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Abstract. Because of its critical importance underlying all other software, low-
level system software is among the most important targets for formal verification.
Low-level systems software must sometimes make type-unsafe memory accesses,
but because of the vast size of available heap memory in today’s computer sys-
tems, faithfully representing each memory allocation and access does not scale
when analyzing large programs. Instead, verification toolsrely on abstract mem-
ory models to represent the program heap. This paper reportson two related in-
vestigations to develop an accurate (i.e., providing a useful level of soundness
and precision) and scalable memory model: First, we comparea recently intro-
duced memory model, specifically designed to more accurately model low-level
memory accesses in systems code, to an older, widely adoptedmemory model.
Unfortunately, we find that the newer memory model scales poorly compared to
the earlier, less accurate model. Next, we investigate how to improve the sound-
ness of the less accurate model. A direct approach is to add assertions to the code
that each memory access does not break the assumptions of thememory model,
but this causes verification complexity to blow-up. Instead, we develop a novel,
extremely lightweight static analysis that quickly and conservatively guarantees
that most memory accesses safely respect the assumptions ofthe memory model,
thereby eliminating almost all of these extra type-checking assertions. Further-
more, this analysis allows us to create automatically memory models that flexibly
use the more scalable memory model for most of memory, but resorting to a more
accurate model for memory accesses that might need it.

1 Introduction

Because of its critical importance underlying all other software, low-level system soft-
ware is among the most important targets for formal verification. For example, the cor-
rect execution of even the most mundane software relies on a vast array of supporting
system software: the compiler and linker during development, of course, but also all
the OS services at runtime: application-level memory management and the underlying
virtual memory system, context swaps and the underlying OS scheduler, device drivers
for all I/O, etc. With the emergence of virtualization, the hypervisor becomes an even
lower-level, even more critical layer that needs verification (e.g., [27]), as even the op-
erating system relies on its correctness.

All formal software analysis must model memory in some way. At one extreme, the
entire memory space could be modeled as a single, giant arrayof bytes/words (e.g., [14,
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11, 10], early versions of VCC [27] also supported byte-level reasoning). Doing so
makes the verification completely accurate (sound and precise with respect to the ef-
fect of any memory access), but does not scale beyond very small segments of code.
At the other extreme, we can restrict our analysis to handle only code that has no dy-
namic memory allocation and is completely type-safe (e.g.,[6])1. Such an approach
has scaled to millions of lines of code [6], but obviously precludes verification of typ-
ical mainstream software. Most software verification tools(e.g., [2, 20, 21, 8, 18]) try
to strike a balance, assuming some degree of type-safety, e.g., assuming that pointers
to different types of objects do not alias. Note that most tools do not check these as-
sumptions — if the code violates the assumption, the tool might report wrong answers
without any warning.

The choice of memory model is particularly challenging for low-level systems soft-
ware, because such software must sometimes make type-unsafe memory accesses. For
example, common idioms include casting a data structure from/into an array of bytes
or integers for efficiency or to interface to hardware, and accessing a structure via
differently-typed pointers as a way to implement sub-typing in C. Address arithmetic is
also common, usually to offset before or after a given pointer in order to access a nearby
data field. Verification tools for low-level software must find an intermediate memory
model that assumes some type information to provide scalability, yet accurately cap-
tures the effects of lower-level, type-unsafe memory accesses.

In this paper, we develop such a model. The paper consists of two separate, but
related parts. In the first part (Section 2), we compare a recently introduced memory
model, specifically designed to more accurately model low-level memory accesses in
systems code, to an older, widely adopted memory model. We find that the newer mem-
ory model scales poorly compared to the earlier, less accurate model. In the second part
(Section 3), we investigate how to improve the soundness of the less accurate model.
We first consider adding assertions to the code that each memory access does not break
the assumptions of the memory model, but this causes verification complexity to blow-
up. Then, we develop a novel, extremely lightweight static analysis that quickly and
conservatively guarantees that most memory accesses safely respect the assumptions of
the memory model, thereby eliminating almost all of these extra type-checking asser-
tions. Furthermore, this analysis allows us to create automatically memory models that
flexibly use the more scalable memory model for most of memory, but resort to a more
accurate model for memory accesses that might need it. Experimental results show that
the static analysis is very fast, maintaining the scalability of the less accurate memory
model. Along the way, our tool found four bugs in real Linux device drivers, three of
which were previously unreported.

2 Comparing Two Memory Models

Because of the vast size of available memory in today’s computer systems, faithfully
representing each memory allocation and access in a static verifier does not scale.
Therefore, verification tools rely on memory models that trade precision for scalability,

1 Astrée now supports type casts, but still does not support dynamically allocated memory [24].



and in turn, they define programming language operational semantics with respect to
the chosen memory model. In this section, we introduce two memory models that are
typically used in modular deductive verification tools, describe their advantages and
drawbacks in the context of low-level code verification, andpresent empirical results
on using the models to verify a number of Linux device drivers.

2.1 Monolithic Memory Model

Our first memory model is heavily influenced by the one used in early versions of
HAVOC [9], and also similar to the one used in the first incarnation of VCC [27]. The
main idea behind this memory model is to divide the memory into disjoint objects (or
regions). Each object is identified by its reference, and hasa fixed size determined when
the object is allocated. A pointer in the memory model is therefore a pair, consisting of a
reference and an offset; the reference uniquely defines the object into which the pointer
points; the byte offset defines the byte in the object being pointed to.

To be able to translate a program into a representation that uses a memory model,
we have to define the semantics of its source language with respect to the chosen mem-
ory model. In the monolithic memory model, the semantics of programs depends on
three fundamental types: the uninterpreted typeref of object references, the typeint
of integers, and the typeptr= ref×int of pointers. For notational convenience, each
variable in a program, regardless of its declared type, contains a pointer value: a pointer
is a pair containing an object reference and an integer offset, and an integer value is en-
coded as a pointer value whose first component is the special constantnull of typeref.
Note that because of the integer offset component, the memory model can precisely cap-
ture byte offsets and low-level pointer arithmetic inside an object. On the other hand,
since object references are uninterpreted, the objects areessentially “infinitely apart”,
and the memory model cannot model pointer arithmetic between objects.

The heap of a program is modeled using two map variables,Mem andAlloc, and a
map constantSize:

Mem : ptr→ ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

The variableMem maps pointers to pointers and represents the contents of memory at
a location. The variableAlloc maps object references to the set{UNALLOCATED,
ALLOCATED} and is used to model memory allocation. The constantSize maps ob-
ject references to positive integers and represents the size of the object. For instance,
the procedure callmalloc(n) for allocating a memory buffer of sizen returns a
pointerPtr(o,0) whereo is an object reference such thatAlloc[o] = UNALLOCATED

andSize[o]≥ n before the call, andAlloc[o] = ALLOCATED after the call (ignoring the
possibility of memory allocation failure, which could alsobe easily modeled).

2.2 Burstall’s Memory Model

Our second memory model is a type-indexed memory model (alsoknown as Burstall’s
memory model [7]) that has been commonly used in the deductive verification of type-
safe languages [5, 19]. The main idea behind this model is that, apart from dividing



memory into disjoint objects as in the previous model, we also split the memory ac-
cording to a set of possibletypesof memory locations. To achieve this splitting, a set of
unique type constants of typetype is introduced, which represent types in the original
program. The common types found in a language, such asint, int*, char, etc., are
going to be translated as type constants$int,$intP,$char, etc. Usually, apart from
all of the commonly found types, the set of type constants also contains a unique type
constant for each structure field. For instance, the structure

struct {
int x;
int y;

} foo;

introduces unique type constants$foo#x and$foo#y. It turns out that this “type-
awareness” in the model, caused by adding type constants andsplitting the memory
according to those, is exactly what gives this model an edge when it comes to scalability
over the monolithic model.

Our mapMem from the previous memory model is therefore, instead of mapping
pointers to pointers, going to map type-pointer pairs to pointers. We also introduce in
the model an additional map constantType that maps pointers (memory locations) to
types and represents the allocation type of memory locations. Each type in the memory
model is a unique constant distinct from all other types. Thetype-indexed memory
model therefore has four maps:

Mem : (type×ptr) → ptr

Alloc : ref→ {UNALLOCATED, ALLOCATED}
Size : ref→ int

Type : ptr→ type

Adding types to the memory model makes proving programs easier and faster:

– One can conclude that updates to different fields of a structure don’t influence each
other without reasoning about integer offsets and pointer arithmetic, as would be
needed in the monolithic memory model. Such reasoning is often hard in the pres-
ence of quantifiers.

– Memory locations of different fields of two distinct objectsusually don’t alias,
which is nicely captured by this memory model. This also greatly simplifies the
task of proving many interesting assertions.

– When a field is being updated, based on its type, only the corresponding submap of
Mem changes, which simplifies proving frame axioms.

2.3 Experimental Results

We have implemented the preceding memory models as part of our tool SMACK (Static
Modular Assertion ChecKer [26]), which is a modular, annotation-based, extended
static property checker of C programs. In the spirit of modular verification, SMACK ver-
ifies programs annotated with procedure specifications and loop invariants. It uses the



Driver LOC
Memory Model

Speedup
Monolithic (s) Burstall (s)

ib700wd 346 45.7 14.6 3.1
w83877f wdt 421 59.5 16.1 3.7
sc520wdt 443 50.2 16.5 3.0
machzwd 494 71.0 18.1 3.9
wdt977 519 46.4 19.3 2.4
ds1286 633 70.8 20.3 3.5
efirtc 815 62.2 16.3 3.8
applicom 934 *3368.8 161.2 20.9

Table 1. Running times for checking correct locking behavior in device drivers from the Linux
kernel. The column “LOC” given the number of lines of code; “Monolithic” gives the total run-
ning time of BOOGIEusing the monolithic memory model; “Burstall” gives the total running time
of BOOGIE using Burstall’s memory model with assumed types; “Speedup” compares the run-
ning times. The * indicates that BOOGIE timed out on two procedures from theapplicom driver
(time out is set to 1200s).

LLVM compiler framework [22] to parse input programs and annotations. The LLVM
output is translated by SMACK into a BoogiePL [16] program based on the operational
semantics of C memory accesses according to the selected memory model. BoogiePL
is the input language of the BOOGIE verifier [3], which, in turn, generates a verifica-
tion condition (VC) from the input program whose validity implies partial correctness
of the input. The VC generation in BOOGIE is performed using a variation [4] of the
standardweakest preconditiontransformer [17]. We check the generated VC using the
accompanying Z3 theorem prover [15]. We report only the running times of BOOGIE

required to verify the examples since the transformation SMACK performs takes only a
small fraction of that time.

We applied SMACK to check correct locking behavior of several device driversfrom
the Linux kernel. The source code of the examples, the modelsand stubs of the relevant
kernel routines, and the test harness are taken from the DDVERIFY suite [29, 1]. Ensur-
ing correct locking behavior amounts to checking that locksare initialized before they
are used and that locks are alternately acquired and released. Table 1 lists the drivers and
gives the running times for the verification using the monolithic and Burstall’s memory
models. All experiments were executed on an Intel Pentium D at 2.8Ghz.

Seven of the drivers were arbitrarily picked character device drivers that contain
spinlocks, usually as one or two global variables. In addition, we handpicked theap-
plicom driver, since this driver has a global array of structures where each structure is
protected by its own spinlock. This makes it much more interesting and challenging
to verify (see Figure 1), requiring from a tool the ability toreason precisely about such
unbounded data structures. Current tools that are typically used in the verification of de-
vice drivers [2, 20, 21, 8, 11, 10] have trouble handling unbounded data structures. One
of the goals of SMACK is to address that weakness.

From the running times, it can be seen that Burstall’s memorymodel is the clear
winner. It always outperforms the monolithic memory model on easier examples, and
the speedup factor is from 2.4 to 3.9. Furthermore, using Burstall’s memory model, we



1 struct applicom_board {
2 unsigned long PhysIO;
3 void __iomem *RamIO;
4 wait_queue_head_t FlagSleepSend;
5 long irq;
6 spinlock_t mutex;
7 } apbs[MAX_BOARD];
8

9 irqreturn_t ac_interrupt(int vec, void *dev_instance) {
10 for (i = 0; i < MAX_BOARD; i++) {
11 if (!apbs[i].RamIO) continue;
12 spin_lock(&apbs[i].mutex);
13 if(readb(apbs[i].RamIO + RAM_IT_TO_PC)) {
14 spin_unlock(&apbs[i].mutex);
15 i--;
16 } else {
17 spin_unlock(&apbs[i].mutex);
18 }
19 }

Fig. 1.Simplified code excerpt from theapplicom Linux device driver illustrating the complexity
of checking correct locking behavior. The loop on line 10 iterates over array elements. If the
field RamIO of the element at indexi is not null (line 11), the lock (fieldmutex) is acquired
on line 12 and then later released. The verification requireschecking complex invariants over all
elements of the array (i.e. quantified) that involve values of theRamIO fields as well as the status
of locks (initialized, locked, unlocked).

managed to verify theapplicom example, which we couldn’t do using the monolithic
memory model since it timed out on two procedures. The example requires proving
complex quantified invariants over fields from an array of structures. The key to suc-
cessful verification of this example is structure field disambiguation: Burstall’s mem-
ory model provides this for free, whereas in the monolithic model, it requires reasoning
about offsets and pointer arithmetic.

However, the much better running times of Burstall’s memorymodel come at a
price: it relies on the assumption that memory is strongly typed. In the examples, when
we use Burstall’s model, we are assuming the type of a memory location before each
memory access, which is unsound and can cause bugs to be missed in a type-unsafe
setting such as C. In the next section, we describe how to dealwith this problem.

3 Ensuring Soundness with Burstall’s Memory Model

Burstall’s memory model relies on the assumption that memory is strongly typed, as
in type-safe languages such as Java. That means that a type ofthe object is established
when it is created, via a call tonew, and the object is always accessed using that original
type. However, low-level languages like C allow reinterpretation of the original type and
therefore type-unsafe memory accesses. Such operations are not uncommon in systems



1 typedef struct {
2 int x;
3 } S1;
4

5 typedef struct {
6 int a;
7 int b;
8 } S2;
9

10 void main() {
11 S2* s2 =
12 (S2*)malloc(sizeof(S2));
13 S1* s1 = (S1*)s2;
14

15 s2->a = 3;
16 s1->x = 4;
17

18 assert(s2->a == 3);
19 }

1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 s1 := s2;
9

10 Mem[$S2#a,s2] := Ptr(null,3);
11 Mem[$S1#x,s1] := Ptr(null,4);
12

13 assert(Mem[$S2#a,s2] ==
14 Ptr(null,3));
15 }

Fig. 2. Example illustrating a simple upcasting in C that causes unsoundness in Burstall’s mem-
ory model. The right column shows simplified BoogiePL code ofthe translation of the function
main, assuming Burstall’s model. Because of the assumption of type safety, the two assignments
on BoogiePL lines 10 and 11 do not alias, resulting in the assertion incorrectly passing.

code and are typically done in C using casts or unions2. Often, casts don’t reinterpret
memory at the byte level, but are used to simulate object-oriented language features,
such as inheritance, that are not supported directly in C. Infact, according to empirical
studies [28, 13], more than 90% of the structure casts in C fall into that category.

Figure 2 gives a simple example illustrating “upcasting” inC. The structureS2 is a
subtype of the structureS1, and the cast on line 13 represents an upcast. The example
shows how such a simple cast can cause Burstall’s memory model to become unsound:
the field update on line 16 overwrites the value that was written to the same memory
location on line 15, and the assertion on line 18 fails. However, in Burstall’s model
this overwrite does not happen, since different field names (i.e. different unique types)
denote different memory locations in the model: the write tos2->a is translated as the
write toMem[$S2#a,s2] on line 10 of the BoogiePL translation in the right column,
while the write tos1->x is translated at the write toMem[$S1#x,s1] on line 11,
and doesn’t overwrite the locationMem[$S2#a,s2] although the pointerss1 ands2
are equal.

A simple way of ensuring soundness in the presence of such casts is to syntactically
analyze the source code and just give up on the verification ifwe find one (e.g., [18]).
Our goal is to go a step further and verify the code even in the presence of type-unsafe
structure casts, while preserving soundness. In the following sections, we’ll describe
three different techniques of how to achieve that goal.

2 We can consider union a special case of cast.



1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 assert(Type[s2] == $S2#a);
12 Mem[$S2#a,s2] := Ptr(null,3);
13 assert(Type[s1] == $S1#x); // Fails!
14 Mem[$S1#x,s1] := Ptr(null,4);
15

16 assert(Type[s2] == $S2#a);
17 assert(Mem[$S2#a,s2] == Ptr(null,3));
18 }

Fig. 3. Translation of the example from Fig. 2 with type-check assertions added before each
memory access (lines 11, 13, and 16). The type-check assertion on line 13 will fail, indicating a
violation of the assumption of type safety.

3.1 Guarding Memory Accesses with Type Assertions

A straightforward way of preventing unsoundness describedin the previous section
from happening in Burstall’s memory model is to addtype checksbefore each mem-
ory access. The checks are added in the form of assertions on the Type map. Every
access to a memory locationx with type $t is going to be preceeded with the assertion
assert(Type(x) == $t) that will have to be discharged.

Figure 3 shows the translation of the example in Figure 2 withthe inserted type
checks. The mapType represents the compile-time allocation type of memory loca-
tions, and therefore the correct allocation type has to be assumed on line 8 after the
allocation. Then, type check assertions are inserted before each memory access (lines
11, 13, and 16). The type check assertion on line 13 clearly will fail: s1= s2, and the
type ofs2 is $S2#a, not$S1#x. Whenever a memory location is accessed through
a type that is not the allocation type of the memory location,the added type check
assertion will fail. This preserves the soundness of the verification in Burstall’s model.

However, proving such type check assertions for each memoryaccess in the pro-
gram is a big overhead, as we’ll show later on in the experiments in Section 3.4. Fur-
thermore, discharging those assertions often requires adding more manual annotations
to the code which poses an additional burden on the user. Bothof these drawbacks
are an unacceptable burden that is not justified since most parts of the code usually
obey the type restrictions imposed by Burstall’s memory model. Therefore, in the next
section, we introduce a lightweight static analysis that eagerly removes most of the
required type-check assertions by conservatively guaranteeing that those memory ac-
cesses safely respect the assumptions of the model.



3.2 Eagerly Eliminating Type Check Assertions

We’ll start this section by giving some background information on the pointer analysis
that is the starting point of our technique for eagerly eliminating type check assertions.
Then, we’ll describe our algorithm for eliminating type checks.

Data Structure Analysis (DSA).DSA [23] is a highly scalable and fast, context-
sensitive (with fullheap cloning), field-sensitive (even in a type-unsafe setting), con-
servative pointer analysis. The term “heap cloning” refersto a property important for
achieving true context-sensitivity — heap objects are not distinguished just by alloca-
tion site, but also by (acyclic) call paths leading to their allocation, i.e. the calling con-
text in which they were created. Support for data structure operations is often going to
be encapsulated in a library used throughout the code, and therefore context-sensitivity
is important to be able to handle such cases precisely.

DSA constructs a representation of the heap in the form of Data Structure Graphs
(DS graphs); it creates one DS graph per procedure plus an additional one for global
storage. The separate globals graph is a key optimization allowing procedure graphs
to contain only the parts of global storage reachable from that procedure. A DS graph
consists of a set of nodes (DS nodes) and a set of edges. As an example, a simplified
part of the globals DS graph for theapplicom device driver is shown in Figure 4. We
distinguish two types of DS nodes: heap nodes with a number offields at different
offsets (e.g. rectangle nodes in the example graph), and pointer variable nodes that point
into heap nodes (e.g. oval nodes in the example graph). A pointer variable node is named
after the pointer variable it represents and has one edge. A heap node has one outgoing
edge per pointer field. Each heap node has a type and represents a potentially unbounded
number of objects in memory of that type. A DS graph edge is defined by its source node
and offset (i.e. offset of the respective pointer field in thesource node), and its end node
and offset. For instance, if the word size is 4 bytes, the second edge coming out of the
genhdregisterednode is defined by〈genhdregistered,8〉→ 〈block device,0〉.

Instead of just providing the usual pairs of references thatmay alias (points-to/alias
information), the explicit heap representation DSA constructs can be used to identify
different instances of data structures and provide structural and type information for
each identified instance. The key feature of DSA we take advantage of is the conser-
vative type information for each heap object. In particular, if all accesses to objects
that a node represents obey a consistent type, such node is called “type-homogeneous”.
Accesses are defined as operations on pointers that point into the node and actually in-
terpret the type: load and store operations, and structure and array indexing operations
on pointers. Operations such as memory allocation and pointer casts (e.g. fromvoid*)
are not counted as accesses and don’t influence a node type. Ifaccesses with incompati-
ble types are found, the type of the node is marked asUnknown. Therefore, DSA tracks
types precisely in the type-safe parts of the heap/program,while in the presence of
type-unsafe operations it conservatively treats nodes as having an unknown type.

Eager Type Check Elimination Algorithm. The algorithm is relatively simple
and straightforward, but as we’ll show in the experiments inSection 3.4, extremely
effective. First, we run the DSA on the code we are analyzing,outputting a DS graph
for each procedure and the globals graph. Then, for each memory read or write through
a pointer, we find the type of the memory location it points to using the appropriate DS



%struct.ddv_genhd
 genhd_registered

                    

%struct.gendisk

                                

%struct.block_device
 block_device

    

void

%struct.block_device_operations

          

%struct.request_queue

            

operations

void void void void void
%struct.mutex

  

device

Fig. 4. An example of a Data Structure Graph. The graph shows a simplified part of the glob-
als DS graph for theapplicom device driver. Oval nodes in the graph are pointer variable
nodes (e.g.deviceandoperations); rectangle nodes are heap nodes (e.g.genhdregisteredand
block device). Each heap node has a type. For instance, the type of thegenhdregisterednode is
struct.ddv genhd, the type of theblock devicenode isstruct.block device, etc. Pointer fields of
heap nodes have outgoing edges, while fields of other types are just empty boxes.

graph. If the computed type is the same as the actual type of the pointer, we omit the
type check (assertion) that would be otherwise generated. If the types are not the same
or if the type of the node the pointer points to isUnknown, we will generate the type
check assertion to preserve soundness.

Figure 5 illustrates the benefits of our technique, removingtwo type-check asser-
tions compared to the code in Figure 3. However, the soundness is preserved, since the
assertion on line 12 couldn’t be safely eliminated and is going to fail again: According
to DSA, pointers1 is going to point to the fielda of structureS2, and therefore its type
is going to be$S2#a and not$S1#x as expected by the memory access.

The algorithm essentially compares compile-time pointer types used by Burstall’s
memory model with the sound over-approximation of the run-time types that DSA gen-
erates: if the two agree, we can safely omit the type check; ifnot, which could happen
either because of actual type-unsafe casts or because of theimprecision of DSA, the
type check stays. To sum up, using the extremely fast, cheap,and yet relatively precise
Data Structure Analysis, we are eagerly getting rid of most of the type checks that are
usually hard and expensive to prove later on.

In order for the remaining assertions to be discharged, either the user has to provide
additional manual annotations that will essentially unifythe types, which is the ap-
proach taken in some related work [25, 12], or such types can be unified automatically,
which is our approach described in the next section.



1 const unique $S1#x:type;
2 const unique $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 Mem[$S2#a,s2] := Ptr(null,3);
12 assert(Type[s1] == $S1#x); // Fails!
13 Mem[$S1#x,s1] := Ptr(null,4);
14

15 assert(Mem[$S2#a,s2] == Ptr(null,3));
16 }

Fig. 5.Translation of Fig. 2 using the eager type check eliminationalgorithm. Compared to Fig. 3,
the unneeded type checks have been eliminated, but the type-safety violation will still be caught.

3.3 Eager Type Unification

The type check elimination algorithm from the previous section doesn’t remove the
type check assertion for which the compile-time type of a pointer and the one computed
by DSA don’t agree. Proving those left-over assertions might still require the addition
of manual annotations by a user. Instead, we describe a simple, completely automatic
technique that will soundly remove the left-over assertions.

For each memory access for which the type check elimination algorithm couldn’t
agree on types, we unify the two types. Unification simply means that the type constants
are not unique anymore, which is in BoogiePL achieved by removing the keyword
unique. There is an obvious tradeoff between the type check elimination algorithm
and the type unification algorithm: the first one might require additional running time
and manual annotations from a user to discharge the left-over assertions; the second
one is completely automatic, but with each unification, the memory model is closer to
the monolithic one and the performance might suffer (in the worst case, all types are
unified and we essentially have the monolithic model).

Figure 6 shows the translation using the eager type unification algorithm. Instead of
the type-check assertion on line 12 in Figure 5, the types$S1#x and$S2#a are unified
and are not unique constants any more (lines 1 and 2). Now,Mem[$S2#a,s2] and
Mem[$S1#x,s1] possibly refer to the same location, which is sound, and therefore
the assertion on line 14 will fail. Note that only the types$S1#x and$S2#a involved
in the actual type-unsafe access got unified, while the type$S2#b not involved in
type-unsafe operations didn’t. Therefore, the overapproximation caused by unification
is localized only to the places that actually need it in orderto preserve soundness. In
the limit, eager type unification degenerates into the monolithic memory model, but for



1 const $S1#x:type;
2 const $S2#a:type;
3 const unique $S2#b:type;
4

5 procedure main() {
6 var s1:ptr, s2:ptr;
7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 s1 := s2;

10

11 Mem[$S2#a,s2] := Ptr(null,3);
12 Mem[$S1#x,s1] := Ptr(null,4);
13

14 assert(Mem[$S2#a,s2] == Ptr(null,3));
15 }

Fig. 6. Translation of Fig. 2 using the eager type unification algorithm. Instead of flagging the
type-safety violation, this translation handles type unsafety by allowing$S1#x and$S2#a to
be possibly the same type. Thus, the verifier will correctly catch the assertion violation on line 14.

code that is mostly type-safe, it should have most of the efficiency of Burstall’s model
and the soundness of the monolithic model.

3.4 Experimental Results

The results in Table 2 compare the running times for checkingcorrect locking behav-
ior while ensuring soundness using the three different approaches: guarding memory
accesses with type assertions, eagerly eliminating type check assertions, and eagerly
unifying types. The algorithm that inserts type checks for each memory access is a
simple linear scan of the code and is extremely fast. Also, DSA scales to hundreds
of thousands of lines of code in less than 4s [23]. Therefore,total running times are
dominated by the verification done by BOOGIE, and those are the times we report.

As expected, blindly generating type check assertions for each memory access sim-
ply does not scale — verification times after using both eagertechniques are roughly
30-40 times faster. Furthermore, both eager techniques give roughly the same verifica-
tion times afterwards. The reason is, to our surprise, that none of the analyzed device
drivers actually has type-unsafe structure casts. Therefore, both of the algorithms end
up generating the same BoogiePL code. In the future, as we verify increasingly complex
examples, we will be able to evaluate the trade-off between the two methods.

Bugs Found.While doing the experiments, we found a total of four bugs in the eight
device drivers we checked from the Linux kernel. One bug is the rediscovered incor-
rect locking pattern in theds1286 driver that was also found earlier by the DDVERIFY

checker. The other three bugs are previously unreported buffer-overflow bugs. We sub-
mitted the bugs to the Linux kernel development team, who confirmed all three bugs
and issued patches to the standard Linux kernel.



Driver
Assuring Soundness SpeedupSpeedup

Every Access (s)Eager Elimination (s)Eager Unification (s) EA/EE EA/EU

ib700wd 448.7 14.2 14.1 31.6 31.8
w83877f wdt 683.5 15.3 15.2 44.7 45.0
sc520wdt 632.5 16.7 16.0 37.9 39.7
machzwd 761.4 18.2 17.8 41.8 42.8
wdt977 466.2 18.1 18.3 25.8 25.5
ds1286 823.5 20.7 25.5 39.8 32.4
efirtc 576.2 15.5 15.3 37.2 37.7
applicom *7487.4 173.5 172.0 43.2 43.5

Table 2. Total running times for checking correct locking behavior while ensuring soundness in
Linux device drivers. The column “Every Access” gives the total running time of BOOGIE when
checking type assertions on every access; “Eager Elimination” gives the total running time of
BOOGIE when our eager elimination technique is used to soundly remove most of the required
type checks; “Eager Unification” gives the total running time of BOOGIE when our eager uni-
fication technique is used to ensure soundness; “Speedup EA/EE” compares the running times
of Every Access vs Eager Elimination; “Speedup EA/EU” compares the running times of Every
Access vs Eager Unification. The * indicates that BOOGIE timed out on four and the memory
blew up on one procedure from theapplicom driver (time out is set to 1200s).

A natural question is how the different memory models affected the detectability of
these bugs. The answer is not straightforward:

– First, as mentioned above, these device drivers turned out to be type-safe, in the
sense that Burstall’s model would be as accurate as the monolithic model. Thus,
one might argue that the more accurate models are unnecessary. However, the type-
safety is not at all obvious — this is C code, with type casts, pointer arithmetic,
etc. With Burstall’s model, we assume type safety and might catch some bugs, but
we don’t know whether the code is truly type-safe; with the monolithic model, we
don’t assume type safety, but the verification complexity blows up, so we can’t
catch any bugs anyway. Our new models ensure type safety but also scale well.

– The other issue is that, of the four bugs we found, only the previously discovered
one was a direct violation of the locking-unlocking properties we were checking.
The other three bugs were buffer-overflow bugs that were caught because of the
type-checking assertions. These bugs perhaps could have been caught by a variety
of methods, using many different memory models.

The key point is that our new memory models can ensure, ratherthan assume, type-
safety, yet are scalable enough to handle real code that is sufficiently complex to contain
significant bugs that have eluded previous detection.

4 Conclusion and Future Work

In the first part of the paper, we presented our experience with two memory models
for low-level code. We introduced the monolithic memory model, which can handle
soundly many common low-level idioms. Then, we presented Burstall’s memory model,



which has typically been used in the verification of type-safe languages. We imple-
mented both models as part of our verification tool SMACK . In the experiments, we
checked correct locking behavior of a number of Linux devicedrivers, and showed
that the performance using Burstall’s model is much better than using the monolithic
memory model, especially on more complex examples.

However, a straightforward translation of a program using Burstall’s memory model
cannot preserve soundness of type-unsafe operations foundin low-level code. There-
fore, in the second part of the paper, we describe three different techniques for ensuring
soundness with Burstall’s model: insertion of soundness checks before each memory
access, our novel eager type check elimination algorithm based on a lightweight pointer
analysis, and our novel eager type unification technique. Weshowed in the experiments
that naively inserting checks is an unnecessary verification overhead, since most of the
checks can be eagerly removed using our algorithms. During the verification effort, we
found three previously unreported bugs.

In an upcoming paper [12], Condit et al. describe a novel memory model for low-
level code that includes type information. Types can be checked using an SMT solver,
and they also provide a decision procedure for checking typesafety. Using these tech-
niques, they type-checked a number of Windows device drivers. Their work is comple-
mentary to ours: we conservatively and eagerly remove as many type checks as possible,
whereas they provide an efficient technique to prove type checks. Obvious future work
is to combine the best of both approaches: quickly eliminating most type checks using
our methods, and solving the remaining ones efficiently using theirs.
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alyzing low-level software.Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pp. 19–33, 2007.



10. E. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.Intl. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS), pp. 168–176,
2004.

11. E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Predicate abstraction of ANSI–C pro-
grams using SAT.Formal Methods in System Design, 25(2-3):105–127, 2004.

12. J. Condit, B. Hackett, S. Lahiri, and S. Qadeer. Unifyingtype checking and property check-
ing for low-level code.ACM SIGPLAN-SIGACT Symp. on Principles of Programming Lan-
guages (POPL), 2009. To appear.

13. J. Condit, M. Harren, S. Mcpeak, G. C. Necula, and W. Weimer. CCured in the real world.
ACM SIGPLAN Conf. on Programming Language Design and Implementation (PLDI),
pp. 232–244, 2003.

14. D. W. Currie, A. J. Hu, S. Rajan, and M. Fujita. Automatic formal verification of DSP
software.37th Design Automation Conference, pp. 130–135. ACM/IEEE, 2000.

15. L. de Moura and N. Bjørner. Z3: An efficient SMT solver.Intl. Conf. on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pp. 337–340, 2008.

16. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedurallanguage for checking object-
oriented programs. Technical Report MSR-TR-2005-70, Microsoft Research, 2005.

17. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Communications of the ACM, 18:453–457, 1975.
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