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ABSTRACT
This paper addresses the problem of efficient generation of
component interfaces through learning. Given a white-box
component C with specified unsafe states, an interface cap-
tures safe orderings of invocations of C’s public methods. In
previous work we presented Psyco, an interface generation
framework that combines automata learning with symbolic
component analysis: learning drives the framework in ex-
ploring different combinations of method invocations, and
symbolic analysis computes method guards corresponding
to constraints on the method parameters for safe execution.
In this work we propose solutions to the two main bottle-
necks of Psyco. The explosion of method sequences that
learning generates to validate its computed interfaces is re-
duced through partial order reduction resulting from a static
analysis of the component. To avoid scalability issues asso-
ciated with symbolic analysis, we propose novel algorithms
that are primarily based on dynamic, concrete component
execution, while resorting to symbolic analysis on a limited,
as needed, basis. Dynamic execution enables the introduc-
tion of a concept of state matching, based on which our
proposed approach detects, in some cases, that it has ex-
hausted the exploration of all component behaviors. On the
other hand, symbolic analysis is enhanced with symbolic
summaries. Our new approach, X-Psyco, has been imple-
mented in the Java Pathfinder (JPF) software verification
platform. We demonstrated the effectiveness of X-Psyco
on a number of realistic software components by generating
more complete and precise interfaces than was previously
possible.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifica-
tion—Tools; D.2.2 [Software Engineering]: Design Tools
and Techniques—Modules and interfaces; D.2.5 [Software
Engineering]: Testing and Debugging—Symbolic execu-
tion
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1. INTRODUCTION
Modern software components are open building blocks

that are reused or connected dynamically to form larger
systems. Well-defined component interfaces are key to suc-
cessful component-based software engineering. This work
focuses on “temporal” interfaces, which capture ordering re-
lationships between invocations of component methods. For
example, for the NASA Crew Exploration Vehicle (CEV)
component used in our experiments in Sec. 5, an interface
prescribes that a lunar lander cannot dock with a lunar or-
biter without first jettisoning the launch abort subsystem.
Temporal interfaces are well-suited for components that ex-
hibit a protocol-like behavior; control-oriented components,
such as NASA control software, device drivers, and web-
services, often fall into this category.

In previous work [16], we presented Psyco: a framework
that implements a novel combination of automata learning
with symbolic execution to automatically generate tempo-
ral interfaces for components that include methods with
parameters. The generated interfaces are finite-state au-
tomata whose transitions are labeled with method names
and guarded with constraints on the corresponding method
parameters. The guards partition the input spaces of pa-
rameters, and enable a more precise characterization of legal
orderings than was previously possible in a fully automatic
fashion.

The performance bottleneck faced by Psyco on larger
examples stems from two main factors. In order to vali-
date computed interface approximations, the learning frame-
work generates equivalence queries consisting of sequences of
method invocations of the target component. The number
of sequences that each equivalence query generates grows
exponentially in the length of these sequences. Moreover, to
handle methods with parameters completely, each sequence
is fully explored symbolically, thus further contributing to
the cost of the approach. As a consequence, for complex
components, such as the mentioned NASA CEV module,
Psyco was only able to guarantee correctness of the gener-
ated interface to a relatively small depth, within the bud-
geted running time of one hour [16].



This work proposes X-Psyco, a hybrid “mutant” of the
Psyco algorithm that significantly improves performance
through a novel combination of learning with static, con-
crete, and symbolic analysis. Although we like to refer to
X-Psyco as a mutant of Psyco, it is in fact a new frame-
work, with novel algorithms for performing most of the work
at a concrete level, while using symbolic techniques lazily
to guarantee completeness. The explosion of sequences in
equivalence queries that the learning framework generates
is reduced through partial order reduction (POR) resulting
from an adequate static analysis of the component. Static
analysis determines groups of component methods that are
mutually independent. This information is used on-the-fly,
to always generate a single order for any two or more consec-
utive independent methods during sequence construction; no
alternative orderings are generated or explored, often achiev-
ing significant savings in the number of sequence-forming
method combinations.

To avoid scalability issues associated with symbolic anal-
ysis, we primarily rely on concrete component execution for
interface generation, while resorting to symbolic analysis on
a limited, as needed, basis. Concrete execution enables the
introduction of a concept of state matching, based on which
our proposed approach detects, in some cases, that it has
exhausted the exploration of all component behaviors. On
the other hand, symbolic analysis is enhanced with symbolic
summaries. Our experiments demonstrate that the various
components of our novel approach complement each other
in improving the performance of interface generation. More
precisely, we are able to guarantee the correctness of gen-
erated interfaces to a larger depth than could be achieved
previously. As a result, we are able to generate more pre-
cise interfaces for some of the examples. Moreover, in other
cases, state-matching enables us to terminate with the guar-
antee that the interface generated is correct to any depth.

We implemented X-Psyco within the Java Pathfinder
(JPF) software verification toolset [23] for the Java virtual
machine. JPF is an open-source project developed at the
NASA Ames Research Center. X-Psyco is a new exten-
sion of JPF, and has few commonalities with the original
Psyco, which is also available as a separate JPF extension.
We have applied X-Psyco to all the benchmark problems
that we also applied Psyco to in our previous work [16],
as well as to some new components in the domain of em-
bedded software and network protocols. We demonstrate
that X-Psyco significantly outperforms Psyco in terms of
precision of the generated interfaces.

2. MOTIVATING EXAMPLE
Our running example is the PipedOutputStream class taken

from the java.io package. Similar to previous work [3, 30],
we removed unnecessary details from the example. In par-
ticular, we model objects and object references as primitive
data types since our implementation currently does not sup-
port composite data types. (Hence, note that currently we
are not dealing with orthogonal, well-known issues related to
creating objects on the heap, such as aliasing.) Fig. 1 gives
the simplified code. The example has a private field sink of
integer type, a private field sinkConnected of boolean type,
and four public methods called connect , write, flush, and
close. Throwing exceptions is modeled by asserting false,
denoting an undesirable error state.

class PipedOutputStream {
private int sink = 0;
private boolean sinkConnected = false;

public void connect(int snk, boolean snkConnected) {
if (snk == 0) {
assert false;

} else if (sink != 0 || snkConnected) {
assert false;

}
sink = snk;
sinkConnected = true;

}

public void write() {
if (sink == 0) {
assert false;

} else { ; }
}

public void flush() {
if (sink != 0) { ; }

}

public void close() {
if (sink != 0) { ; }

}
}

Figure 1: Motivating example.

The class initializes field sink to 0 and field sinkConnected
to false. Method connect takes a parameter snk of integer
type and a parameter snkConnected of boolean type. It goes
to an error state (i.e., throws an exception) either if snk is
0 or if a stream has already been connected; otherwise, it
connects the input and output streams. Method write can
be called only if sink is not 0, and otherwise an error state
is reached. Methods flush and close have no effect, i.e., they
do not throw an exception.

The lower part of Fig. 2 illustrates the interface generated
with our approach, implemented in Psyco, for this exam-
ple. The interface captures the fact that flush and close
can be invoked unconditionally, whereas write can only oc-
cur after a successful invocation of connect . The guard
snk 6= 0 ∧ ¬snkConnected , over the parameters snk and
snkConnected of the method connect , captures the condi-
tion for a successful connection. Psyco was the first ap-
proach to combine the automatic generation of interfaces
with the computation of symbolic method guards. Without
support for guards in our component interfaces, we would
obtain the more imprecise interface shown at the top of the
figure, which precludes several legal sequences of method
invocations. For example, method connect is blocked from
the interface since it cannot be called unconditionally. As
a consequence, write is blocked as well. Therefore, sup-
port for automatically generating guards enables Psyco to
produce richer and more precise component interfaces for
components that have methods with parameters.

However, this capability comes at a cost. The learning-
based framework that Psyco implements potentially gener-
ates an exponentially large number of queries, where each
query is a sequence of method invocations. Each sequence is
explored symbolically over parameters of all methods. The
large number of such symbolic executions makes the per-
formance of Psyco suffer for components that include sev-
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Figure 2: Interfaces for our motivating example.
Above, there is no support for guards, while below
Psyco is used to generate guards. Initial states are
marked with arrows that have no origin; error states
are marked with π. Edges are labeled with method
names (with guards, when applicable).

eral methods with parameters. For example, for our largest
previous benchmark, namely CEV, Psyco only managed to
guarantee the correctness of the generated interface to depth
3 within the time-budget of one hour [16].

X-Psyco addresses these performance bottlenecks by in-
troducing several new concepts. First of all, X-Psyco per-
forms as much of the learning as possible using concrete
execution, and only reverts to symbolic execution when nec-
essary. More precisely, our approach uses pools of concrete
method invocations to explore different behaviors of a com-
ponent. For instance, coming back to our motivating exam-
ple, when exploring sequences that involve method connect ,
our algorithms explore the following concrete invocations:
connect(0, false), connect(1, false), and connect(1, true). As
our experiments later will show, concrete execution is sig-
nificantly faster than symbolic analysis. Symbolic analysis
in X-Psyco is used in computing method guards, and in
ensuring completeness of the approach; in other words, it
generates additional concrete values to ensure exploration
of all paths up to some length.

Moreover, X-Psyco introduces a notion of partial order
reduction. In Fig. 1, we can observe that methods write,
flush, and close do not touch field sinkConnected , and only
read field sink but never write to it. These methods are
therefore independent from each other, and their relative
consecutive ordering does not affect the outcome of a se-
quence. In other words, performing sequence connect , write,
flush, close is equivalent to performing connect , flush, write,
close; if one sequence leads to an error, then so does the
other, and the same holds for non-errors. We therefore pro-
pose to apply an appropriate static analysis as a prepro-
cessing step in order to automatically and conservatively
identify such independent methods. During sequence gener-

ation, only a single order of such methods is explored when
they are executed consecutively.

To conclude, the described optimizations we introduced
in X-Psyco enable us to explore our running example to
depth 54, as opposed to depth 8 with our original Psyco
(see Table 1, column X-Psyco with POR+Matching, and
Table 2).

3. PRELIMINARIES
This section presents material required for understanding

our X-Psyco hybrid learning algorithm described in Sec. 4.

3.1 Background
Labeled Transition Systems (LTS). We use determinis-
tic LTSs to express temporal component interfaces. Symbols
π and υ denote a special error and unknown state, respec-
tively. The former models unsafe states and the latter cap-
tures the lack of knowledge about whether a state is safe or
unsafe. States π and υ have no outgoing transitions.

A deterministic LTSM is a four-tuple 〈Q,αM, δ, q0〉, where
Q is a finite non-empty set of states, αM is a set of observ-
able actions called the alphabet of M , δ : (Q× αM) 7→ Q is
a transition function, and q0 ∈ Q is the initial state. LTS
M is complete if each state except π and υ has an outgoing
transition for every action in αM .

A trace, also called an execution or word, of an LTS M is
a finite sequence of observable actions that label the tran-
sitions that M can perform starting from q0. A trace is
illegal (resp., unknown) if it leads M to state π (resp., υ).
Otherwise, it is legal. The illegal (resp., unknown, legal)
language of M , denoted as Lillegal (M) (resp., Lunknown (M),
Llegal (M)), is the set of illegal (resp., unknown, legal) traces
of M .

Automata Learning with L*. Our work uses an adap-
tation [31] of the classic L* learning algorithm [6, 28], to
learn LTSs over some alphabet αM . In our setting, learn-
ing is based on partitioning the words over αM into three
unknown regular languages L1, L2, and L3, with L* using
this partition to infer an LTS that is consistent with the
partition. To infer an LTS, L* interacts with a teacher that
answers two types of questions. The first type is a member-
ship query that takes as input a string w ∈ αM∗ and answers
true if w ∈ L1, false if w ∈ L2, and unknown otherwise. The
second type is an equivalence query or conjecture , which de-
termines, given a candidate LTS M , whether the following
conditions hold: Llegal (M) = L1, Lillegal (M) = L2, and
Lunknown (M) = L3. If they hold of the candidate M , then
the teacher answers true, at which point L* has achieved
its goal and returns M . Otherwise, the teacher returns a
counterexample, which is a string w that invalidates one of
the above conditions. The counterexample is used by L* to
drive a new round of membership queries in order to pro-
duce a new, refined candidate. Each candidate M that L*
constructs is smallest, meaning that any other LTS consis-
tent with the information provided to L* up to that stage
has at least as many states as M . Given a correct teacher,
L* is guaranteed to terminate with a minimal (in terms of
the number of states) LTS for L1, L2, and L3.

Symbolic Execution. Symbolic execution is a program
analysis technique for systematically exploring a large num-
ber of program execution paths [12, 24]. It uses symbolic



Component ::= class Ident { Global∗ Method+ }
Method ::= Ident (Parameters) { Stmt }
Global ::= Type Ident ;

Parameters ::= ε | Pararameter (, Parameter)∗

Parameter ::= Type Ident

Stmt ::= Stmt ; Stmt

| Ident = Expr

| assert Expr

| if Expr then Stmt else Stmt

| while Expr do Stmt

| return

Figure 3: Component grammar. Ident, Expr , and
Type have the usual meaning.

values as program inputs in place of concrete (actual) val-
ues. The resulting output values are then statically com-
puted as symbolic expressions over symbolic input values
and constants, using a specified set of operators. A sym-
bolic execution tree, or constraints tree, characterizes all
program execution paths explored during symbolic execu-
tion. Each node in the tree represents a symbolic state of
the program, and each edge represents a transition between
two states. A symbolic state consists of a unique program lo-
cation identifier, symbolic expressions for the program vari-
ables currently in scope, and a path condition defining con-
ditions (i.e., constraints) that have to be satisfied in order
for the execution path to this state to be taken. The path
condition describing the current path through the program
is maintained during symbolic execution by collecting con-
straints when conditional statements are encountered. Path
feasibility is established using a constraint solver to check
satisfiability of the corresponding path condition.

3.2 Components
Components and Methods. A component is defined by
the grammar in Fig. 3. A component C has a set of global
variables (also referred to as fields or component variables)
representing its internal state, and a set of one or more
methods. We assume methods have no recursion. (Note
that this is a common assumption since handling recursion
in symbolic techniques is a well-known issue orthogonal to
this work.) A component method is either a public interface
method or a private method. For simplicity of exposition, we
assume that public interface methods may call only private
methods. Furthermore, we assume all method calls are in-
lined, though in our implementation we handle method calls
and returns, and unroll recursion to a bounded depth. We
also assume the usual statement semantics. Let Ids be the
set of component method identifiers (i.e., names), Stmts the
set of all component statements, and Prms the set of all input
parameters of component methods. We define the signature
Sigm of a method m as a pair (Idm, Pm) ∈ Ids × Prms∗;
we write Idm(Pm) for the signature Sigm of the method
m. A method m is then defined as a pair (Sigm, sm) where
sm ∈ Stmts is its top-level statement.

Let M be the set of methods in a component C and G be
the set of its global variables. For every method m ∈ M,

ξconnect =



(error, (snk = 0))

(error, (snk 6= 0) ∧ (sink 6= 0))

(error, (snk 6= 0) ∧ (sink = 0) ∧ (snkConnected))

(ok, (snk 6= 0) ∧ (sink = 0) ∧ (¬snkConnected)
∧(sink′ = snk) ∧ (sinkConnected′) )

Figure 4: Symbolic summary for method connect of
PipedOutputStream.

each parameter p ∈ Pm takes values from a domain Dp based
on its type; similarly for global variables. We expect that
all method parameters are of basic types. Given a method
m ∈ M, an execution θ ∈ Stmts∗ of m is a finite sequence
of visited statements s1, . . . , sn where s1 is the top-level
method statement sm. The set Θm ∈ 2Stmts∗ is the set of
all unique executions of m. We assume that each execution
θ ∈ Θm of a method visits a bounded number of statements
(i.e., |θ| is bounded), and also that the number of unique ex-
ecutions is bounded (i.e., |Θm| is bounded); in other words,
the methods have no unbounded loops. (Similar to recur-
sion, this is a common assumption and a well-known issue
orthogonal to this work.) A valuation over Pm, denoted
#»
Pm, is a mapping that assigns to each parameter p ∈ Pm a
value in Dp. We denote a valuation over global variables in

G with
#»
G. We define

#»
G0 as the valuation representing the

initial values of all global variables. Given valuations
#»
Pm

and
#»
G, we assume that the execution of m visits exactly the

same sequence of statements; in other words, the methods
are deterministic.

Symbolic Expressions. We interpret all the parameters of
methods symbolically, and use the name of each parameter
as its symbolic name; with a slight abuse of notation, we take
Prms to also denote the set of symbolic names. A symbolic
expression e is defined as follows:

e ::= c | p | (e ◦ e),

where c ∈ C is a constant, p ∈ Prms a parameter, and ◦ ∈
{+,−, ∗, /,%} an arithmetic operator. The set of constants
C includes constants used in component statements and the
initial values of component state variables in

#»
G0.

Constraints. We define a constraint ϕ as follows:

ϕ ::= true | false | e ⊕ e | ϕ ∧ ϕ | ϕ ∨ ϕ,

where ⊕ ∈ {<,>,=,≤,≥} is a comparison operator.

Method Invocations and Paths. For a component C
with global variables G and a method signature Sigm =
(Idm, Pm), we use the following three concepts throughout
the paper.

A concrete method invocation is a pair ρc = (Sigm,
#»
Pm) con-

sisting of a method signature and a valuation of Pm.

A guarded method invocation is a pair ρg = (Sigm, γ) con-
sisting of a method signature and a symbolic expres-
sion γ over parameters in Pm and constants. As dis-
cussed later in the paper, a guarded method invoca-
tion ρg represents all concrete invocations that satisfy
its constraint γ.



A symbolic method path is a pair ρs = (s, ϕm) consisting of
a path state s ∈ {ok, error, unknown} and a path con-
straint ϕm. Path state s is the resulting state of the
component for this path through m, and ϕm is an ex-
tended symbolic expression over variables from G and
their primed versions, Pm, and constants. We will pro-
duce such paths by concolic execution of methods. The
path state s reflects the result of the symbolic analy-
sis. Execution of error-paths always leads to the vio-
lation of an assertion, while ok-paths execute success-
fully. The unknown state represents the fact that the
symbolic analysis was not able to explore beyond the
point reached by this path. This can happen, for ex-
ample, due to limitations of the underlying constraint
solver. The path constraint ϕm captures the pre- and
post-conditions of a method path in a symbolic expres-
sion. We use primed names in ϕm when referring to
updated component variables (i.e., after the execution
of ρs).

By ψ[
#»
Pm/Pm] we denote the (not necessarily symbolic) ex-

pression that results from replacing every occurrence of some
p ∈ Pm in the symbolic expression ψ by the value

#»
Pm(p).

We write
#»
G/G′ to indicate that we replace the primed oc-

currences of variables x from G by their values
#»
G(x) in an

expression.
Then, for a concrete method invocation ρc = (Sigm,

#»
Pm),

valuations
#»
G1 and

#»
G2, and a symbolic method path ρs =

(s, ϕm) we say that (
#»
G1, ρc, ρs,

#»
G2) is a step of C if the ex-

pression ϕm[
#»
Pm/Pm][

#»
G1/G][

#»
G2/G′] evaluates to true. Intu-

itively, we replace all symbolic names in ϕm with concrete
values from the three valuations and check if the expression
evaluates to true, meaning that there could exist an execu-
tion of C during which the concrete invocation ρc triggers
path ρs and changes the state of C from

#»
G1 to

#»
G2.

We say that a sequence σc = ρc1, . . . , ρck of concrete
method invocations satisfies a sequence σs = ρs1, . . . , ρsk
of symbolic method paths from symbolic summaries (see be-

low) of C if there is a sequence of valuations
#»
G0, . . . ,

#»
Gk such

that (
#»
Gi−1, ρci, ρsi,

#»
Gi) with 1 ≤ i ≤ k are steps of C. (Of

course, we require that the state of all ρsi with i < k in σs
is ok.) We then write σc |= σs and refer to σc as a concrete
execution of C. The result eval(σc) of the concrete execu-
tion σc is the state of ρsk. Accordingly, we refer to σs as a
symbolic execution of C and let eval(σs) be the state of ρsk.

Finally, for a concrete method invocation ρc = (Sigm,
#»
Pm)

and a guarded method invocation ρg = (Sigm, γ), we say

that ρc satisfies ρg, denoted by ρc |= ρg, if γ[
#»
Pm/Pm] evalu-

ates to true. We extend this definition to concrete executions
σc and sequences of guarded methods (denoted by σg).

Symbolic Summaries. For a method m of a component
C, the symbolic summary ξm of m is a concise symbolic rep-
resentation of the behavior of m. We obtain summaries of
component methods using symbolic execution. Formally, let
ξm be the set of symbolic method paths of m. Fig. 4 shows
the four method paths for the connect method of the Piped-
OutputStream component from Fig. 1.

3.3 Symbolic Interfaces
Similar to Psyco, we use interface LTSs, or iLTS, to de-

scribe temporal component interfaces with guards on method
parameters. An iLTS is a tuple A = 〈M,S,Γ,∆G〉, where

M = 〈Q,αM, δ, q0〉 is a deterministic and complete LTS, S
a set of method signatures, Γ a set of guards for method
signatures in S, and ∆G : αM 7→ S × Γ a function that
maps each a ∈ αM into a method signature Sigm ∈ S and a
guard γm ∈ Γ. In addition, the mapping ∆G is such that the
set of all guards for a given method signature forms a parti-
tion of the input space of the corresponding method. More
formally, let Γm = {γ | ∃a ∈ αM .∆G(a) = (Sigm, γ)} be
the set of guards belonging to a method signature Sigm.
Then, the guards for a method (1) are non-overlapping:
∀a, b ∈ αM, γa, γb ∈ Γ, Sigm ∈ S . (a 6= b ∧ ∆G(a) =
(Sigm, γa) ∧ ∆G(b) = (Sigm, γb)) ⇒ ¬γa ∨ ¬γb, (2) cover
all of the input space: ∀Sigm ∈ S .

∨
γ∈Γm

γ, and (3) are
non-empty.

Given an iLTS A = 〈M,S,Γ,∆G〉, an execution of A is a
sequence of guarded method invocations σg = ρg1, . . . , ρgk.
Every such sequence σg has a corresponding trace w =
a1, . . . , ak in M such that for 1 ≤ i ≤ k, ∆G(ai) = ρgi.
Moreover, σg represents all concrete executions σc where
σc |= σg. Then a sequence of guarded method invocations
σg is a legal (resp., illegal, unknown) execution in A if its
corresponding trace in M is legal (resp., illegal, unknown).
Based on this distinction, we define the languages Llegal (A),
Lillegal (A), and Lunknown (A) as the sets of legal, illegal, and
unknown executions of A, respectively.

An iLTS A = 〈M,S,Γ,∆G〉 is an interface for a compo-
nent C if S is a subset of method signatures of the methods
M in C. However, not all such interfaces are acceptable and
a notion of interface correctness also needs to be introduced.
Traditionally, correctness of an interface for a component C
is associated with two characteristics: safety and permis-
siveness. A safe interface blocks all erroneous executions of
C; a permissive interface allows all good executions (i.e., ex-
ecutions that do not lead to an error) of C. A full interface
is then an interface that is both safe and permissive [20].

We extend this definition to iLTSs as follows. Let iLTS
A be an interface for a component C. We say a concrete
execution σc of a component is illegal if it results in an as-
sertion violation; otherwise, the execution is legal. Then, A
is a safe interface for C if for every execution σg ∈ Llegal (A),
we determine that all the corresponding concrete executions
σc of component C (i.e., the ones with σc |= σg) are legal.
It is permissive if for every execution σg ∈ Lillegal (A), we
determine that all the corresponding concrete executions σc
of component C are illegal.

Finally, A is tight if for every execution σg ∈ Lunknown (A),
we cannot determine whether the corresponding concrete
executions σc of component C are legal or illegal (i.e., if
eval(σc) = unknown); this explicitly captures possible in-
completeness of the underlying analysis techniques. We say
A is full if it is safe, permissive, and tight. Moreover, we say
A is k-full for some k ∈ N if it is safe, permissive, and tight
for all method sequences of length up to k.

For the remainder of the paper we will use a mapping
JAK from concrete executions to {ok, error, unknown}, where
JAK(σc) = ok (resp., error, unknown) if σg with σc |= σg is in
Llegal (A) (resp., Lillegal (A), Lunknown (A)). This shorthand
will allow us to compare the results of concrete executions
on A and C directly.
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Figure 5: X-Psyco framework during iteration i of
learning algorithm.

4. HYBRID INTERFACE LEARNING
Let C be a component and S the set of signatures of the

methods M in C. Our goal is to automatically compute an
interface for C as an iLTS A = 〈M,S,Γ,∆G〉. We achieve
this through a combination of L* to generate LTS M , and
symbolic execution to compute the set of guards Γ and the
mapping ∆G.

X-Psyco aims at reducing the use of expensive symbolic
execution as much as possible by using concrete execution
instead. In order to achieve this, our algorithm maintains
a symbolic representation for every a ∈ αM , but also two
pools of corresponding concrete method invocations, which
the teacher of the L* algorithm uses to answer membership
and equivalence queries.

The teacher uses the smaller membership-pool to answer
membership queries. This pool contains exactly one con-
crete method invocation ρc for each guarded invocation ρg
in the image of ∆G. This pool reflects the current partition-
ing of methods in the conjectured iLTS.

The larger equivalence-pool, on the other hand, contains
one concrete invocation for each symbolic method path ρs
explored so far. The equivalence-pool represents the cur-
rent knowledge of the teacher about symbolic paths of C.
As its name suggests, it is used by the teacher to process
equivalence queries.

Both pools are initialized and extended automatically dur-
ing the learning process. They are extended whenever the
used method partitioning changes or when the teacher dis-
covers new feasible symbolic paths of the component. We
use I to denote the equivalence-pool of all concrete invo-
cations that X-Psyco maintains, and the membership-pool
function ∆C : αM → I to characterize the selection of rep-
resentative invocations. The image of ∆C constitutes the
membership-pool.

At a high level, our proposed framework operates as fol-
lows (see Fig. 5 and Alg. 1). Initially, X-Psyco executes
each method symbolically using the initial values of glob-
als, and partitions its parameters to differentiate between
different possible outcomes (i.e., legal, illegal, unknown).
Symbolic descriptions of the partitions are used as initial
guards Γ in ∆G (lines 2–3). Moreover, it produces con-

crete parameter values (i.e., concrete method invocations)
to represent each partition. These values are used to initial-
ize the membership-pool ∆C (cf. Alg. 5). It then produces
concrete parameter values for all symbolic paths that are en-
abled from the initial valuation

#»
G0. These values (a super-

set of the membership-pool) make up the equivalence-pool
I (lines 4–6).

For our motivating example (see Fig. 1), we start with
the alphabet αM = {close,flush, connect1, connect2,write},
set of signatures S = {connect(snk , snkConnected), close(),
flush(),write()}, and ∆G such that

∆G(close) = (close(), true),

∆G(flush) = (flush(), true),

∆G(connect1) = (connect(snk , snkConnected),

snk 6= 0 ∧ ¬snkConnected),

∆G(connect2) = (connect(snk , snkConnected),

snk = 0 ∨ snkConnected),

∆G(write) = (write(), true).

Note that method connect is partitioned during the initial
phase of our algorithm into connect1 and connect2, where
connect1 (resp., connect2) represent all concrete invocations
of the connect method that are legal (resp., illegal), given

initial values
#»
G0 of the component globals. The concrete

invocations in the membership-pool are connect1(1, false)
and connect2(1, true), corresponding to the two last paths in
Fig. 4. The additional concrete invocation connect2(0, false)
is generated for the equivalence-pool. It corresponds to the
first path in Fig. 4. The second path from the figure is not
enabled from

#»
G0 since sink = 0. Note that if our algorithms

at some point reach a valuation
#»
Gi for which this path be-

comes enabled, we will add concrete invocations for the path
to the equivalence-pool.

After generating these initial pools of concrete invoca-
tions, L* is used to learn an LTS over the alphabet αM that
corresponds to the partitioned methods of C (line 7). The
algorithm is executed (alternating membership and equiv-
alence queries) until a termination criterion is met (e.g., a
fixed time limit as in our benchmarks) and the most recent
conjectured iLTS A is returned as the conjectured interface
of the component.

Partial order reduction (cf. Sec. 4.2) enables the gener-
ation of fewer sequences during equivalence queries, as al-
ready mentioned in Sec. 2. The second optimization that
we use during equivalence queries is state matching. This
allows us to reduce the number of tests in general, and in
some cases even puts a finite bound on the number of tests
to be performed (cf. Sec. 4.1). The teacher and the algo-
rithms invoked by top-level Alg. 1 are described in detail in
the next section.

4.1 Concolic Teacher
As described at a high level in the previous section, the

concolic teacher answers membership and equivalence queries
for the L* algorithm using two pools of concrete method in-
vocations. In this section we describe how the teacher an-
swers such queries.

A membership query over the alphabet αM is a sequence
w = a1, . . . , an such that for 1 ≤ i ≤ n, ai ∈ αM . It in-
quires about the outcome of the corresponding sequence of
guarded invocations σg = ∆G(a1), . . . ,∆G(an). To answer



Algorithm 1 Learning an iLTS for a component.

Input: A set of method signatures S of a component C
Output: An iLTS A = 〈M,S,Γ,∆G〉
1: Γ← {true}, αM ← ∅,∆G ← ∅, I ← ∅,∆C ← ∅
2: for all Sigm ∈ S do
3: RefineAlphabet(ε, (Sigm, true), ε) (Alg. 4)
4: for all ρs of all method summaries do
5: if ∃ρc . ρc |= ρs then
6: I ← I ∪ {ρc}
7: M ← LearnAutomaton() (Fig. 5)
8: return A = 〈M,S,Γ,∆G〉

this query, our teacher computes the result (ok, error, or
unknown) for the corresponding sequence of concrete method
invocations σc = ∆C(a1), . . . ,∆C(an) from the membership-
pool. While learning with concrete sequences is much faster
than evaluating membership queries symbolically, it comes
with one caveat: our concrete representatives may not cover
all the possible outcomes of the guarded method sequence.
However, we detect this case during equivalence queries,
which results in refinement of method guards, as described
later in this section.

Conceptually, an equivalence query checks whether a con-
jectured iLTS A = 〈M,S,Γ,∆G〉 is full (i.e., safe, permis-
sive, and tight). However, conjectured interfaces have un-
bounded loops, and symbolic techniques typically handle
such loops through bounded unrolling. For this reason,
similarly to Psyco, X-Psyco checks whether A is k-full
by reducing equivalence queries to membership queries of
bounded depth. The generated membership queries in this
context are checked using the equivalence-pool, as discussed
below.

To check whether the iLTS A is k-full, we need to verify
that for every trace w of length ≤ k in its LTS M , if w is
in Llegal (M), Lillegal (M), or Lunknown (M), then the corre-
sponding symbolic sequence ∆G(w) of the component leads
to ok, error, or unknown, respectively. As discussed later in
this section, we achieve this by gradually incrementing up
to the bound k the length of checked sequences (although
for simplicity our algorithms do not show k).

Concolic Equivalence Queries. As mentioned, an equiv-
alence query reduces to a number of membership queries
used to check all sequences of length ≤ k. Each membership
query is exercised using the equivalence-pool. Specifically,
for a sequence w = a1, . . . , an, the teacher computes at least
one concrete execution σc for every symbolic path sequence
σs within the sequence σg = ∆G(a1), . . . ,∆G(an). To create
the required concrete sequences σc, the teacher uses existing
values from the equivalence-pool if possible, and extends the
pool using a constraint solver only when necessary.

The result of each concrete execution is compared to the
result expected by the current conjectured iLTS. In case of
a mismatch, σc signifies a counterexample, at which point
the outcome of σc is compared to the outcome of the con-
crete sequence constructed for w by using the representative
values from the membership-pool. If the two agree, then a
counterexample is returned to L* to refine the conjectured
iLTS.

However, if the two disagree, this signifies to the teacher
the need for refinement, due to non-determinism of the cur-
rent partitions (see Fig. 5). The teacher then refines Γ and

Algorithm 2 Concolic equivalence query.

Input: An iLTS A = 〈M,S,Γ,∆G〉, concrete invocations I,
a set S of method signatures

Output: A counterexample or an alphabet refinement
1: Q← {ε}, V ← ∅
2: while Q 6= ∅ do
3: σs ← dequeue(Q)
4: for all ρg in the image of ∆G do
5: for all ρs within ρg do
6: σ′s ← σs · ρs
7: if not skip σ′s due to POR then
8: R← {σc ∈ I∗ | σc |= σ′s}
9: if R = ∅ then

10: if SAT (σ′s) then
11: Let σnewc such that σnewc |= σ′s
12: I ← I ∪ {ρc ∈ σnewc }
13: goto line 1
14: else
15: if ∃σc ∈ R . JAK(σc) 6= eval(σc) then
16: AnalyzeCounterexample(σc) (Alg. 3)
17: else if eval(σ′s) = ok then

18: v ← { #»
G | #»

G0
σc−→ #»

G for σc ∈ R}
19: if v not subsumed by state in V then
20: V ← V ∪ {v}
21: Q.enqueue(σ′s)

∆G using symbolic execution on a program derived from
w. After refining the alphabet, L* restarts. Note that, in
this fashion, all cases of non-determinism of the current par-
titions are guaranteed to trigger refinement at some point,
because when concrete sequences have different results, then
at least one of them will disagree with the expected result
from the conjectured iLTS.

Alg. 2 shows the technical details. We organize the ex-
ploration as a breadth-first search at the level of symbolic
paths. We start by initializing a work list Q to contain only
the empty sequence and a set of visited states V (line 1).
The algorithm then performs the main loop until the work
list is empty. A symbolic path sequence σs from the work list
is extended by all method paths from all summaries (line 6).
Here, we optionally filter out all sequences that partial or-
der reduction identifies as redundant (line 7). Details are
discussed in Sec. 4.2.

For every remaining new symbolic path sequence σ′s, we
test if in the set of concrete invocations I the teacher already
has the necessary values for exercising it concretely (line 8).
If I does not contain the necessary concrete method invoca-
tions for exercising σ′s, we use a constraint solver to generate
adequate concrete values. Our implementation ensures that
the concrete values generated in lines 8 and 11 as well as
the test in line 10 are within the guarded method path from
line 4.

If the generation of values with a constraint solver is suc-
cessful, we add the new invocations to I, and the algorithm
is restarted, guaranteeing that σ′s can now be exercised with
concrete invocations (lines 11–13). If σ′s cannot be satisfied

from
#»
G0 (i.e., if it is not a proper symbolic path sequence of

C), we can simply disregard it.
In case I contains the necessary concrete invocations to

exercise σ′s, we compare the iLTS and the component on
these sequences (line 15). If their behavior diverges, we have



Algorithm 3 Counterexample analysis.

Input: A counterexample σc = ρc1, . . . , ρck, mappings
∆C ,∆G such that ρci |= ∆G ◦∆−1

C (ρRci)
Output: A counterexample or an alphabet refinement
1: if ρRc1, . . . , ρ

R
ck is counterexample then

2: return ρRc1, . . . , ρ
R
ck to Learner

3: for 1 ≤ i ≤ k do
4: σRc = ρRc1, . . . , ρ

R
ci, ρc(i+1), . . . , ρck

5: if eval(σRc ) 6= eval(σc) then
6: σuc ← ρRc1, . . . , ρ

R
c(i−1)

7: (Sigm, γ)← ∆G ◦∆−1
C (ρRci)

8: σvc ← ρc(i+1), . . . , ρck
9: return RefineAlphabet(σu

c , (Sigm , γ), σv
c )

found a counterexample, which we process further as de-
scribed below and sketched in Alg. 3. If no counterexample
is found, we add the sequence σ′s to the queue given that it
did not lead to error or unknown, in which case it is dropped.
Additionally, when using state matching, we may drop the
sequence if we already encountered a state that covers it.

State Matching. Since we rely on concrete execution, it
is relatively simple to compare (concrete) states reached by
tests for a symbolic path sequence σs using all the corre-
sponding concrete executions in I∗. When comparing states,
little attention has to be paid to the path that led to a state.
We want to drop a state (i.e., the corresponding symbolic
path sequence) only if we know that we have already found
another prefix that will allow us to explore the same (or
more) behaviors of the component.

Usually, this issue is addressed by defining some notion of
subsumption at the symbolic level [5, 36]. In these works,
the shape of the heap and the valuation of variables is stored
and compared symbolically. Our approach is different in two
respects. First, we currently do not consider the heap; hence
we ignore it here and leave it as an area of future work. Sec-
ond, instead of checking implication at the symbolic level,
we just check set-containment at the level of concrete valu-
ations.

However, we share with these works the idea that the
sequence that led to a state, has to be considered part of
the state since, along this sequence, some values might have
been copied from parameters to variables of the component.
For a symbolic path sequence σs, we say that the resulting
state is unaffected by parameters in σs if the single resulting
valuation

#»
G is invariant under different valuations of method

parameters in σs, i.e., if for every concrete execution σc |= σs
the final valuation

#»
G is the same. The intuitive idea is that

in σs parameters are never copied into variables.
This yields the following simple definition of subsumption

for concrete states. Let
#»
G be the single, unaffected valua-

tion of G that is reached by σs, and v the set of valuations
reached by σ′s using concrete executions from I∗. We say
that

#»
G is subsumed by v if

#»
G is in v. Together with

#»
G

being unaffected, this guarantees that v has a truly bigger
potential for exploration than

#»
G in C.

Although one might argue that our notion of state match-
ing is not sophisticated enough, it in fact allows for com-
pleteness in a limited number of cases for which it also helps
increase the efficiency of X-Psyco, as demonstrated by our
experiments. However, more importantly, it provides a first
step in this direction and opens up the path for improved no-

tions of state matching, which could be the basis for achiev-
ing completeness in a much larger set of practical examples.

Alphabet Refinement. Once a counterexample is found
during an equivalence query (line 15, Alg. 2), we have to
check whether the counterexample indicates that the con-
crete representative method invocations used during learn-
ing are not representative of their assigned symbolic coun-
terparts. This is detected if there is no corresponding rep-
resentative counterexample, and signifies that we have to
refine (at least) one of the symbolic symbols. If, on the
other hand, we find a corresponding counterexample using
only representative method invocations, it means that we
can return the counterexample to L*.

The details are covered in Alg. 3, Alg. 4, and Alg. 5. Tech-
nically, a counterexample is a sequence σc = ρc1, . . . , ρck for
which JAK(σc) 6= eval(σc). Using mappings ∆C and ∆G

maintained by the teacher, we can compute the representa-
tive invocation ρRci for every ρci in σc. For ρci = (Sigm,

#»
Pm),

we first select a with ∆G(a) = (Sigm, γ), where
#»
Pm satisfies

γ. We then select the concrete representative ρRci = ∆C(a)
for a. Doing this for every invocation of the counterexample,
we get a sequence σRc of concrete method invocations that
all belong to the membership-pool.

If σRc is a counterexample, it is passed to the learning algo-
rithm (lines 1–2, Alg. 3). Otherwise, σc is a counterexample
to the current partitioning of methods by guards: since by
construction JAK(σc) = JAK(σRc ), and σc is a counterexam-
ple whereas JAK(σRc ) is not, the two sequences correspond
to the same guarded sequence but have different outcomes.

In such a case, we use symbolic execution to find a refine-
ment of the symbolic guard γ of some method in the coun-
terexample. Before, however, we have to determine which
method to refine. Since eval(σc) 6= eval(σRc ) there has to be
(at least one) index i for which in C

eval( ρRc1, . . . , ρ
R
c(i−1), ρci, ρc(i+1), . . . ρck )

6=eval( ρRc1, . . . , ρ
R
c(i−1), ρ

R
ci, ρc(i+1), . . . ρck ).

A detailed discussion of this argument is presented in previ-
ous work [21].

The algorithm determines two sequences that differ only
at position i, meaning that ρRci is not a faithful represen-
tative for ρci. As shown in lines 6–9 of Alg. 3, the actual
refinement is done using symbolic execution of a program
with prefix ρRc1, . . . , ρ

R
c(i−1), symbolic method invocation of

(Sigm, γ) corresponding to ρci, and a concrete remainder
ρc(i+1), . . . , ρck. The symbolic parameters of γ will be traced
in the concrete suffix of the generated program, making vis-
ible constraints on these parameters that may only be intro-
duced in the suffix. Note that this is the only time except
for the generation of summaries when we use symbolic exe-
cution.

Finally, the actual refinement of the alphabet is described
in Alg. 4 and Alg. 5. Alg. 4 starts with a call to symbolic
execution to generate a summary ξ of the program derived
from the counterexample. Then, the symbol to be refined is
removed from the alphabet αM of the learner. We repeat
the same steps for the ok-, error-, and unknown-paths in the
summary by calling Alg. 5.

We discuss the ok case in detail. First, the disjunction of
the conditions of all ok-path is intersected with γ to deter-
mine the guard ϕok

m of the refined symbol (line 4, Alg. 4). If
the intersection is empty, the new guard cannot be satisfied,



Algorithm 4 Concolic alphabet refinement.

Input: A method signature with precondition (Sigm, γ),
concrete prefix σuc , and concrete suffix σvc

Output: Refined αM , Γ, ∆G, ∆C , and I
1: P ← GenerateProgram(σuc ; if γ then m; σvc )
2: ξ ← SymbolicallyExecute(P )
3: αM ← αM \ {∆−1

G ( (Sigm, γ) )}
4: ϕ ok

m ← γ ∧
(∨
〈ok,ϕ〉∈ξ ϕ

)
5: if SAT (ϕ ok

m ) then
6: ExtendAlphabet(Sigm, ϕ

ok
m ) (Alg. 5)

7: ϕ err
m ← γ ∧

(∨
〈error,ϕ〉∈ξ ϕ

)
8: if SAT (ϕ err

m ) then
9: ExtendAlphabet(Sigm, ϕ

err
m ) (Alg. 5)

10: ϕ unk
m ← γ ∧

(∨
〈unknown,ϕ〉∈ξ ϕ

)
11: if SAT (ϕ unk

m ) then
12: ExtendAlphabet(Sigm, ϕ

unk
m ) (Alg. 5)

Algorithm 5 Extend alphabet.

Input: A method signature with a (strengthened) precon-
dition ρg = (Sigm, γ)

Output: Refined αM , Γ, ∆G, ∆C , and I
1: anew ← CreateSymbolForLstar()
2: αM ← αM ∪ {anew}
3: Γ← Γ ∪ {γ}
4: ∆G(anew)← (Sigm, γ)
5: ∆C(anew)← ρc such that ρc |= ρg
6: I ← I ∪ {ρc}

and we do not have to create a new symbol for the ok part.
If ϕok

m is satisfiable, we invoke Alg. 5, which introduces a new
symbol anew, updates ∆G with the new guard, and finally
selects a new unique representative concrete invocation for
anew, which is added to ∆C and to I. After a successful
refinement, L* is restarted with the refined alphabet.

Mixed Parameters. Similarly to Psyco, X-Psyco does
not handle mixed parameters, the case where symbolic anal-
ysis identifies the need to relate parameters of one method
with values passed to parameters of previously invoked meth-
ods. We are working towards dealing with mixed parameters
by learning more expressive automata. At the moment, our
algorithms identify the case of mixed parameters and return
a warning to the user.

4.2 Static Analysis for Partial Order Reduc-
tion (POR)

As mentioned in Sec. 2, we wish to take advantage of
method independence in order to apply partial order re-
duction during sequence generation for equivalence queries.
Two methods are mutually independent if the outcome of
their execution does not depend on the order in which they
are invoked. For example, in Fig. 1, methods write and flush
are clearly independent from each other—they only touch
field sink of the component, and they both only read this
field. When executed consecutively, it is therefore sufficient
to explore them in a single order.

To take advantage of this observation, X-Psyco first ap-
plies a static analysis that computes read and write effects of
methods, i.e., it determines the fields that each method reads

and writes to. For each method m, we store this information
into the following two bitsets, where each bit corresponds to
a field of the component to which m belongs: (1) Rm, where
a bit i is set if m reads the field associated with position
i, and (2) Wm, where a bit i is set if m writes to the field
associated with position i. Then, two methods m1 and m2

are independent if:
• Rm1 does not intersect with Wm2 ,
• Wm1 does not intersect with Rm2 , and
• Wm1 does not intersect with Wm2 .

In other words, two methods are independent if whenever
one method writes to a field, the other method cannot read
or write to the same field.

A form of partial order reduction can then be applied
based on the above information. If two methods are indepen-
dent, their consecutive execution is only explored according
to a pre-defined total order. During sequence generation,
X-Psyco recalls the last method in the sequence so far, and
when selecting a new method to add that is independent of
the last method, the sequence is only extended if the two
methods appear according to the pre-defined order. Other-
wise, the selected method is skipped and a different option
is explored for extending the sequence.

Our experiments demonstrate that the cumulative results
of such partial order reduction can be significant, especially
for components with a large number of methods, where the
occurrence of independent methods is more likely.

5. EXPERIMENTS
We implemented our approach in a tool called X-Psyco

within the JPF (Java Pathfinder) open-source software veri-
fication framework [23]. Note that X-Psyco is not an exten-
sion of Psyco, but rather an almost independent implemen-
tation of the algorithms described in this paper. X-Psyco
consists of three modular JPF extensions: (1) jpf-learnlib
implements an interface to the well-known LearnLib frame-
work for automata learning [26]; (2) jpf-jdart is our con-
colic [17, 29] execution engine that uses the state-of-the-art
Z3 SMT solver [13]; (3) jpf-xpsyco implements the core hy-
brid learning algorithm. Finally, in our experiments, static
analysis for partial order reduction was performed using the
OCSEGen tool [32, 33].

We performed the evaluation of X-Psyco on the following
set of examples:

Signature A class from the java.security package used in
a paper by Singh et al. [30].

Stream The PipedOutputStream class from the java.io pack-
age and our motivating example (see Fig. 1). Also
taken from a paper by Singh et al. [30].

IntMath A class from the Google Guava repository [18].
It implements arithmetic operations on integer types.

AltBit Implements a communication protocol that has an
alternating bit style of behavior. Howar et al. [21] use
it as a case study.

CEV NASA Crew Exploration Vehicle (CEV) 1.5 EOR-
LOR example modeling flight phases of a spacecraft.
The example is based on a Java state-chart model
available in the JPF project jpf-statechart under
examples/jpfESAS. We translated the example from
state-charts into plain Java.



AccMeter A Java Micro Edition (J2ME) class implement-
ing a mobile phone accelerometer interface for a simple
game [2].

Socket A class from the java.net package that implements
client sockets.

Table 1 summarizes the obtained experimental results for
X-Psyco. All experiments were performed on a 2GHz Intel
Core i7 laptop with 8GB of memory running Mac OS X. We
budgeted a total of one hour running time for each experi-
ment, after which the used tool was terminated. The differ-
ent groups of columns give experimental results for running
various configurations of the tool: “Baseline” is our barebone
X-Psyco algorithm that eagerly uses concrete values dur-
ing learning and lazily resorts to symbolic reasoning when
needed; “POR” and “Matching” give results for running X-
Psyco when partial order reduction and state matching are
enabled, respectively; “POR+Matching” combines the two.
Table 2 shows the results of running the old Psyco algo-
rithm [16] on the examples.

In the experiments, the depth k for equivalence queries
gets incremented whenever no counterexample is obtained
after exhausting exploration of the conjectured iLTS to depth
k. In this way, we are able to report the maximum depth
kmax that we can guarantee for our generated interfaces
within the allocated time of one hour. We also report kmin at
which the final iLTS gets generated. The difference kmax −
kmin gives us a notion of a “confidence interval” since it tells
us for how many steps there was no refinement needed. Of
course, users can increase the total time budget if they re-
quire additional guarantees. Note that when a component
cannot assign to the internal state from parameters of its
methods, by relying on our state matching algorithm we
know when we completely explored the component. Then,
we can stop the learning algorithm before the budgeted one
hour expires, which is marked with ∗ in the experimental
results.

Discussion. First, we compare the results for Psyco with
the baseline of X-Psyco. The main difference between
the two is that Psyco relies solely on concolic exploration,
while X-Psyco eagerly performs concrete exploration dur-
ing learning and lazily resorts to the more expensive con-
colic engine only when needed in order to achieve complete-
ness. The baseline of X-Psyco clearly outperforms Psyco
on all the benchmarks: the maximum explored depth kmax

increases from 1.2x to 8.3x. We can therefore conclude
that X-Psyco benefits from our hybrid eager-concrete/lazy-
symbolic learning combination.

Next, we compare our optimizations implemented within
X-Psyco. Both partial order reduction (POR) and state
matching perform at least as good as the baseline. For POR,
the most significant gains with respect to kmax are achieved
for Stream (2.2x), IntMath (2x), and Socket (1.3x) ex-
amples since these examples have many independent meth-
ods. On the other hand, for state matching the most signif-
icant gains can be seen for Signature (completes in 51 sec-
onds), IntMath (completes in 60 seconds), and CEV (3.8x)
examples. Note that when using state matching, both Sig-
nature and IntMath components get completely explored
in less than a minute. State matching works especially well
for these examples because both have a finite concrete state
space: Signature uses only one global integer variable to
store its internal state (one of three integer constants). Int-

Table 2: Experimental results for Psyco. We used
the same setup as for X-Psyco (cf. Table 1).

Example |M| |αM | |Q| kmin/kmax

AltBit 3 6 6 4/35
Stream 5 6 4 2/8
Signature 6 6 5 2/7
IntMath 8 9 3 1/1
AccMeter 9 12 8 2/5
CEV 19 24 9 3/3
Socket 51 60 42 2/2

Math has no variables at all and thus only one concrete
state. The exploration depth kmax of CEV improves al-
most 4x under state matching, which enables two additional
interface refinements. Hence, state matching substantially
improves the precision and confidence of the generated inter-
face. Similarly, POR improves the precision and confidence
of the Socket example over baseline.

Finally, the combination of POR and state matching com-
pounds benefits of each individual optimization. By relying
on state matching, it completes exploration of Signature
and IntMath components in less than a minute. For other
examples, the explored depth increases when compared to
the baseline from 1.2x to 4.9x, and when compared to Psyco
from 1.4x to 8.4x. These results clearly show the potential
of our hybrid learning approach.

Both optimizations as well as their combination have ba-
sically no influence on the AltBit example. POR does not
rule out any sequences as the protocol has only two methods
that access the same variables. State matching does not help
because the implementation uses a sequence number that is
increased after every other method invocation so that no
reachable concrete state is subsumed by any other concrete
state.

Note that the algorithm for learning complete interfaces
of software components is doubly-exponential in depth k.
First, checking equivalence up to depth k generates |αM |k
method sequences. Then, on top of that, each method se-
quence has methodPathsk paths that have to be explored,
which when combined with the exponential number of se-
quences gives us doubly-exponential time in k. Therefore,
even to slightly improve kmax requires significant improve-
ments to the algorithm, which is what our optimizations
achieved as proved by the experimental results.

Finally, we analyzed where X-Psyco spends most of its
execution time, which is also hinting at potential future bot-
tlenecks. Unsurprisingly, running times are dominated by k-
bounded exploration of conjectured iLTSs, and time spent
in the learning algorithm itself is negligible.

6. RELATED WORK
Interface generation for white-box components has been

studied extensively in the literature (e.g., [3, 15, 16, 20, 30]).
However, as discussed, none of the existing approaches that
we are aware of employ a combination of static, dynamic,
and symbolic analysis as proposed in this paper.

Automatically creating component models for black-box
components is a related area of research. For methods with
parameters, abstractions are introduced that map alphabet
symbols into sets of concrete argument values. A set of ar-
gument values represents a partition, and is used to invoke



Table 1: Experimental results for X-Psyco. Time budget is set to one hour. |M| is the number of component
methods (and also the size of the initial alphabet); kmin the value of k at which the final iLTS gets generated;
kmax the maximum value of k explored (i.e., the generated iLTS is kmax -full); |αM | the size of the final alphabet;
|Q| the number of states in the final iLTS. Completely explored components are marked with ∗.

Baseline POR Matching POR+Matching
Example |M| kmin/kmax |αM | |Q| kmin/kmax |αM | |Q| kmin/kmax |αM | |Q| kmin/kmax |αM | |Q|
AltBit 3 4/291 6 6 4/298 6 6 4/296 6 6 4/293 6 6
Stream 5 1/11 6 4 1/24 6 4 1/12 6 4 1/54 6 4
Signature 6 1/10 6 5 1/11 6 5 1/2* 6 5 1/2* 6 5
IntMath 8 1/8 9 3 1/16 9 3 1/1* 9 3 1/1* 9 3
AccMeter 9 2/6 12 8 2/7 12 8 2/6 12 8 2/7 12 8
CEV 19 4/4 25 15 4/5 25 15 5/15 27 34 5/16 27 34
Socket 51 2/3 60 42 2/4 60 42 2/4 60 42 2/4 60 42

a component method. In the work by Aarts et al. [1], ab-
stractions are user-defined. Howar et al. [21] discover such
abstraction mappings through an automated refinement pro-
cess. In contrast to these works, availability of the compo-
nent source code enables us to lazily use symbolic analysis
and generate guards that characterize precisely each method
partition, making the generated automata more informative.
MACE [11] combines black- and white-box techniques to
discover concrete input messages that generate new system
states. These states are then used as starting points for sym-
bolic exploration of component binaries. The input alpha-
bet is refined based on a user-provided abstraction of output
messages. MACE is focused on increasing path coverage to
discover bugs and not the generation of precise component
interfaces, which is the focus of our work. Therefore, MACE
sacrifices completeness in order to achieve scalability, while
our algorithm guarantees completeness up to depth k.

Interface generation is also related to assumption gener-
ation for compositional verification, where several learning-
based approaches have been proposed [9, 10, 19, 27]. A
type of alphabet refinement developed in this context [8, 14]
is geared towards computing smaller assumption alphabets
that guarantee compositional verification achieves conclu-
sive results. None of these works address the automatic
generation of method guards in the computed interfaces.

Recent work on the analysis of multi-threaded programs
for discovering concurrency bugs involves computing traces
and preconditions that aid component interface generation [7,
22]. However, the data that these works generate is limited
and cannot serve the purpose of temporal interface genera-
tion as presented in this paper.

Finally, other approaches generate interfaces using static
analysis [34], or a combination of static and dynamic anal-
yses [35], or by extracting information from sample execu-
tion traces [4, 25]. None of these approaches combines the
power of static, dynamic, and symbolic analysis in such a
way to generate complete interfaces with method guards of
unprecedented precision, while preserving scalability.

7. CONCLUSIONS
We presented a novel hybrid learning algorithm for ef-

fectively generating precise temporal component interfaces
enriched with method guards. The algorithm is based on
an innovative combination of static, dynamic, and symbolic
analysis. We implemented the approach in X-Psyco, and
demonstrated its effectiveness on a number of realistic soft-
ware components. We showed that X-Psyco significantly

outperforms our previous tool called Psyco, and therefore
generates interfaces of unprecedented precision and confi-
dence. Both state matching and partial order reduction can
be refined to achieve further improvements of our approach.
In the future, we plan to explore interface generation in the
context of compositional verification and automatic test gen-
eration.
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