
Symbolic Learning of Component Interfaces?

Dimitra Giannakopoulou1, Zvonimir Rakamarić??2, and Vishwanath Raman3

1 NASA Ames Research Center, USA
dimitra.giannakopoulou@nasa.gov

2 School of Computing, University of Utah, USA
zvonimir.rakamaric@gmail.com

3 Carnegie Mellon University, USA
vishwa.raman@sv.cmu.edu

Abstract. Given a white-box component C with specified unsafe states, we ad-
dress the problem of automatically generating an interface that captures safe or-
derings of invocations of C ’s public methods. Method calls in the generated in-
terface are guarded by constraints on their parameters. Unlike previous work,
these constraints are generated automatically through an iterative refinement pro-
cess. Our technique, named PSYCO (Predicate-based SYmbolic COmpositional
reasoning), employs a novel combination of the L* automata learning algorithm
with symbolic execution. The generated interfaces are three-valued, capturing
whether a sequence of method invocations is safe, unsafe, or its effect on the
component state is unresolved by the symbolic execution engine. We have imple-
mented PSYCO as a new prototype tool in the JPF open-source software model
checking platform, and we have successfully applied it to several examples.

1 Introduction

Component interfaces are at the heart of modular software development and reasoning
techniques. Modern components are open building blocks that are reused or connected
dynamically to form larger systems. As a result, component interfaces must step up,
from being purely syntactic, to representing component aspects that are relevant to tasks
such as dynamic component retrieval and substitution, or functional and non-functional
reasoning about systems. This paper focuses on “temporal” interfaces, which capture
ordering relationships between invocations of component methods. For example, for
the NASA Crew Exploration Vehicle (CEV) model discussed in Sec. 7, an interface
prescribes that a lunar lander cannot dock with a lunar orbiter without first jettisoning
the launch abort sub-system. Temporal interfaces are well-suited for components that
exhibit a protocol-like behavior. Control-oriented components, such as NASA control
software, device drivers, and web-services, often fall into this category.

An ideal interface should precisely represent the component in all its intended us-
ages. In other words, it should include all the good interactions, and exclude all prob-
lematic interactions. Previous work presented approaches for computing temporal inter-
faces using techniques such as predicate abstraction [16] and learning [2, 11, 25]. Our

? This research was supported by the NASA CMU grant NNA10DE60C.
?? The author did this work while at Carnegie Mellon University.

work studies a more general problem: automatic generation of precise temporal inter-
faces for components that include methods with parameters. Whether a method call is
problematic or not may depend on the actual values passed for its formal parameters.
Therefore, we target the generation of interfaces which, in addition to method orderings,
also include method guards (i.e., constraints on the parameters of the methods), as illus-
trated in Fig. 2. We are not aware of any existing approaches that provide a systematic
and automated way of introducing method guards for temporal interface generation.

Our proposed solution is based on a novel combination of learning with symbolic
execution techniques. In particular, we use the L* [3, 23] automata-learning algorithm
to automatically generate a component interface expressed as a finite-state automaton
over the public methods of the component. L* generates approximations of the com-
ponent interface by interacting with a teacher. The teacher uses symbolic execution to
answer queries from L* about the target component, and provides counterexamples to
L* when interface approximations are not precise. The teacher may also detect a need
for partitioning the space of input parameter values based on constraints computed by
the underlying symbolic engine. The alphabet is then refined accordingly, and learn-
ing restarts on the refined alphabet. Several learn-and-refine cycles may occur during
interface generation. The generated interfaces are three-valued, capturing whether a se-
quence of method invocations is safe, unsafe, or its effect on the component state is
unresolved by the underlying symbolic execution engine.

We have implemented our approach within the JPF (Java Pathfinder) software ver-
ification toolset [20]. JPF is an open-source project developed at the NASA Ames Re-
search Center. The presented technique is implemented as a new tool called PSYCO in
the JPF project jpf-psyco. We have applied PSYCO to learn component interfaces of
several realistic examples that could not be handled automatically and precisely using
previous approaches. Our main contributions are summarized as follows:

– This work is the first to combine learning and symbolic techniques for temporal
interface generation, including method guards. The automated generation and re-
finement of these guards is based on constraints that are computed by symbolic
execution. A significant challenge, which our proposed algorithm addresses, is to
develop a refinement scheme that guarantees progress and termination.

– We use three-valued automata to account for potential incompleteness of the un-
derlying analysis technique. These automata record precisely whether a sequence
of method invocations is safe, unsafe, or unresolved. As a result, subsequent alter-
native analyses can be targetted to unresolved paths.

– We implemented the approach in an open-source and extensible tool within JPF and
successfully applied it to several realistic examples.

Related Work. Interface generation for white-box components has been studied exten-
sively in the literature (e.g., [16, 2, 11, 25]). However, as discussed, we are not aware
of any existing approach that provides a systematic and automated way of refining the
interface method invocations using constraints on their parameters.

Automatically creating component models for black-box components is a related
area of research. For methods with parameters, abstractions are introduced that map
alphabet symbols into sets of concrete argument values. A set of argument values rep-
resents a partition, and is used to invoke a component method. In the work by Aarts et

al. [1], abstractions are user-defined. Hower et al. [18] discover such abstraction map-
pings through an automated refinement process. In contrast to these works, availability
of the component source code enables us to generate guards that characterize precisely
each method partition, making the generated automata more informative. MACE [8]
combines black- and white-box techniques to discover concrete input messages that
generate new system states. These states are then used as initial states for symbolic ex-
ploration on component binaries. The input alphabet is refined based on a user-provided
abstraction of output messages. MACE focuses on increasing path coverage to discover
bugs, rather than generating precise component interfaces, as targeted here.

Interface generation is also related to assumption generation for compositional ver-
ification, where several learning-based approaches have been proposed [22, 15, 7, 6].
A type of alphabet refinement developed in this context is geared towards computing
smaller assumption alphabets that guarantee compositional verification achieves con-
clusive results [10, 5]. None of these works address the automatic generation of method
guards in the computed interfaces/assumptions. Finally, recent work on the analysis of
multi-threaded programs for discovering concurrency bugs involves computing traces
and preconditions that aid component interface generation [4, 19]. However, the data
that these works generate is limited, and cannot serve the purpose of temporal interface
generation, as presented in this paper.

2 Motivating Example

Our motivating example is the PipedOutputStream class taken from the java.io package.
Similar to previous work [2, 25], we removed unnecessary details from the example;
Fig. 1 shows the simplified code. The example has one private field sink of type Piped-
InputStream, and four public methods called connect, write, flush, and close. Throwing
exceptions is modeled by asserting false, denoting an undesirable error state.

The class initializes field sink to null. Method connect takes a parameter snk of type
PipedInputStream, and goes to an error state (i.e., throws an exception) either if snk
is null or if one of the streams has already been connected; otherwise, it connects the
input and output streams. Method write can be called only if sink is not null, otherwise
an error state is reached. Methods flush and close have no effect when sink is null, i.e.,
they do not throw an exception.

Fig. 2 shows on the right the interface generated with PSYCO for this example. Note
that, as described in Section 4, PSYCO currently only handles basic types. Therefore,
we transformed the example in Figure 1 accordingly. The interface captures the fact
that flush and close can be invoked unconditionally, whereas write can only occur after
a successful invocation of connect. The guard snk 6= null∧ snk.connected = false, over
the parameter snk of the method connect, captures the condition for a successful con-
nection. Without support for guards in our component interfaces, we would obtain the
interface shown on the left. This interface allows only methods that can be invoked un-
conditionally, i.e., close and flush. Method connect is blocked from the interface since
it cannot be called unconditionally. Since connect cannot be invoked, write is blocked
as well. Clearly, the interface on the left, obtained using existing interface generation
techniques, precludes several legal sequences of method invocations. In existing ap-

class PipedOutputStream {
PipedInputStream sink = null;

public void connect(
PipedInputStream snk) {

if (snk == null) {
assert false;

} else if (sink != null ||
snk.connected) {

assert false;
}
sink = snk;
snk.connected = true;

}
}

public void write() {
if (sink == null) {
assert false;

} else {...}
}

public void flush() {
if (sink != null) {...}

}

public void close() {
if (sink != null) {...}

}
}

Fig. 1: Motivating example.

0 π

close

flush

connect

write

1

π

0

close[true]flush[true]

write[true]

connect[snk 6= null ∧
snk.connected = false]

connect[snk = null ∨
snk.connected 6= false]

close[true]

write[true]

flush[true]
connect[true]

Fig. 2: Interfaces for our motivating example. On the left, there is no support for guards,
while on the right, PSYCO is used to generate guards. Initial states are marked with
arrows that have no origin; error states are marked with π . Edges are labelled with
method names (with guards, when applicable).

proaches, a user is expected to manually define a refinement of the component methods
to capture these additional legal behaviors. Our approach performs such a refinement
automatically. Therefore, support for automatically generating guards enables PSYCO
to generate richer and more precise component interfaces for components that have
methods with parameters.

3 Preliminaries

Labeled Transition Systems (LTS). We use deterministic LTSs to express temporal
component interfaces. Symbols π and υ denote a special error and unknown state,
respectively. The former models unsafe states and the latter captures the lack of knowl-
edge about whether a state is safe or unsafe. States π and υ have no outgoing transitions.

A deterministic LTS M is a four-tuple 〈Q,αM,δ ,q0〉 where: 1) Q is a finite non-
empty set of states, 2) αM is a set of observable actions called the alphabet of M, 3)
δ : (Q×αM) 7→ Q is a transition function, and 4) q0 ∈ Q is the initial state. LTS M is
complete if each state except π and υ has outgoing transitions for every action in αM.

A trace, also called execution or word, of an LTS M is a finite sequence of observ-
able actions that label the transitions that M can perform starting from its initial state.
A trace is illegal if it leads M to state π , unknown if it leads M to state υ , and legal
otherwise. The illegal (resp. unknown, legal) language of M, denoted as Lillegal (M)
(resp. Lunknown (M), Llegal (M)), is the set of illegal (resp. unknown, legal) traces of M.

Three-Valued Automata Learning with L*. We use an adaptation [7] of the classic
L* learning algorithm [3, 23], which learns a three-valued deterministic finite-state au-
tomaton (3DFA) over some alphabet Σ . In our setting, learning is based on partitioning
the words over Σ into three unknown regular languages L1, L2, and L3, with L* us-
ing this partition to infer an LTS with three values that is consistent with the partition.
To infer an LTS, L* interacts with a teacher that answers two types of questions. The
first type is a membership query that takes as input a string σ ∈ Σ ∗ and answers true
if σ ∈ L1, false if σ ∈ L2, and unknown otherwise. The second type is an equivalence
query or conjecture, i.e., given a candidate LTS M whether or not the following holds:
Llegal (M) = L1, Lillegal (M) = L2, and Lunknown (M) = L3. If the above conditions hold
of the candidate M, then the teacher answers true, at which point L* has achieved its
goal and returns M. Otherwise, the teacher returns a counterexample, which is a string
σ that invalidates one of the above conditions. The counterexample is used by L* to
drive a new round of membership queries in order to produce a new, refined, candidate.
Each candidate M that L* constructs is smallest, meaning that any other LTS consis-
tent with the information provided to L* up to that stage has at least as many states as
M. Given a correct teacher, L* is guaranteed to terminate with a minimal (in terms of
numbers of states) LTS for L1, L2, and L3.

Symbolic Execution. Symbolic execution is a static program analysis technique for
systematically exploring a large number of program execution paths [21]. It uses sym-
bolic values as program inputs in place of concrete (actual) values. The resulting out-
put values are then statically computed as symbolic expressions (i.e., constraints), over
symbolic input values and constants, using a specified set of operators. A symbolic
execution tree, or constraints tree, characterizes all program execution paths explored
during symbolic execution. Each node in the tree represents a symbolic state of the
program, and each edge represents a transition between two states. A symbolic state
consists of a unique program location identifier, symbolic expressions for the program
variables currently in scope, and a path condition defining conditions (i.e., constraints)
that have to be satisfied in order for the execution path to this state to be taken. The
path condition describing the current path through the program is maintained during
symbolic execution by collecting constraints when conditional statements are encoun-
tered. Path conditions are checked for satisfiability using a constraint solver to establish
whether the corresponding execution path is feasible.

Component ::= class Ident { Global∗ Method+ }
Method ::= Ident (Parameters) { Stmt }
Global ::= Type Ident;

Arguments ::= Arguments, Expr | ε
Parameters ::= Pararameters, Parameter | ε
Parameter ::= Type Ident

Stmt ::= Stmt; Stmt

| Ident = Expr

| assert Expr

| if Expr then Stmt else Stmt

| while Expr do Stmt

| return Expr

Fig. 3: Component grammar. Ident, Expr, and Type have the usual meaning.

4 Components and Interfaces

Components and Methods. A component is defined by the grammar in Fig. 3. A com-
ponent C has a set of global variables representing internal state and a set of one or
more methods. Furthermore, components are sequential. For simplicity of exposition,
we assume there is no recursion, and all method calls are inlined. Note, however, that
our implementation handles calls without inlining. Moreover, as customary, our sym-
bolic execution engine unrolls recursion to a bounded depth. We also assume the usual
statement semantics. We expect that all unsafe states are implied by assert statements.
Let Ids be the set of component method identifiers (i.e., names), Stmts the set of all
component statements, and Prms the set of all input parameters of component methods.
We define the signature Sigm of a method m as a pair 〈Idm,Pm〉 ∈ Ids×2Prms; we write
Idm(Pm) for the signature Sigm of the method m. A method m is then defined as a pair
〈Sigm,sm〉 where sm ∈ Stmts is its top-level statement.

Let M be the set of methods in a component C and G be the set of its global vari-
ables. For every method m∈M , each parameter p∈ Pm takes values from a domain Dp
based on its type; similarly for global variables. We expect that all method parameters
are of basic types. Given a method m ∈M , an execution θ ∈ Stmts∗ of m is a finite
sequence of visited statements s1s2 . . .sn where s1 is the top-level method statement sm.
The set Θm ∈ 2Stmts∗ is the set of all unique executions of m. We assume that each exe-
cution θ ∈Θm of a method visits a bounded number of statements (i.e., |θ | is bounded),
and also that the number of unique executions is bounded (i.e., |Θm| is bounded); in
other words, the methods have no unbounded loops. Again, in our implementation,
loops are unrolled to a bounded depth, as is customary in symbolic execution. A valu-
ation over Pm, denoted [Pm], is a function that assigns to each parameter p ∈ Pm a value
in Dp. We denote a valuation over variables in G with [G]. We take [Gi] as the valuation
representing the initial values of all global variables. Given valuations [Pm] and [G], we
assume that the execution of m visits exactly the same sequence of statements; in other
words, the methods are deterministic.

Symbolic Expressions. We interpret all method parameters symbolically, using the
name of each parameter as its symbolic name; we abuse notation and take Prms to also

denote the set of symbolic names. A symbolic expression e is defined as follows:

e ::= C | p | (e ◦ e),

where C is a constant, p ∈ Prms a parameter, and ◦ ∈ {+,−,∗,/,%} an arithmetic
operator. The set of constants in an expression may include constants that are used in
statements or the initial values of component state variables in [Gi].

Constraints. We define a constraint ϕ as follows:

ϕ ::= true | false | e ⊕ e | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ⊕ ∈ {<,>,=,≤,≥} is a comparison operator.

Guards. Given a method signature m = 〈Idm,Pm〉, a guard γm is defined as a constraint
that only includes parameters from Pm.

Interfaces. Previous work uses LTSs to describe temporal component interfaces. How-
ever, as described in Sec. 2, a more precise interface ideally also uses guards to capture
constraints on method input parameters.

We define an interface LTS, or iLTS, to take into account guards, as follows. An
iLTS is a tuple A = 〈M,S ,Γ ,∆〉, where M = 〈Q,αM,δ ,q0〉 is a deterministic and
complete LTS, S a set of method signatures, Γ a set of guards for method signatures
in S , and ∆ : αM 7→S ×Γ a function that maps each a∈ αM into a method signature
m ∈S and a guard γm ∈ Γ . In addition, the mapping ∆ is such that the set of all guards
for a given method signature form a partition of the input space of the corresponding
method. Let Γm = {γ | ∃a ∈ αM.∆(a) = (m,γ)} be the set of guards belonging to a
method m. More formally, the guards for a method are (1) non-overlapping:

∀a,b ∈ αM, γa,γb ∈Γ , m ∈S . a 6= b∧∆(a) = (m,γa)∧∆(b) = (m,γb)⇒¬γa∨¬γb,

(2) cover all of the input space: ∀m ∈S .
∨

γ∈Γm γ = true, and (3) are non-empty.
Given an iLTS A = 〈M,S ,Γ ,∆〉, an execution of A is a sequence of pairs σ =

(m0,γm0),(m1,γm1), . . . ,(mn,γmn), where for 0 ≤ i ≤ n, pair (mi,γmi) consists of a
method signature mi ∈ S and its corresponding guard γmi . Every execution σ has a
corresponding trace a0,a1, . . . ,an in M such that for 0≤ i≤ n, ∆(ai) = (mi,γmi). Then
σ is a legal (resp. illegal, unknown) execution in A, if its corresponding trace in M is le-
gal (resp. illegal, unknown). Based on this distinction, we define Llegal (A), Lillegal (A),
and Lunknown (A) as the sets of legal, illegal, and unknown executions of A, respectively.

An iLTS A = 〈M,S ,Γ ,∆〉 is an interface for a component C if S is a subset of
method signatures of the methods M in C . However, not all such interfaces are accept-
able and a notion of interface correctness also needs to be introduced. Traditionally,
correctness of an interface for a component C is associated with two characteristics:
safety and permissiveness, meaning that the interface blocks all erroneous and allows
all good executions (i.e., executions that do not lead to an error) of C , respectively. A
full interface is then an interface that is both safe and permissive [16].

We extend this definition to iLTSs as follows. Let iLTS A be an interface for a
component C . An execution σ = (m0,γm0),(m1,γm1), . . . ,(mn,γmn) of A then repre-
sents every concrete sequence σc = (m0, [Pm0]),(m1, [Pm1]), . . . ,(mn, [Pmn]) such that for

symbolic interpreter /
alphabet refiner

membership query: is sequence σ legal?

equivalence query: Mi represents full interf.?

true/ false/unknown

false + cex

refined

L*

true
create/invoke

membership queries

refined

new alphabet / restart learning

Teacher

<Mi ,S ,Γ,Δ>

alphabet
refiner

Fig. 4: PSYCO framework during iteration i of learning algorithm.

0 ≤ i ≤ n, [Pmi] satisfies γmi . Each such concrete sequence defines an execution of the
component C . We say an execution of a component is illegal if it results in an assertion
violation; otherwise, the execution is legal. Then, A is a safe interface for C if for every
execution σ ∈Llegal (A), we determine that all the corresponding concrete executions
of component C are legal. It is permissive if for every execution σ ∈ Lillegal (A), we
determine that all the corresponding concrete executions of component C are illegal.
Finally, A is tight if for every execution σ ∈Lunknown (A), we cannot determine whether
the corresponding concrete executions of component C are legal or illegal; this explic-
itly captures possible incompleteness of the underlying analysis technique. To conclude,
we say A is full if it is safe, permissive, and tight. Moreover, we say A is k-full for some
k ∈ IN if it is safe, permissive, and tight for all method sequences of length up to k.

5 Symbolic Interface Learning

Let C be a component and S the set of signatures of a subset of the methods M in C .
Our goal is to automatically compute an interface for C as an iLTS A = 〈M,S ,Γ ,∆〉.
We achieve this through a novel combination of L* to generate LTS M, and symbolic
execution to compute the set of guards Γ and the mapping ∆ . The termination crite-
rion for symbolic execution is that all paths be characterized as either legal, illegal or
unknown.

At a high level, our proposed framework operates as follows (see Fig. 4).
It uses L* to learn an LTS over an alphabet that initially corresponds to
a set of signatures S of the methods of C . For our motivating exam-
ple, we start with the alphabet αM = {close,flush,connect,write}, set of sig-
natures S = {close(),flush(),connect(snk),write()}, and ∆ such that ∆(close) =
(close(), true), ∆(flush) = (flush(), true), ∆(connect) = (connect(snk), true), and
∆(write) = (write(), true). As mentioned earlier, L* interacts with a teacher that re-
sponds to its membership and equivalence queries. A membership query over the al-

phabet αM is a sequence σ = a0,a1, . . . ,an such that for 0 ≤ i ≤ n, ai ∈ αM. Given a
query σ , the teacher uses symbolic execution to answer the query. The semantics of ex-
ecuting a query in this context corresponds to exercising all paths through the methods
in the query sequence, subject to satisfying the guards returned by the map ∆ . When-
ever the set of all paths through the sequence can be partitioned into proper subsets that
are safe, lead to assertion violations, or to limitations of symbolic execution that prevent
further exploration, we refine guards to partition the input space of the methods in the
query sequence. We call this process alphabet refinement.

For our motivating example, the sequence σ = connect will trigger refinement of
symbol connect. As illustrated in Fig. 2, the input space of method connect must be
partitioned into the case where: (1) snk 6= null∧ snk.connected = false, which leads to
safe executions, and (2) the remaining inputs, which lead to unsafe executions. When
a method is partitioned, we replace the symbol in αM corresponding to the refined
method with a fresh symbol for each partition, and the learning process is restarted
with the new alphabet. For example, we partition the symbol connect into connect 1
and connect 2, corresponding to the two cases above, before we restart learning. The
guards that define the partitions are stored in Γ , and the mapping from each new symbol
to the corresponding method signature and guard is stored in ∆ .

Algo. 1 Learning an iLTS for a component.
Input: A set of method signatures S of a component C .
Output: An iLTS A = 〈M,S ,Γ ,∆〉.
1: αM← /0, Γ ←{true}
2: for all m ∈S do
3: a← CreateSymbol()
4: αM← αM∪{a}
5: ∆(a)← (m,true)
6: loop
7: AlphabetRefiner.init(αM,∆)
8: SymbolicInterpreter.init(
9: αM,AlphabetRefiner)

10: Teacher.init(∆ ,SymbolicInterpreter)
11: Learner.init(αM,Teacher)
12: M← Learner.learnAutomaton()
13: if M = null then
14: (αM,Γ ,∆)
15: ← AlphabetRefiner.getRefinement()
16: else
17: return A = 〈M,S ,Γ ,∆〉

Algo. 1 is the top-level algorithm implemented by our interface generation frame-
work. First, we initialize the alphabet αM and the set of guards Γ on line 1. Then, we
create a fresh symbol a for every method signature m, and use it to populate the al-
phabet αM and the mapping ∆ (lines 2–5). The main loop of the algorithm learns an
interface for the current alphabet; the loop either refines the alphabet and reiterates, or
produces an interface and terminates. In the loop, an alphabet refiner is initialized on
line 7, and is passed as an argument for the initialization of the SymbolicInterpreter on

void main(PipedInputStream snk) {
assume true; close();
assume snk != null && snk.connected == false; connect(snk);
assume true; write();

}

Fig. 5: The generated program Pσ for the query sequence σ = close,connect 1,write,
where ∆(close) = (close(), true), ∆(connect 1) = (connect(snk),snk 6= null ∧
snk.connected = false), and ∆(write) = (write(), true).

line 9. The SymbolicInterpreter is responsible for invoking the symbolic execution en-
gine and interpreting the obtained results. It may, during this process, detect the need for
alphabet refinement, which will be performed through invocation of AlphabetRefiner.
We initialize a teacher with the current alphabet and the SymbolicInterpreter on line 10,
and finally a learner with this teacher on line 11. The learning process then takes place
to generate a classical LTS M (line 12). When learning produces an LTS M that is not
null, then an iLTS A is returned that consists of M and the current guards and mapping,
at which point the framework terminates (line 17). If M is null, it means that refinement
took place during learning. We obtain the new alphabet, guards, and mapping from the
AlphabetRefiner (line 15) and start a new learn-refine iteration.

Teacher. As discussed in Sec. 3, the teacher responds to membership and equivalence
queries produced by L*. Given a membership query σ = a0,a1, . . . ,an, the symbolic
teacher first generates a program Pσ . For each symbol ai in the sequence, Pσ invokes
the corresponding method mi while assuming its associated guard γmi using an assume
statement. The association is provided by the current mapping ∆ , i.e., ∆(ai) = (mi,γmi).
The semantics of statement assume Expr is that it behaves as skip if Expr evaluates to
true; otherwise, it blocks the execution. This ensures that symbolic execution considers
only arguments that satisfy the guard, and ignores all other values.

For the example of Fig. 1, let σ = close,connect 1,write be a query,
where ∆(close) = (close(), true), ∆(connect 1) = (connect(snk),snk 6= null ∧
snk.connected = false), and ∆(write) = (write(), true). Fig. 5 gives the generated pro-
gram Pσ for this query. Such a program is then passed to the SymbolicInterpreter that
performs symbolic analysis and returns one of the following: (1) TRUE corresponding
to a true answer for learning, (2) FALSE corresponding to a false answer, (3) UNKNOWN
corresponding to an unknown answer, and (4) REFINED, reflecting the fact that alphabet
refinement took place, in which case the learning process must be interrupted, and the
learner returns an LTS M = null.

An equivalence query checks whether the conjectured iLTS A = 〈M,S ,Γ ,∆〉, with
M = 〈Q,αM,δ ,q0〉, is safe, permissive, and tight. One approach to checking these
three properties would be to encode the interface as a program, similar to the program
for membership queries. During symbolic execution of this program, we would check
whether the conjectured iLTS correctly characterizes legal, illegal, and unknown uses
of the component. However, conjectured interfaces have unbounded loops; symbolic
techniques handle such loops through bounded unrolling. We follow a similar process,

but rather than having the symbolic engine unroll loops, we reduce equivalence queries
to membership queries of bounded depth. Note that this approach, similar to loop un-
rolling during symbolic execution, is not complete in general. However, even in cases
where we face incompleteness, we provide useful guarantees of the generated iLTS.

In order to provide guarantees of the generated interface to some depth k, we
proceed as follows. During a depth-first traversal of M to depth k, whenever we
reach state π or υ , we generate the sequence σ that leads to this state, where σ =
a0,a1, . . . ,an−1,an in Lillegal (M) or Lunknown (M), respectively. Moreover, we gener-
ate the sub-sequence σL = a0,a1, . . . ,an−1, knowing σL ∈ Llegal (M), since π and υ

have no outgoing transitions (Lillegal (M) and Lunknown (M) are suffix-closed). When-
ever depth k is reached during traversal, and the state reached is not π and not υ , we
generate the sequence σ = a0,a1, . . . ,ak (with σ ∈Llegal (M)) leading to this state. In
other words, we generate all legal sequences in Llegal (M) of depth exactly k, all se-
quences in Lillegal (M) and Lunknown (M) of depth less than or equal to k, as well as the
largest prefix of each generated illegal and unknown sequence that is in Llegal (M).

Every generated sequence σ is then queried using the algorithm for member-
ship queries. Since Llegal (M) is prefix-closed, and Lillegal (M) and Lunknown (M) are
suffix-closed, the generated queries are sufficient to check the conjectured interface to
depth k, as shown in the technical memorandum [12]. If the membership query for
σ returns REFINED, learning is restarted since the alphabet has been refined. Further-
more, if the membership query for a sequence σ ∈Llegal (M) (resp. σ ∈Lillegal (M),
σ ∈Lunknown (M)) does not return TRUE (resp. FALSE, UNKNOWN), the corresponding in-
terface is not full and σ is returned to L* as a counterexample to the equivalence query.
Otherwise, the interface is guaranteed to be k-full, i.e., safe, permissive, and tight up to
depth k.

Symbolic Interpreter. Algo. 2 shows the algorithm implemented in
SymbolicInterpreter and called by the teacher. The algorithm invokes a symbolic
execution engine, and interprets its results to determine answers to queries. The input
to Algo. 2 is a program Pσ as defined above, and a set of symbols Σ . The output is
either TRUE, FALSE, or UNKNOWN, if no alphabet refinement is needed, or REFINED,
which reflects that alphabet refinement took place.

Algo. 2 starts by executing Pσ symbolically (line 1), treating main method param-
eters (e.g., snk in Fig. 5) as symbolic inputs. Every path through the program is then
characterized by a path constraint, denoted by pc. A pc is a constraint over symbolic
parameters, with each conjunct in the constraint stemming from a conditional state-
ment encountered along the path; a path constraint precisely characterizes a path taken
through the program. A constraint partitions the set of all valuations over input param-
eters of the program (i.e., input parameters of the called component methods) into the
set of valuations that satisfy the constraint and the set of valuations that do not satisfy
the constraint. We denote a set of path constraints as PC.

We define a map ρ : PC 7→ {error,ok,unknown} which, given a path constraint
pc ∈ PC, returns error (resp. ok) if the corresponding path represents an erroneous
(resp. good) execution of the program; otherwise, ρ returns unknown. Mapping pc to
unknown represents a case when the path constraint cannot be solved by the underlying
constraint solver used by the symbolic execution engine. Symbolic execution returns a

Algo. 2 Symbolic interpreter.
Input: Program Pσ and set of symbols Σ .
Output: TRUE, FALSE, UNKNOWN, or REFINED.
1: (PC,ρ)← SymbolicallyExecute(Pσ)
2: ϕ err← ϕ ok← ϕ unk← false
3: for all pc ∈ PC do
4: if ρ(pc) = error then
5: ϕ err← ϕ err ∨ pc
6: else if ρ(pc) = ok then
7: ϕ ok← ϕ ok ∨ pc
8: else
9: ϕ unk← ϕ unk ∨ pc

10: if ¬(SAT(ϕ err)∨SAT(ϕ unk)) then
11: return TRUE

12: else if ¬(SAT(ϕ ok)∨SAT(ϕ unk)) then
13: return FALSE

14: else if ¬(SAT(ϕ err)∨SAT(ϕ ok)) then
15: return UNKNOWN

16: else
17: Σnew←AlphabetRefiner.refine(ϕ err,ϕ unk)
18: if |Σnew|= |Σ | then
19: return UNKNOWN

20: else
21: return REFINED

Algo. 3 Symbolic alphabet refinement.
Input: Set of symbols Σ , mapping ∆ , and

constraints ϕ err, ϕ unk.
Output: Refinement Σnew, Γnew, ∆new.
1: Σnew← Γnew← /0
2: for all a ∈ Σ do
3: (m,γ)← ∆(a)
4: ϕ err

m ←Πm(ϕ
err)

5: ϕ unk
m ← γ ∧¬ϕ err

m ∧Πm(ϕ
unk)

6: if ¬MP(ϕ err
m)∧¬MP(ϕ unk

m) then
7: ϕ ok

m ← γ ∧¬ϕ err
m ∧¬ϕ unk

m
8: if SAT(ϕ err

m) then
9: aerr← CreateSymbol()

10: Σnew← Σnew∪{aerr}
11: Γnew← Γnew∪{ϕ err

m }
12: ∆new(aerr)← (m,ϕ err

m)
13: if SAT(ϕ unk

m) then
14: aunk← CreateSymbol()
15: Σnew← Σnew∪{aunk}
16: Γnew← Γnew∪{ϕ unk

m }
17: ∆new(aunk)← (m,ϕ unk

m)
18: if SAT(ϕ ok

m) then
19: aok← CreateSymbol()
20: Σnew← Σnew∪{aok}
21: Γnew← Γnew∪{ϕ ok

m }
22: ∆new(aok)← (m,ϕ ok

m)
23: else
24: Σnew← Σnew∪{a}
25: Γnew← Γnew∪{γ}
26: ∆new(a)← (m,γ)
27: return Σnew,Γnew,∆new

set of path constraints PC and the mapping ρ , which are then interpreted by the algo-
rithm to determine the answer to the query.

After invoking symbolic execution, the algorithm initializes three constraints (ϕ err

for error, ϕ ok for good, and ϕ unk for unknown paths) to false on line 2. The loop on
lines 3–9 iterates over path constraints pc ∈ PC, and based on whether pc maps into
error, ok, or unknown, adds pc as a disjunct to either ϕ err, ϕ ok, or ϕ unk, respectively.
Let SAT : Φ 7→ B, where Φ is the universal set of constraints, be a predicate such that
SAT(ϕ) holds if and only if the constraint ϕ is satisfiable. In lines 10–15, the algorithm
returns TRUE if all paths are good paths (i.e., if there are no error and unknown paths),
FALSE if all paths are error paths, or UNKNOWN if all paths are unknown paths.

Otherwise, alphabet refinement needs to be performed; method refine of the
AlphabetRefiner is invoked, which returns the new alphabet Σnew (line 17). If no new
symbols have been added to the alphabet, no methods have been refined. This can only
happen if all potential refinements involve mixed-parameter constraints. Informally, a

constraint is considered mixed-parameter if it relates symbolic parameters from mul-
tiple methods. As explained in Algo. 3, dealing with mixed parameters precisely is
beyond the scope of this work. Therefore, Algo. 2 returns UNKNOWN. Otherwise, refine-
ment took place, and Algo. 2 returns REFINED.

Symbolic Alphabet Refinement. The SymbolicInterpreter invokes the refinement al-
gorithm using method refine of the AlphabetRefiner. The current alphabet, mapping,
and constraints ϕ err and ϕ unk computed by the SymbolicInterpreter, are passed as in-
puts. Method refine implements Algo. 3.

In Algo. 3, the new set of alphabet symbols Σnew and guards Γnew are initialized on
line 1. The loop on lines 2–26 determines, for every alphabet symbol, whether it needs
to be refined, in which case it generates the appropriate refinement. Let ∆(a) = (m,γ).
An operator Πm is then used to project ϕ err on the parameters of m (line 4). When
applied to a path constraint pci, Πm erases all conjuncts that don’t refer to a symbolic
parameter of m. If no conjunct remains, then the result is false. For a disjunction of
path constraints ϕ = pc1 ∨ . . .∨ pcn (such as ϕ err or ϕ unk), Πm(ϕ) = Πm(pc1)∨ . . .∨
Πm(pcn). For example, if m = 〈foo,{x,y}〉, then Πm((s = t) ∨ (x < y) ∨ (s ≤ z ∧ y =
z)) 7→ false ∨ (x < y) ∨ (y = z), which simplifies to (x < y) ∨ (y = z).

We compute ϕ unk
m on line 5. At that point, we check whether either ϕ err

m or ϕ unk
m

involve mixed-parameter constraints (line 6). This is performed using a predicate MP :
Φ 7→ B, where Φ is the universal set of constraints, defined as follows: MP(ϕ) holds
if and only if |Mthds(ϕ)| > 1. The map Mthds : Φ 7→ 2M maps a constraint ϕ ∈ Φ

into the set of all methods that have parameters occurring in ϕ . Dealing with mixed-
parameter constraints in a precise fashion would require more expressive automata, and
is beyond the scope of this paper. Therefore, refinement proceeds for a symbol only
if mixed-parameter constraints are not encountered in ϕ err

m and ϕ unk
m . Otherwise, the

current symbol is simply added to the new alphabet (lines 24–26).
We compute ϕ ok

m on line 7 in terms of ϕ err
m and ϕ unk

m , so it does not contain mixed-
parameter constraints either. Therefore, when the algorithm reaches this point, all of
ϕ err

m , ϕ unk
m , ϕ ok

m represent potential guards for the method refinement. Note that ϕ err
m ,

ϕ unk
m , and ϕ ok

m are computed in such a way that they partition the input space of the
method m, if it gets refined. A fresh symbol is subsequently created for each guard that
is satisfiable (lines 8, 13, 18), We update Σnew, Γnew, and ∆new with the fresh symbol
and its guard. In the end, the algorithm returns the new alphabet. The computed guards
and mapping are stored in local fields that can be accessed through the getter method
getRefinement() of the AlphabetRefiner (see Algo. 1, line 15).

6 Correctness and Guarantees

Prior to the application of our framework, loops and recursion are unrolled a bounded
number of times. Consequently, our correctness arguments assume that methods have
a finite number of paths. Proofs of our theorems appear in the technical memoran-
dum [12].

We begin by showing correctness of the teacher for L*. In the following lemma, we
prove that the program Pσ that we generate to answer a query σ captures all possible
concrete sequences for σ . The proof follows from the structure of Pσ .

Lemma 1. (Correctness of Pσ). Given a component C and a query σ on C , the set of
executions of C driven by Pσ is equal to the set of concrete sequences for σ .

The following theorem shows that the teacher correctly responds to membership
queries. The proof follows from the finiteness of paths taken through a component and
from an analysis of Algo. 2.

Theorem 1. (Correctness of Answers to Membership Queries). Given a component
C and a query σ , the teacher responds TRUE (resp. FALSE, UNKNOWN) if and only if all
executions of C for σ are legal (resp. illegal, cannot be resolved by the analysis).

Next, we show that the teacher correctly responds to equivalence queries up to depth
k. The proof follows from our reduction of equivalence queries to membership queries
that represent all sequences of length ≤ k of the conjectured iLTS.

Theorem 2. (Correctness to Depth k of Answers to Equivalence Queries). Let M be
an LTS conjectured by the learning process for some component C , Γ the current set of
guards, and ∆ the current mapping. If an equivalence query returns a counterexample,
A = 〈M,S ,Γ ,∆〉 is not a full interface for C . Otherwise, A is k-full.

In proving progress and termination of our framework, we use Lemma 2, which is
a property of L*, and Lemma 3, which is a property of our alphabet refinement.

Lemma 2. (Termination of Learning). If the unknown languages are regular, then L*
is guaranteed to terminate.

Lemma 3. (Alphabet Partitioning). Algo. 3 creates partitions for the alphabet sym-
bols it refines.

Given that the number of paths through a method is bounded, we can have at most
as many guards for the method as the number of these paths, which is bounded. Further-
more, if alphabet refinement is required, Algo. 3 always partitions at least one method.
This leads us to the following theorem.

Theorem 3. (Progress and Termination of Refinement). Alphabet refinement strictly
increases the alphabet size, and the number of possible refinements is bounded.

Finally, we characterize the overall guarantees of our framework with the following
theorem, whose proof follows from Theorem 2, Theorem 3, and Lemma 2.

Theorem 4. (Guarantees of PSYCO). If the behavior of a component C can be char-
acterized by an iLTS, then PSYCO terminates with a k-full iLTS for C .

7 Implementation and Evaluation

We implemented our approach in a tool called PSYCO within the Java Pathfinder
(JPF) open-source framework [20]. PSYCO consists of three new, modular JPF exten-
sions: (1) jpf-learn implements both the standard and the three-valued version of

Example #Methods k-max k-min #Conjectures #Refinements #Alphabet #States
SIGNATURE 5 7 2 2 0 5 4
PIPEDOUTPUTSTREAM 4 8 2 2 1 5 3
INTMATH 8 1 1 1 7 16 3
ALTBIT 2 35 4 8 3 5 5
CEV-FLIGHTRULE 3 4 3 3 2 5 3
CEV 18 3 3 10 6 24 9

Table 1: Experimental results. Time budget is set to one hour. “#Methods” is the number
of component methods (and also the size of the initial alphabet); “k-max” the maximum
value of k explored (i.e., the generated iLTS is k-max-full); “k-min” the smallest value of
k for which our approach converges to the final iLTS that gets generated; “#Conjectures”
the total number of conjectured iLTSs; “#Refinements” the total number of performed
alphabet refinements; “#Alphabet” the size of the final alphabet; “#States” the number
of states in the final iLTS.

L*; (2) jpf-jdart is our symbolic execution engine that performs concolic execu-
tion [13, 24]; (3) jpf-psyco implements the symbolic-learning framework, including
the teacher for L*. For efficiency, our implementation of L* caches query results in a
MemoizedTable, which is preserved after refinement to enable reuse of previous learn-
ing results. Programs Pσ are generated dynamically by invoking their corresponding
methods using Java reflection. We evaluated our approach on the following examples:

SIGNATURE A class from the java.security package used in a paper by Singh et al. [25].
PIPEDOUTPUTSTREAM A class from the java.io package and our motivating example

(see Fig. 1). Taken from a paper by Singh et al. [25].
INTMATH A class from the Google Guava repository [14]. It implements arithmetic

operations on integer types.
ALTBIT Implements a communication protocol that has an alternating bit style of be-

havior. Howar et al. [18] use it as a case study.
CEV NASA Crew Exploration Vehicle (CEV) 1.5 EOR-LOR example modeling flight

phases of a space-craft; a Java state-chart model in the JPF distribution under
examples/jpfESAS. We translated the example from state-charts to plain Java.

CEV-FLIGHTRULE Simplified version of the CEV example that exposes a flight rule.

For all experiments, jpf-jdart used the Yices SMT solver [9]. The experiments
were performed on a 2GHz Intel Core i7 laptop with 8GB of memory running Mac
OS X. We budgeted a total of one hour running time for each application, after which
PSYCO was terminated. Using a simple static analysis, PSYCO first checks whether
a component is stateless. For stateless components (e.g., INTMATH), a depth of one
suffices, hence we fix k = 1. For such components, the interface generated by PSYCO
still provides useful information in terms of method guards. The resulting interface
automaton for INTMATH can reach state unknown due to the presence of non-linear
constraints, that cannot be solved using Yices. For all other components, the depth k
for equivalence queries gets incremented whenever no counterexample is obtained after
exhausting exploration of the automaton to depth k. In this way, we are able to report

the maximum depth k-max that we can guarantee for our generated interfaces within
the allocated time of one hour.

Table 1 summarizes the obtained experimental results. The generated interfaces are
shown in [12]. In addition, we inspected the generated interfaces to check whether or not
they correspond to our expected component behavior. For all examples, except CEV,
our technique converges, within a few minutes and with a relatively small k (see column
k-min in the table), to the expected iLTS. The iLTS do not change between k-min and
k-max. Our technique guarantees they are k-max- f ull. In general, users of our frame-
work may increase the total time budget if they require additional guarantees, or may
interrupt the learning process if they are satisfied with the generated interfaces. In all of
our examples the majority of the time was spent in symbolic execution.

A characteristic of the examples for which PSYCO terminated with a smaller k-max,
such as CEV, is that they involve methods with a significant degree of branching. On
the other hand, PSYCO managed to explore ALTBIT to a large depth because branching
is smaller. This is not particular to our approach, but inherent in any path-sensitive pro-
gram analysis technique. If n is the number of branches in each method, and a program
invokes m methods in sequence, then the number of paths in this program is, in the worst
case, exponential in m∗n. As a result, symbolic analysis of queries is expensive both in
branching within each method as well as in the length of the query. Memoization and
reuse of learning results after refinement helps ameliorate this problem; for CEV, 7800
out of 12002 queries were answered through memoization.

8 Conclusions and Future Work

We have presented the foundations of a novel approach for generating temporal com-
ponent interfaces enriched with method guards. PSYCO produces three-valued iLTS,
with an unknown state reflecting component behavior that was not covered by the un-
derlying analysis. For compositional verification, unknown states can be interpreted
conservatively as errors, or optimistically as legal states, thus defining bounds for the
component interface. Furthermore, alternative analyses can be applied subsequently to
target these unexplored parts. The interface could also be enriched during testing or us-
age of the component. Reuse of previous learning results, similar to what is currently
performed, could make this process incremental.

In the future, we also intend to investigate ways of addressing mixed parameters
more precisely. For example, we plan to combine PSYCO with a learning algorithm for
register automata [17]. This would enable us to relate parameters of different methods
through equality and inequality. Moreover, we will incorporate and experiment with
heuristics both in the learning and the symbolic execution components of PSYCO. Fi-
nally, we plan to investigate interface generation in the context of compositional verifi-
cation.

Acknowledgements

We would like to thank Peter Mehlitz for his help with Java PathFinder and Neha Rungta
for reviewing a version of this paper.

References
1. F. Aarts, B. Jonsson, and J. Uijen. Generating models of infinite-state communication proto-

cols using regular inference with abstraction. In ICTSS, pages 188–204, 2010.
2. R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifications for Java

classes. In POPL, pages 98–109, 2005.
3. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, 1987.
4. S. Burckhardt, C. Dern, M. Musuvathi, and R. Tan. Line-up: A complete and automatic

linearizability checker. In PLDI, pages 330–340, 2010.
5. S. Chaki and O. Strichman. Three optimizations for assume-guarantee reasoning with L*.

FMSD, 32(3):267–284, 2008.
6. Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-Y. Wang. Automated

assume-guarantee reasoning through implicit learning. In CAV, pages 511–526, 2010.
7. Y.-F. Chen, A. Farzan, E. M. Clarke, Y.-K. Tsay, and B.-Y. Wang. Learning minimal sepa-

rating DFA’s for compositional verification. In TACAS, pages 31–45, 2009.
8. C. Y. Cho, D. Babić, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. MACE: Model-

inference-assisted concolic exploration for protocol and vulnerability discovery. In USENIX
Security Symposium, 2011.

9. B. Dutertre and L. D. Moura. The Yices SMT solver. Technical report, SRI International,
2006.

10. M. Gheorghiu, D. Giannakopoulou, and C. S. Pasareanu. Refining interface alphabets for
compositional verification. In TACAS, pages 292–307, 2007.

11. D. Giannakopoulou and C. S. Pasareanu. Interface generation and compositional verification
in JavaPathfinder. In FASE, pages 94–108, 2009.

12. D. Giannakopoulou, Z. Rakamarić, and V. Raman. Symbolic learning of component inter-
faces. Technical report, NASA Ames Research Center, 2012.

13. P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random testing. SIG-
PLAN Not., 40(6):213–223, 2005.

14. Guava: Google core libraries. http://code.google.com/p/guava-libraries/.
15. A. Gupta, K. L. McMillan, and Z. Fu. Automated assumption generation for compositional

verification. In CAV, pages 420–432, 2007.
16. T. A. Henzinger, R. Jhala, and R. Majumdar. Permissive interfaces. In ESEC/FSE, pages

31–40, 2005.
17. F. Howar, B. Steffen, B. Jonsson, and S. Cassel. Inferring canonical register automata. In

VMCAI, 2012.
18. F. Howar, B. Steffen, and M. Merten. Automata learning with automated alphabet abstraction

refinement. In VMCAI, pages 263–277, 2011.
19. S. Joshi, S. K. Lahiri, and A. Lal. Underspecified harnesses and interleaved bugs. In POPL,

pages 19–30, 2012.
20. Java PathFinder (JPF). http://babelfish.arc.nasa.gov/trac/jpf.
21. J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–394, 1976.
22. C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Barringer. Learn-

ing to divide and conquer: applying the L* algorithm to automate assume-guarantee reason-
ing. FMSD, 32(3):175–205, 2008.

23. R. L. Rivest and R. E. Schapire. Inference of finite automata using homing sequences. Inf.
Comput., 103(2):299–347, 1993.

24. K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In ESEC/FSE,
pages 263–272, 2005.

25. R. Singh, D. Giannakopoulou, and C. S. Pasareanu. Learning component interfaces with
may and must abstractions. In CAV, pages 527–542, 2010.

