simplified version of the muh example de-
scribed in the recent paper by Lahiri and Qadeer [25];
we check the absence of the double-free property.

Figure 12 gives the running times taken by Havoc
to check the assertions in each example. It takes only a
small fraction of the presented time to generate verifi-
cation conditions. Therefore, reported times are largely
dominated by the time it takes Z3 to discharge the gen-
erated VCs. The results are very encouraging since Z3
proved most of our examples in just a couple of seconds.
Only list appl is taking a little bit more time due to the
use of complex invariants that connect the forward-going
and backward-going links in a doubly-linked list. In ad-
dition, we also believe that the presented results could
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be further improved. Currently, the decision procedure
for our low-level reachability predicate is just a prototype
implementation using universally quantified axioms. Ac-
tually implementing the presented rewrite-rule-based de-
cision procedure in an SMT solver will provide additional
performance boost and is an area of future work.

Interestingly, Havoc revealed a bug in our imple-
mentation of the allocator. This bug was caused by an
interaction between pointer casting and pointer arith-
metic. Instead of the following correct code that casts a
pointer variable cursor to an unsigned int and then
performs an integer addition

return ((unsigned int) cursor) +

sizeof(RegionHeader);

or similarly

return (unsigned int) (cursor + 1);

we had written the following incorrect code

return (unsigned int)

(cursor + sizeof(RegionHeader));

Note that the two statements return different values be-
cause the size of RegionHeader, which is the static type
of the structure the pointer cursor is pointing to (i.e.
the type of cursor is RegionHeader*), is not 1. We be-
lieve that such mistakes are common when dealing with
low-level C code, and our tool can provide great value in
debugging such programs.

9 Conclusions and future work

In this work, we introduced a memory model and the
accompanying reachability predicate suitable for reason-
ing about data structures in low-level systems software.
Our reachability predicate is designed to handle inter-
nal pointers and pointer arithmetic on object fields. It is
based on the classical reachability predicate used in ex-
isting verification tools. In addition, we described a deci-
sion procedure for the predicate based on a set of rewrite
rules. We have designed an annotation language for C
programs that allows concise specification of properties
of lists and arrays. We have also developed Havoc, a
verifier for C programs annotated with assertions in our
specification language. Furthermore, we tested Havoc
on a set of illustrative C programs that perform opera-
tions on linked data structures as well as use low-level C
pointer manipulations.

Based on the presented results, we believe that
Havoc is a good foundation for building a powerful
safety checker for systems software based on automated
first-order theorem proving. We are currently working to
extend Havoc with techniques for inference and abstrac-
tion to reduce the manual annotation requirement by
automatically inferring many annotations. That would
make Havoc much easier to adopt and enable its use on
realistic code bases inside Windows.

The reachability predicate we introduced is mainly
suitable for describing linked lists, while more complex
recursive data structures, such as trees, are beyond its
reach. Lists are the most commonly used recursive data
structures in systems software, and therefore were the
natural place to start. The obvious next step, which we
are planning to address in the future, is to extend the
theory of reachability to be able to handle more complex
data structures.
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