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Abstract. Because of its critical importance underlying all othertsafe, low-
level system software is among the most important targefefmal verification.
Low-level systems software must sometimes make type-amsafmory accesses,
but because of the vast size of available heap memory in ®daynputer sys-
tems, faithfully representing each memory allocation aocckas does not scale
when analyzing large programs. Instead, verification toglison abstract mem-
ory models to represent the program heap. This paper repoiiso related in-
vestigations to develop an accurate (i.e., providing auldetel of soundness
and precision) and scalable memory model: First, we compaezently intro-
duced memory model, specifically designed to more accyratebel low-level
memory accesses in systems code, to an older, widely adaptetbry model.
Unfortunately, we find that the newer memory model scaleslp@ompared to
the earlier, less accurate model. Next, we investigate lnawprove the sound-
ness of the less accurate model. A direct approach is to addtams to the code
that each memory access does not break the assumptionsroéthery model,
but this causes verification complexity to blow-up. Instead develop a novel,
extremely lightweight static analysis that quickly and sexvatively guarantees
that most memory accesses safely respect the assumptithresraeémory model,
thereby eliminating almost all of these extra type-cheglassertions. Further-
more, this analysis allows us to create automatically mgmmardels that flexibly
use the more scalable memory model for most of memory, battieg to a more
accurate model for memory accesses that might need it.

1 Introduction

Because of its critical importance underlying all othertwafe, low-level system soft-
ware is among the most important targets for formal verificat-or example, the cor-
rect execution of even the most mundane software relies @staavray of supporting
system software: the compiler and linker during developinaincourse, but also all
the OS services at runtime: application-level memory manant and the underlying
virtual memory system, context swaps and the underlying&8duler, device drivers
for all I/0O, etc. With the emergence of virtualization, thgplervisor becomes an even
lower-level, even more critical layer that needs verificatfe.g., [27]), as even the op-
erating system relies on its correctness.

All formal software analysis must model memory in some wayore extreme, the
entire memory space could be modeled as a single, giantefrtayes/words (e.g., [14,
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11, 10], early versions of VCC [27] also supported byte-leeasoning). Doing so
makes the verification completely accurate (sound and ggegith respect to the ef-
fect of any memory access), but does not scale beyond verly seganents of code.
At the other extreme, we can restrict our analysis to handlg @ode that has no dy-
namic memory allocation and is completely type-safe (¢6J)1. Such an approach
has scaled to millions of lines of code [6], but obviouslygiueles verification of typ-
ical mainstream software. Most software verification to@s., [2, 20, 21, 8, 18]) try
to strike a balance, assuming some degree of type-safgtyassuming that pointers
to different types of objects do not alias. Note that mostst@m not check these as-
sumptions — if the code violates the assumption, the toohtrigport wrong answers
without any warning.

The choice of memory model is particularly challenging fawllevel systems soft-
ware, because such software must sometimes make typesunsafory accesses. For
example, common idioms include casting a data structura/frdo an array of bytes
or integers for efficiency or to interface to hardware, andeasing a structure via
differently-typed pointers as a way to implement sub-tggmC. Address arithmetic is
also common, usually to offset before or after a given pointerder to access a nearby
data field. Verification tools for low-level software mustdian intermediate memory
model that assumes some type information to provide sdiyalyiet accurately cap-
tures the effects of lower-level, type-unsafe memory azes

In this paper, we develop such a model. The paper consistsam&¢parate, but
related parts. In the first part (Section 2), we compare antgcatroduced memory
model, specifically designed to more accurately model levell memory accesses in
systems code, to an older, widely adopted memory model. \Wetiat the newer mem-
ory model scales poorly compared to the earlier, less atzoradel. In the second part
(Section 3), we investigate how to improve the soundneskefeass accurate model.
We first consider adding assertions to the code that each nyerncess does not break
the assumptions of the memory model, but this causes veigiceomplexity to blow-
up. Then, we develop a novel, extremely lightweight statialgsis that quickly and
conservatively guarantees that most memory accesseyg sedpkct the assumptions of
the memory model, thereby eliminating almost all of theseaetype-checking asser-
tions. Furthermore, this analysis allows us to create aatimally memory models that
flexibly use the more scalable memory model for most of mepiaryresort to a more
accurate model for memory accesses that might need it. Expetal results show that
the static analysis is very fast, maintaining the scalghdlf the less accurate memory
model. Along the way, our tool found four bugs in real Linuyie drivers, three of
which were previously unreported.

2 Comparing Two Memory Models

Because of the vast size of available memory in today’s caermystems, faithfully
representing each memory allocation and access in a sw@tifiev does not scale.
Therefore, verification tools rely on memory models thadérprecision for scalability,

1 Astrée now supports type casts, but still does not suppormically allocated memory [24].



and in turn, they define programming language operatiormbs&cs with respect to
the chosen memory model. In this section, we introduce twmarg models that are
typically used in modular deductive verification tools, clése their advantages and
drawbacks in the context of low-level code verification, gmésent empirical results
on using the models to verify a number of Linux device drivers

2.1 Monolithic Memory Model

Our first memory model is heavily influenced by the one usedairlyeversions of
Havoc [9], and also similar to the one used in the first incarnatibw@C [27]. The
main idea behind this memory model is to divide the memorny disjoint objects (or
regions). Each object is identified by its reference, andifa®d size determined when
the objectis allocated. A pointer in the memory model isef@ne a pair, consisting of a
reference and an offset; the reference uniquely defineddjeetanto which the pointer
points; the byte offset defines the byte in the object beirigtpd to.

To be able to translate a program into a representation Hest & memory model,
we have to define the semantics of its source language witlecet the chosen mem-
ory model. In the monolithic memory model, the semanticsroigpams depends on
three fundamental types: the uninterpreted type of object references, the typgat
of integers, and the typgetr = ref x int of pointers. For notational convenience, each
variable in a program, regardless of its declared type anst pointer value: a pointer
is a pair containing an object reference and an integertofisel an integer value is en-
coded as a pointer value whose first component is the specisfanhull of typeref.
Note that because of the integer offset component, the memadel can precisely cap-
ture byte offsets and low-level pointer arithmetic insideadject. On the other hand,
since object references are uninterpreted, the objectssamntially “infinitely apart”,
and the memory model cannot model pointer arithmetic betvodgects.

The heap of a program is modeled using two map variablasandAlloc, and a
map constargize:

Mem : ptr — ptr
Alloc : ref — {UNALLOCATED, ALLOCATED}

Size ! ref — int

The variableem maps pointers to pointers and represents the contents obrgeah
a location. The variabla11oc maps object references to the §&iNALLOCATED,
ALLOCATED} and is used to model memory allocation. The constaate maps ob-
ject references to positive integers and represents teeosithe object. For instance,
the procedure calial | oc(n) for allocating a memory buffer of size returns a
pointerPtr(0,0) whereo is an object reference such thetloc|[o] = UNALLOCATED
andsize[o] > n before the call, and1loc[o] = ALLOCATED after the call (ignoring the
possibility of memory allocation failure, which could alke easily modeled).

2.2 Burstall's Memory Model

Our second memory model is a type-indexed memory model kalsan as Burstall's
memory model [7]) that has been commonly used in the dedueérification of type-
safe languages [5, 19]. The main idea behind this model is #part from dividing



memory into disjoint objects as in the previous model, we alslit the memory ac-
cording to a set of possibtgpesof memory locations. To achieve this splitting, a set of
unique type constants of typgpe is introduced, which represent types in the original
program. The common types found in a language, sué¢masi nt *, char, etc., are
going to be translated as type consta&itat , $i nt P, $char , etc. Usually, apart from
all of the commonly found types, the set of type constants edgitains a unique type
constant for each structure field. For instance, the stractu

struct {
int x;
int vy;
} foo;

introduces unique type constaiifoo#x and$f oo#y. It turns out that this “type-
awareness” in the model, caused by adding type constantsmittihg the memory
according to those, is exactly what gives this model an edganit comes to scalability
over the monolithic model.

Our mapMem from the previous memory model is therefore, instead of rivapp
pointers to pointers, going to map type-pointer pairs tonfas. We also introduce in
the model an additional map constaytpe that maps pointers (memory locations) to
types and represents the allocation type of memory locati®ach type in the memory
model is a unique constant distinct from all other types. fype-indexed memory
model therefore has four maps:

Mem : (type X ptr) — ptr
Alloc : ref — {UNALLOCATED, ALLOCATED}
Size ! ref — int
Type . ptr — type

Adding types to the memory model makes proving program&easd faster:

— One can conclude that updates to different fields of a strectan’t influence each
other without reasoning about integer offsets and point#raetic, as would be
needed in the monolithic memory model. Such reasoning @ndfard in the pres-
ence of quantifiers.

— Memory locations of different fields of two distinct objeatsually don't alias,
which is nicely captured by this memory model. This also tiyesimplifies the
task of proving many interesting assertions.

— When afield is being updated, based on its type, only the sporeding submap of
Mem changes, which simplifies proving frame axioms.

2.3 Experimental Results

We have implemented the preceding memory models as parr tdolSMACK (Static
Modular Assertion (GecKer [26]), which is a modular, annotation-based, extended
static property checker of C programs. In the spirit of maduekrification, 1ACK ver-
ifies programs annotated with procedure specifications @oyl ihvariants. It uses the



Memory Model

Driver Loc Monolithic (s)Burstall (s Speedup
ib700wd 346 45.7 14.4 3.1
w83877fwdt| 421 59.5 16.1 3.7
sc52Qwdt 443 50.2 16.5 3.0
machzwd 494 71.0 18.1 3.9
wdt977 519 46.4 19.3 2.4
ds1286 633 70.8 20.3 3.5
efirtc 815 62.2 16.3 3.8
applicom 934 *3368.8 161.2 20.9
Table 1. Running times for checking correct locking behavior in devirivers from the Linux

kernel. The column “LOC” given the number of lines of code;dilithic” gives the total run-
ning time of BooGIeusing the monolithic memory model; “Burstall” gives theglatunning time
of BooGIE using Burstall's memory model with assumed types; “Spe&dompares the run-
ning times. The * indicates that@GIE timed out on two procedures from thgplicom driver
(time out is set to 1200s).

LLVM compiler framework [22] to parse input programs and atations. The LLVM
output is translated byMack into a BoogiePL [16] program based on the operational
semantics of C memory accesses according to the selectedmnemdel. BoogiePL
is the input language of the®GIE verifier [3], which, in turn, generates a verifica-
tion condition (VC) from the input program whose validitypifies partial correctness
of the input. The VC generation in@®GIE is performed using a variation [4] of the
standardveakest preconditiotransformer [17]. We check the generated VC using the
accompanying Z3 theorem prover [15]. We report only the mgtimes of BOOGIE
required to verify the examples since the transformatima& performs takes only a
small fraction of that time.

We applied 1ACK to check correct locking behavior of several device drivenms
the Linux kernel. The source code of the examples, the maaelstubs of the relevant
kernel routines, and the test harness are taken from theERDAY suite [29, 1]. Ensur-
ing correct locking behavior amounts to checking that laalesinitialized before they
are used and that locks are alternately acquired and relleEagle 1 lists the drivers and
gives the running times for the verification using the mahatiand Burstall's memory
models. All experiments were executed on an Intel PentiurhD8Ghz.

Seven of the drivers were arbitrarily picked character ckedrivers that contain
spinlocks, usually as one or two global variables. In additwe handpicked thep-
plicom driver, since this driver has a global array of structuregrgleach structure is
protected by its own spinlock. This makes it much more irging and challenging
to verify (see Figure 1), requiring from a tool the abilityresason precisely about such
unbounded data structures. Current tools that are typiga#id in the verification of de-
vice drivers [2, 20,21, 8, 11, 10] have trouble handling unimted data structures. One
of the goals of BIACK is to address that weakness.

From the running times, it can be seen that Burstall's memaogel is the clear
winner. It always outperforms the monolithic memory modeleasier examples, and
the speedup factor is from 2.4 to 3.9. Furthermore, usingtallils memory model, we



1struct applicomboard {

unsi gned | ong Physl G

void __iomem *Ram O

wai t _queue_head_t Fl agSl eepSend;

long irq;

6 spinlock_t nutex;

7} apbs[ MAX_BOARD] ;

8

girgreturn_t ac_interrupt(int vec, void *dev_instance) {
10 for (i =0; i < MAX_BOARD; i++) {

a b~ W N

11 if ('apbs[i].Ram O continue;

12 spi n_I ock( &apbs[i]. nutex);

13 i f(readb(apbs[i].Raml O+ RAMIT_TO PC)) {
14 spi n_unl ock( &pbs[i]. mutex);

15 i--;

16 } else {

17 spi n_unl ock( &pbs[i]. mutex);

18 }

19 }

Fig. 1. Simplified code excerpt from thepplicom Linux device driver illustrating the complexity
of checking correct locking behavior. The loop on line 1@4dtes over array elements. If the
field Raml O of the element at indek is not null (line 11), the lock (fieldrut ex) is acquired
on line 12 and then later released. The verification requinesking complex invariants over all
elements of the array (i.e. quantified) that involve valuat®Ram Ofields as well as the status
of locks (initialized, locked, unlocked).

managed to verify thapplicom example, which we couldn’t do using the monolithic
memory model since it timed out on two procedures. The examgyuires proving
complex quantified invariants over fields from an array ofictinres. The key to suc-
cessful verification of this example is structure field dis@gnation: Burstall's mem-
ory model provides this for free, whereas in the monolithadel, it requires reasoning
about offsets and pointer arithmetic.

However, the much better running times of Burstall's memigdel come at a
price: it relies on the assumption that memory is strongbetl, In the examples, when
we use Burstall's model, we are assuming the type of a menaogtibn before each
memory access, which is unsound and can cause bugs to balrrisadype-unsafe
setting such as C. In the next section, we describe how tond#athis problem.

3 Ensuring Soundness with Burstall's Memory Model

Burstall's memory model relies on the assumption that mgnsstrongly typed, as

in type-safe languages such as Java. That means that a tifpealfject is established
when itis created, via a call toew, and the object is always accessed using that original
type. However, low-level languages like C allow reintetption of the original type and
therefore type-unsafe memory accesses. Such operat®mnsauncommon in systems



1typedef struct {

2 int x;

3} Si;

4

s5typedef struct { 1const uni que $S1#x:type;

6 int a; 2const uni que $S2#a:type;

7 int b; 3const uni que $S2#b: type;

8} S2; 4

9 sprocedure main() {

1ovoid main() { 6 var sl:ptr, s2:ptr;

11 S2* s2 = 7 call s2 := malloc(Ptr(null,8));
12 (S2*) mal | oc(si zeof (S2)); 8 sl :=s2;

13 S1* sl = (S1*)s2; 9

14 10 Men| $S2#a, s2] := Ptr(null, 3);
15 s2->a = 3; 11 Men $S1#x,s1] := Ptr(null, 4);
16 sl->x = 4; 12

17 13 assert (Men $S2#a, s2] ==

18 assert(s2->a == 3); 14 Ptr(null,3));

19 } 15 }

Fig. 2. Example illustrating a simple upcasting in C that causesumdness in Burstall's mem-
ory model. The right column shows simplified BoogiePL codéhef translation of the function
mai n, assuming Burstall's model. Because of the assumptionpef safety, the two assignments
on BoogiePL lines 10 and 11 do not alias, resulting in theréisseincorrectly passing.

code and are typically done in C using casts or urio@ten, casts don't reinterpret
memory at the byte level, but are used to simulate objeetited language features,
such as inheritance, that are not supported directly in @dt) according to empirical
studies [28, 13], more than 90% of the structure casts inl@nfal that category.

Figure 2 gives a simple example illustrating “upcastingCinThe structur&2 is a
subtype of the structur®l, and the cast on line 13 represents an upcast. The example
shows how such a simple cast can cause Burstall’'s memorylrnwblecome unsound:
the field update on line 16 overwrites the value that was @nitb the same memory
location on line 15, and the assertion on line 18 fails. Havein Burstall's model
this overwrite does not happen, since different field namesdifferent unique types)
denote different memory locations in the model: the write 2o >a is translated as the
write to Men{ $S2#a, s2] on line 10 of the BoogiePL translation in the right column,
while the write tos1- >x is translated at the write then] $S1#x, s1] on line 11,
and doesn't overwrite the locatidven] $S2#a, s2] although the pointersl ands?2
are equal.

A simple way of ensuring soundness in the presence of suthisas syntactically
analyze the source code and just give up on the verificatiore ifind one (e.g., [18]).
Our goal is to go a step further and verify the code even in teegnce of type-unsafe
structure casts, while preserving soundness. In the fallgwections, we’ll describe
three different techniques of how to achieve that goal.

2 We can consider union a special case of cast.



1const uni que $Sl1#x:type;
2const uni que $S2#a:type;
3const uni que $S2#b: type;
4

sprocedure nmain() {

6 var sl:ptr, s2:ptr;

7 call s2 := malloc(Ptr(null,8));

8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 sl :=s2;

10

11 assert(Type[s2] == $S2#a);

12 Men $S2#a,s2] := Ptr(null, 3);

13 assert(Type[sl] == $S1#x); // Fails!
14 Men $S1#x,s1] := Ptr(null, 4);

15

16 assert(Type[s2] == $S2#a);

17 assert(Men $S2#a, s2] == Ptr(null, 3));
18 }

Fig. 3. Translation of the example from Fig. 2 with type-check asses added before each
memory access (lines 11, 13, and 16). The type-check asseniline 13 will fail, indicating a
violation of the assumption of type safety.

3.1 Guarding Memory Accesses with Type Assertions

A straightforward way of preventing unsoundness describhetthe previous section
from happening in Burstall's memory model is to aiyge checkbefore each mem-
ory access. The checks are added in the form of assertiorisearype map. Every
access to a memory locatiorwith type & is going to be preceeded with the assertion
assertType(x) == $t) that will have to be discharged.

Figure 3 shows the translation of the example in Figure 2 Withinserted type
checks. The maftype represents the compile-time allocation type of memory-oca
tions, and therefore the correct allocation type has to barmasd on line 8 after the
allocation. Then, type check assertions are inserted ée&fach memory access (lines
11, 13, and 16). The type check assertion on line 13 cleatlyfaili s1 = s2, and the
type ofs2 is $S2#a, not $S1#x. Whenever a memory location is accessed through
a type that is not the allocation type of the memory locatibe, added type check
assertion will fail. This preserves the soundness of th#iwation in Burstall’s model.

However, proving such type check assertions for each meiwmgss in the pro-
gram is a big overhead, as we’ll show later on in the expertm@enSection 3.4. Fur-
thermore, discharging those assertions often requires@dadore manual annotations
to the code which poses an additional burden on the user. &otiiese drawbacks
are an unacceptable burden that is not justified since mats phthe code usually
obey the type restrictions imposed by Burstall's memory elotherefore, in the next
section, we introduce a lightweight static analysis thajegly removes most of the
required type-check assertions by conservatively guaeamg that those memory ac-
cesses safely respect the assumptions of the model.



3.2 Eagerly Eliminating Type Check Assertions

We'll start this section by giving some background inforioaton the pointer analysis
that is the starting point of our technique for eagerly atiating type check assertions.
Then, we’ll describe our algorithm for eliminating type cks.

Data Structure Analysis (DSA).DSA [23] is a highly scalable and fast, context-
sensitive (with fullheap cloning, field-sensitive (even in a type-unsafe setting), con-
servative pointer analysis. The term “heap cloning” refera property important for
achieving true context-sensitivity — heap objects are ngttryuished just by alloca-
tion site, but also by (acyclic) call paths leading to thdiv@ation, i.e. the calling con-
text in which they were created. Support for data structperations is often going to
be encapsulated in a library used throughout the code, aneftite context-sensitivity
is important to be able to handle such cases precisely.

DSA constructs a representation of the heap in the form o Batucture Graphs
(DS graphs); it creates one DS graph per procedure plus &ticexdd one for global
storage. The separate globals graph is a key optimizatlowiag procedure graphs
to contain only the parts of global storage reachable fraah pihocedure. A DS graph
consists of a set of nodes (DS nodes) and a set of edges. Asaapkx a simplified
part of the globals DS graph for thgplicom device driver is shown in Figure 4. We
distinguish two types of DS nodes: heap nodes with a numbéelfs at different
offsets (e.g. rectangle nodes in the example graph), amtigyaiariable nodes that point
into heap nodes (e.g. oval nodes in the example graph). Agraiariable node is named
after the pointer variable it represents and has one edgeap hode has one outgoing
edge per pointer field. Each heap node has a type and regagestentially unbounded
number of objects in memory of that type. A DS graph edge is\iddfby its source node
and offset (i.e. offset of the respective pointer field ingbarce node), and its end node
and offset. For instance, if the word size is 4 bytes, thersg@@olge coming out of the
genhdregisterednode is defined bygenhdregistered8) — (block device0).

Instead of just providing the usual pairs of referencesnimat alias (points-to/alias
information), the explicit heap representation DSA camndl can be used to identify
different instances of data structures and provide stratand type information for
each identified instance. The key feature of DSA we take adganof is the conser-
vative type information for each heap object. In particuiiall accesses to objects
that a node represents obey a consistent type, such nodies ‘tgpe-homogeneous”.
Accesses are defined as operations on pointers that pairthimnode and actually in-
terpret the type: load and store operations, and struchdegaay indexing operations
on pointers. Operations such as memory allocation andgratasts (e.g. fromoi d*)
are not counted as accesses and don'tinfluence a node tgpeelses with incompati-
ble types are found, the type of the node is markedrenown Therefore, DSA tracks
types precisely in the type-safe parts of the heap/progvamie in the presence of
type-unsafe operations it conservatively treats nodes@sdan unknown type.

Eager Type Check Elimination Algorithm. The algorithm is relatively simple
and straightforward, but as we’ll show in the experimentSattion 3.4, extremely
effective. First, we run the DSA on the code we are analyzigputting a DS graph
for each procedure and the globals graph. Then, for each myaed or write through
a pointer, we find the type of the memory location it points$mg the appropriate DS
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Fig. 4. An example of a Data Structure Graph. The graph shows a dietpfart of the glob-
als DS graph for theapplicom device driver. Oval nodes in the graph are pointer variable
nodes (e.gdeviceandoperations; rectangle nodes are heap nodes (gemhdregisteredand
block devicg. Each heap node has a type. For instance, the type gfthied registerednode is
structddv_.genhd the type of théblock devicenode isstructblock device etc. Pointer fields of
heap nodes have outgoing edges, while fields of other typgsistrempty boxes.

graph. If the computed type is the same as the actual typeegbdmter, we omit the
type check (assertion) that would be otherwise generatéuk types are not the same
or if the type of the node the pointer points todsknown we will generate the type
check assertion to preserve soundness.

Figure 5 illustrates the benefits of our technique, remowwg type-check asser-
tions compared to the code in Figure 3. However, the sousdagseserved, since the
assertion on line 12 couldn’t be safely eliminated and isigao fail again: According
to DSA, pointers1 is going to point to the field of structureS2, and therefore its type
is going to bebS2#a and notbS1#x as expected by the memory access.

The algorithm essentially compares compile-time poingpes used by Burstall's
memory model with the sound over-approximation of the liarettypes that DSA gen-
erates: if the two agree, we can safely omit the type chedaigtif which could happen
either because of actual type-unsafe casts or because whphecision of DSA, the
type check stays. To sum up, using the extremely fast, claeabyet relatively precise
Data Structure Analysis, we are eagerly getting rid of méshe type checks that are
usually hard and expensive to prove later on.

In order for the remaining assertions to be dischargeceeitte user has to provide
additional manual annotations that will essentially urthg types, which is the ap-
proach taken in some related work [25, 12], or such types eamified automatically,
which is our approach described in the next section.
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10
11
12
13

1const uni que $Sl1#x:type;
2const uni que $S2#a:type;
3const uni que $S2#b: type;
4

sprocedure nmain() {

var sl:ptr, s2:ptr;

7 call s2 := malloc(Ptr(null,8));
8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 sl := s2;

Meni $S2#a, s2] := Ptr(null, 3);

assert (Type[sl] == $S1#x); // Fails!

Men $S1#x,s1] := Ptr(null, 4);

14
15
16

assert (Men] $S2#a, s2] == Ptr(null, 3));
}

Fig. 5. Translation of Fig. 2 using the eager type check eliminatigorithm. Compared to Fig. 3,
the unneeded type checks have been eliminated, but thesafpty violation will still be caught.

3.3 Eager Type Unification

The type check elimination algorithm from the previous mectdoesn’t remove the
type check assertion for which the compile-time type of apgriand the one computed
by DSA don't agree. Proving those left-over assertions méjli require the addition
of manual annotations by a user. Instead, we describe aeimginpletely automatic
technique that will soundly remove the left-over assedion

For each memory access for which the type check eliminafigorithm couldn’t
agree on types, we unify the two types. Unification simply nsghat the type constants
are not uniqgue anymore, which is in BoogiePL achieved by réngpthe keyword
uni que. There is an obvious tradeoff between the type check elitimnalgorithm
and the type unification algorithm: the first one might requdditional running time
and manual annotations from a user to discharge the leftamssertions; the second
one is completely automatic, but with each unification, tremary model is closer to
the monolithic one and the performance might suffer (in tloesivcase, all types are
unified and we essentially have the monolithic model).

Figure 6 shows the translation using the eager type uniicaigorithm. Instead of
the type-check assertion on line 12 in Figure 5, the tff#&k#x and$S2#a are unified
and are not unique constants any more (lines 1 and 2). Nbw| $S2#a, s2] and
Men{ $S1#x, s1] possibly refer to the same location, which is sound, andetbes
the assertion on line 14 will fail. Note that only the ty#81#x and$S2#a involved
in the actual type-unsafe access got unified, while the §$2#b not involved in
type-unsafe operations didn't. Therefore, the overappration caused by unification
is localized only to the places that actually need it in ortdepreserve soundness. In
the limit, eager type unification degenerates into the mtriolmemory model, but for



1const $Sl#x:type;

2const $S2#a:type;

3const uni que $S2#b: type;
4

sprocedure nmain() {

6 var sl:ptr, s2:ptr;

7 call s2 := malloc(Ptr(null,8));

8 assume(Type[s2] == $S2#a && Type[s2 + 4] == $S2#b);
9 sl :=s2;

10

11 Men $S2#a,s2] := Ptr(null, 3);

12 Men $S1#x,s1] := Ptr(null, 4);

13

14 assert(Men $S2#a, s2] == Ptr(null, 3));

15}

Fig. 6. Translation of Fig. 2 using the eager type unification akponi Instead of flagging the
type-safety violation, this translation handles type tetyaby allowing$S1#x and$S2#a to
be possibly the same type. Thus, the verifier will correctiich the assertion violation on line 14.

code that is mostly type-safe, it should have most of theieffay of Burstall’s model
and the soundness of the monolithic model.

3.4 Experimental Results

The results in Table 2 compare the running times for chec&orgect locking behav-
ior while ensuring soundness using the three different@ggres: guarding memory
accesses with type assertions, eagerly eliminating typelchssertions, and eagerly
unifying types. The algorithm that inserts type checks factememory access is a
simple linear scan of the code and is extremely fast. AlsoA38ales to hundreds
of thousands of lines of code in less than 4s [23]. Therefta) running times are
dominated by the verification done byoBGIE, and those are the times we report.

As expected, blindly generating type check assertionsdohenemory access sim-
ply does not scale — verification times after using both eaghiniques are roughly
30-40 times faster. Furthermore, both eager techniquesrgivghly the same verifica-
tion times afterwards. The reason is, to our surprise, tbatrof the analyzed device
drivers actually has type-unsafe structure casts. Thexegbmth of the algorithms end
up generating the same BoogiePL code. In the future, as vifg irreasingly complex
examples, we will be able to evaluate the trade-off betwkernwo methods.

Bugs Found.While doing the experiments, we found a total of four bugéimeight
device drivers we checked from the Linux kernel. One bug ésrédiscovered incor-
rect locking pattern in thds1286 driver that was also found earlier by the DERIFY
checker. The other three bugs are previously unreportddrbo¥erflow bugs. We sub-
mitted the bugs to the Linux kernel development team, whdicuord all three bugs
and issued patches to the standard Linux kernel.



Driver Assuring Soundness Speeduﬁspeedu D
Every Access (s*fEager Elimination (#Eager Unification (3§) EA/EE| EA/EU
ib700wd 448.7 14.2 141 314 31.8
w8387 7fwdt 683.5 15.3 152 447 45.0
sc52Qwdt 632.5 16.7 16. 379 39.7
machzwd 761.4 18.2 17.§ 418 42.8
wdt977 466.2 18.1 183 258 255
ds1286 823.5 20.7 255 39§ 324
efirtc 576.2 15.5 153 372 37.7
applicom *7487.4 173.5 172. 43.2 435
Table 2. Total running times for checking correct locking behavidrile ensuring soundness in

Linux device drivers. The column “Every Access” gives thetounning time of B OGIEwhen
checking type assertions on every access; “Eager Elimimagives the total running time of
BooGIEwhen our eager elimination technique is used to soundly vemost of the required
type checks; “Eager Unification” gives the total running ¢iwf BoOoGIE when our eager uni-
fication technique is used to ensure soundness; “SpeedupEEA&bmpares the running times
of Every Access vs Eager Elimination; “Speedup EA/EU” conegahe running times of Every
Access vs Eager Unification. The * indicates thaddsIE timed out on four and the memory
blew up on one procedure from thpplicom driver (time out is set to 1200s).

A natural question is how the different memory models aéfddhe detectability of
these bugs. The answer is not straightforward:

— First, as mentioned above, these device drivers turnedoob¢ type-safe, in the
sense that Burstall's model would be as accurate as the itlinghodel. Thus,
one might argue that the more accurate models are unnegddearever, the type-
safety is not at all obvious — this is C code, with type casténfer arithmetic,
etc. With Burstall's model, we assume type safety and migtdlcsome bugs, but
we don’t know whether the code is truly type-safe; with thenwidhic model, we
don’t assume type safety, but the verification complexigwd up, so we can’t
catch any bugs anyway. Our new models ensure type safetysouseale well.

— The other issue is that, of the four bugs we found, only theipusly discovered
one was a direct violation of the locking-unlocking propestwe were checking.
The other three bugs were buffer-overflow bugs that were ltaligcause of the
type-checking assertions. These bugs perhaps could havechaght by a variety
of methods, using many different memory models.

The key point is that our new memory models can ensure, rétlagr assume, type-
safety, yet are scalable enough to handle real code thdfiently complex to contain
significant bugs that have eluded previous detection.

4 Conclusion and Future Work

In the first part of the paper, we presented our experiende twid6 memory models
for low-level code. We introduced the monolithic memory rahdvhich can handle
soundly many common low-level idioms. Then, we presentegdtail's memory model,



which has typically been used in the verification of typeesainguages. We imple-
mented both models as part of our verification to®A8K. In the experiments, we
checked correct locking behavior of a number of Linux devdceers, and showed
that the performance using Burstall's model is much bettantusing the monolithic
memory model, especially on more complex examples.

However, a straightforward translation of a program usingsiall’s memory model
cannot preserve soundness of type-unsafe operations folad-level code. There-
fore, in the second part of the paper, we describe threedifiéechniques for ensuring
soundness with Burstall's model: insertion of soundnesxk$ before each memory
access, our novel eager type check elimination algoritheadban a lightweight pointer
analysis, and our novel eager type unification techniquesh@aved in the experiments
that naively inserting checks is an unnecessary verificsati@rhead, since most of the
checks can be eagerly removed using our algorithms. Duhniageérification effort, we
found three previously unreported bugs.

In an upcoming paper [12], Condit et al. describe a novel nmgmmdel for low-
level code that includes type information. Types can be kégasing an SMT solver,
and they also provide a decision procedure for checking $gbety. Using these tech-
niques, they type-checked a number of Windows device dvividreir work is comple-
mentary to ours: we conservatively and eagerly remove ay tgypa checks as possible,
whereas they provide an efficient technique to prove typelchébvious future work
is to combine the best of both approaches: quickly elimimgathost type checks using
our methods, and solving the remaining ones efficientlygitieirs.
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