
STORM: Static Unit Checking of Concurrent Programs∗

Zvonimir Rakamarić
Department of Computer Science, University of British Columbia, Canada

zrakamar@cs.ubc.ca

ABSTRACT
Concurrency is inherent in today’s software. Unexpected inter-
actions between concurrently executing threads often cause subtle
bugs in concurrent programs. Such bugs are hard to discover using
traditional testing techniques since they require executing a pro-
gram on a particular unit test (i.e. input) through a particular thread
interleaving. A promising solution to this problem is static program
analysis since it can simultaneously check a concurrent program on
all inputs as well as through all possible thread interleavings. This
paper describes a scalable, automatic, and precise approach to static
unit checking of concurrent programs implemented in a tool called
STORM. STORM has been applied on a number of real-world Win-
dows device drivers, and the tool found a previously undiscovered
concurrency bug in a driver from Microsoft’s Driver Development
Kit.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
assertion checkers, formal methods

General Terms
Reliability, Verification

Keywords
Static Analysis, Concurrent Programs, Unit Checking

1. PROBLEM AND MOTIVATION
Today’s software systems are prevalently concurrent and there-

fore hard to get right. Unexpected asynchronous interactions be-
tween concurrently executing threads often cause subtle bugs in
concurrent programs. Such bugs are hard to discover using tradi-
tional testing techniques since they require executing a program on
a particular unit test (i.e. input) through a particular thread inter-
leaving, which creates a twofold problem. First, programmers are

∗This is a joint work with Alan J. Hu, Shuvendu Lahiri, and Shaz
Qadeer. It was supported by a Microsoft Research Graduate Fel-
lowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

forced to write many unit tests to increase code coverage. Second,
for each unit test the program under test has to be executed through
as many interleavings as possible in the hope that an erroneous
interleaving is going to be discovered. Typically, stress-testing is
used when trying to produce interesting interleavings. This tech-
nique executes a program under heavy load (e.g. by creating many
threads) over and over again hoping to produce different interleav-
ings. However, in such a setting it is extremely difficult to deter-
mine which interleavings were actually executed and to measure
coverage with respect to concurrency (i.e. interleavings). Further-
more, empirical evidence shows that the coverage with respect to
all possible interleaving is still usually very small even after days
of heavy stress-testing [6]. Both of these make stress-testing com-
pletely inadequate in the context of unit testing of concurrent pro-
grams.

A promising solution to this problem is static program analy-
sis since it can simultaneously check a concurrent program on all
inputs as well as through all possible thread interleavings. Context-
bounded analysis is an attractive approach to verification of concur-
rent programs. This approach advocates analyzing all executions of
a concurrent program in which the number of contexts executed per
thread is bounded by a given constant K. Bounding the number of
contexts executed per thread reduces the asymptotic complexity of
checking concurrent programs: while reachability analysis of con-
current boolean programs is undecidable, the same analysis under a
context-bound is NP-complete. Moreover, there is ample empirical
evidence that synchronization errors, such as data races and atomic-
ity violations, are manifested in concurrent executions with a small
number of context switches [6, 7]. These two properties together
make context-bounded analysis an effective approach for finding
concurrency errors. At the same time, context-bounding provides
a useful trade-off between the cost and coverage of verification.
This paper describes how to employ context-bounded analysis in
a scalable, automatic, and precise approach to static unit checking
of concurrent programs. We implemented the approach in a tool
called STORM and applied it on a number of real-world Windows
device drivers.

2. BACKGROUND AND RELATED WORK
The idea of context-bounded analysis of concurrent programs

was first proposed by Qadeer and Wu [7]. Many subsequent ap-
proaches have relied on bounding the number of contexts to tackle
the complexity and scalability issues of concurrent program analy-
sis. KISS [7] transforms a concurrent program with up to two con-
text switches into a sequential one by mimicking context switches
using procedure calls. However, restricting the number of context
switches in such a way can be limiting. CHESS [6] is a tool for unit
testing of multithreaded programs that dynamically explores thread

interleavings by iteratively bounding the number of contexts. On
the other hand, STORM is a static analysis tool and therefore does
not have to execute the code and offers more coverage since it ex-
plores all possible paths in a program up to a given context bound.

3. UNIQUENESS OF THE APPROACH
In this work, we apply context-bounded verification to concur-

rent C programs such as those found in low-level systems code. In
order to deal with the complexity of low-level concurrent C pro-
grams, we take a novel and unique three-step approach. First, we
eliminate all the complexities of C, such as dynamic memory allo-
cation, pointer arithmetic, casts, etc. by compiling into the Boogie
programming language (BoogiePL) [2], a simple procedural lan-
guage with scalar and map data types. Thus, we obtain a concur-
rent BoogiePL program from a concurrent C program. Second,
we eliminate the complexity of concurrency by appealing to the
recent method of Lal and Reps [5] for reducing context-bounded
verification of a concurrent boolean program to the verification of
a sequential boolean program. By adapting this method to the set-
ting of concurrent BoogiePL programs, we are able to construct
a sequential BoogiePL program that captures all behaviors of the
concurrent BoogiePL program (and therefore of the original C pro-
gram as well) up to the context-bound. Third, we generate a verifi-
cation condition from the sequential BoogiePL program and check
it using a Satisfiability Modulo Theories (SMT) solver.

In order to scale our verification to realistic C programs, we in-
troduce the novel idea of field abstraction. The main insight is
that the verification of a given property typically depends only on a
small number of fields in the data structures of the program. Our al-
gorithm partitions the set of fields into tracked and untracked fields;
we only track accesses to the tracked fields and abstract away ac-
cesses to the untracked fields. This approach not only reduces the
complexity of sequential code being checked, but also allows us
to soundly drop context-switches from the program points where
only untracked fields are accessed. Field abstraction is crucial for
scalability of our verification technique.

4. RESULTS
This section describes STORM’s tool flow, and our experience

applying the tool on a number of real-life benchmarks. As de-
scribed earlier, STORM first uses the HAVOC tool [3] to translate
a multithreaded C program along with a set of relevant fields into
a multithreaded BoogiePL program, then reduces it to a sequen-
tial BoogiePL program, and finally uses BOOGIE to check the se-
quential program. The BOOGIE verifier [2] generates a verification
condition from the BoogiePL description using a variation of the
standard weakest precondition transformer. Then, it employs the
SMT solver Z3 [4] to check the resulting verification condition.

We evaluated STORM on a set of real-world Windows device
driver benchmarks (see Table 1). We implemented a common unit
test (i.e. harness) for putting device drivers through different con-
current scenarios. Each driver is checked in a scenario possibly in-
volving concurrently executing driver dispatch routines, driver re-
quest cancellation and completion routines, and deferred procedure
calls (column “Scenario”). The number of threads and the com-
plexity of a scenario depend on the given driver’s capabilities. For
example, for the usbsamp driver, the unit test executes a dispatch,
cancel, and completion routine in three threads. Apart from provid-
ing a particular scenario, our unit test also models synchronization
provided by the device driver framework, as well as synchroniza-
tion primitives, such as locks, that are used for driver-specific syn-
chronization. STORM has the ability to check any user-specified

Driver kLOC Scenario Time(s)
usbsamp 5 D | CA | CP 171
ndis 7 D | CA 13

kbdclass 7 D | CA 4
mouclass 7 D | CA 4
pcidrv 12 D | CA 18
isousb 12 D | CA | CP 81
mqueue 14 D | CA | CP | DPC 171
daytona 22 D | CA 2
serial 33 D | CA 133

Table 1: Experimental results on Windows device drivers.
“kLOC” is the total number of lines of code in a driver; “Sce-
nario” shows the concurrent unit test scenario being checked,
i.e. which driver routines are executed concurrently as threads
(D – dispatch routine, CA – cancel routine, CP – completion
routine, DPC – deferred procedure call); “Time” is the running
time of STORM for a given unit test scenario (in seconds).

safety property. In our experiments, we checked the use-after-free
property for the IRP (IO Request Packet) data structure used by the
device drivers.

Table 1 shows the result when the number of contexts per thread
is up to 2. All experiments were conducted on an Intel Core2Duo at
3GHz running Windows 7, and all runtimes are in seconds. STORM
managed to successfully check all of our benchmarks, which clearly
demonstrates the scalability of our approach. In the process, STORM
discovered a bug in the usbsamp driver from Microsoft’s Driver
Development Kit. It is important to note that this bug has not been
found before by extensively applying other software checkers on
usbsamp. For instance, SLAM [1] failed to discover this bug since
SLAM can check only sequential code. KISS, on the other hand,
can check concurrent code, but only up to 2 context switches. This
bug occurs only after at least 3 context switches and therefore was
missed by KISS as well.

5. REFERENCES
[1] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani.

Automatic predicate abstraction of C programs. In Conf. on
Programming Language Design and Implementation (PLDI),
pages 203–213, 2001.

[2] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Intl. Symp. on Formal Methods
for Components and Objects (FMCO), pages 364–387, 2005.

[3] S. Chatterjee, S. K. Lahiri, S. Qadeer, and Z. Rakamarić. A
reachability predicate for analyzing low-level software. In Intl.
Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 19–33, 2007.

[4] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), pages 337–340, 2008.

[5] A. Lal and T. W. Reps. Reducing concurrent analysis under a
context bound to sequential analysis. In Intl. Conf. on
Computer Aided Verification (CAV), pages 37–51, 2008.

[6] M. Musuvathi and S. Qadeer. Iterative context bounding for
systematic testing of multithreaded programs. In Conf. on
Programming Language Design and Implementation (PLDI),
pages 446–455, 2007.

[7] S. Qadeer and D. Wu. KISS: Keep it simple and sequential. In
Conf. on Programming Language Design and Implementation
(PLDI), pages 14–24, 2004.

