
Formal Analysis of GPU Programs with Atomics

via Conflict-Directed Delay-Bounding⋆

Wei-Fan Chiang1, Ganesh Gopalakrishnan1, Guodong Li2, and Zvonimir Rakamarić1

1 School of Computing, University of Utah, USA
{wfchiang,ganesh,zvonimir}@cs.utah.edu

2 Fujitsu Labs of America, USA
gli@us.fujitsu.com

Abstract. GPU based computing has made significant strides in re-
cent years. Unfortunately, GPU program optimizations can introduce
subtle concurrency errors, and so incisive formal bug-hunting methods
are essential. This paper presents a new formal bug-hunting method for
GPU programs that combine barriers and atomics. We present an al-
gorithm called conflict-directed delay-bounded scheduling algorithm (CD)
that exploits the occurrence of conflicts among atomic synchronization
commands to trigger the generation of alternate schedules; these alter-
nate schedules are executed in a delay-bounded manner. We formally
describe CD, and present two correctness checking methods, one based
on final state comparison, and the other on user assertions. We evalu-
ate our implementation on realistic GPU benchmarks, with encouraging
results.

1 Introduction

General purpose Graphics Processing Units (“GPU”) are being widely deployed
in both low-end (mobile) and high-end (supercomputing) systems in order to
accelerate computation [12]. Unfortunately, GPU program optimizations can
introduce subtle concurrency errors such as data races and deadlocks. While
many tools for formally debugging GPU programs have been proposed [3,14,15,
17,29], none of these tools cater to programs that combine barriers and atomics—
features found in popular GPU programming languages such as CUDA [23] and
OpenCL [24]. In this paper, we present an extension of our tool GKLEE [17] to
address this program class. The extension is based on a new scheduling algorithm
called conflict-directed delay-bounded scheduling algorithm (CD). The subject of
this paper is a formal description as well as a thorough evaluation of the CD

algorithm on programs that employ CUDA atomics in subtle ways.
While programs employing barriers (e.g., __syncthreads() in CUDA) and

atomic operations (e.g., atomic add, atomic min, compare-and-swap [11] in CUDA)
are not numerous, there are many important programs, including the GPU
Gem [22] called N -body simulation [19, 21] that use them. In this paper, we

⋆ Supported by NSF CCF 1255776, OCI 1148127, and the Microsoft SEIF Award.

Block 0 Block 1

T0 T1 T2 T0 T1 T2

Barrier 0 Barrier 3

���l(x) ���l(x)

©X1 ©X2

���ul(x) ���ul(x)

Barrier 1 Barrier 4

���l(y) ���l(y)

©Y1 ©Y2

���ul(y) ���ul(y)

Barrier 2 Barrier 5

Block 0 Block 1

T0 T1 T2 T0 T1 T2

Barrier 0 Barrier 3

���l(x) ���l(x)

©X1 ©X2

���ul(x) ���ul(x)

Barrier 1 Barrier 4

���l(y) ���l(y)

©Y1 ©Y2

���ul(y) ���ul(y)

Barrier 2 Barrier 5

Fig. 1: Basics of CUDA, Thread Blocks, Races, and Conflicts

formally describe CD, and present two correctness checking methods, one based
on final state comparison across two schedules, and the other on user assertions.
We evaluate our implementation on realistic GPU benchmarks, with encouraging
results; we also publicly release our benchmark suite [2].

1.1 Background

Consider a contrived GPU “kernel” program ArraySum that employs threads to
update each location a[i] of an array to the value a[(N+i-1)%N]+b:

void __global__ ArraySum (int *a, int b) {

__shared__ int temp[N];

__syncthreads(); // Barrier 0; also Barrier 3 for threads in [512-1023]

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if (idx < N) temp[idx] = a[(N+idx-1)%N] + b;

__syncthreads(); // Barrier 1; also Barrier 4 for threads in [512-1023]

if (idx < N) a[idx] = temp[idx];

__syncthreads(); // Barrier 2; also Barrier 5 for threads in [512-1023]

}

CUDA 1 presents three memory spaces: the Global space visible to all threads,
the Shared space visible to threads within a thread block (typically 512 contigu-
ous threads, abstractly referred to as BLOCK_SIZE), and the Local space visible
to specific threads.2 Assume that arrays a and temp are allocated in the Shared
memory space. An invocation of kernel ArraySum with N = BLOCK_SIZE creates
BLOCK_SIZE threads in block Block 0. Fig. 1 (left) provides a high level illustra-
tion of this situation.3 The use of __syncthreads() in this example enforces the
fact that threads before the barrier are executed before those after the barrier.

1 Other GPU languages also have similar notions.
2 CUDA threads are scheduled in batches called warps. While the typical warp-size
is 32, it is not guaranteed to be so in all situations. In this paper, we take the
conservative approach of taking the warp-size to be 1.

3 Please momentarily ignore l(x), l(y), ul(x), and ul(y) of this figure. Also, for
simplicity, we highlight only three threads, namely T0, T1, and T2.

2

For uniformity, we also assume the presence of __syncthreads() statements at
entry/exit (if not already present). For example, Barrier 0 and Barrier 2 in Fig. 1
(left) illustrate this convention.

Continuing our explanation of kernel ArraySum, as per CUDA conventions, all
its threads execute the same code; however, each thread computes it own specific
location idx to act upon. Each thread reads location (N+idx-1)%N, adds b to
the value read, and assigns it to location idx of array temp. Now, if one were to
remove Barrier 1, data races would be introduced; for example, temp[2] = a[1]

and a[1] = temp[1] would be executed in parallel.

Now imagine the same kernel being executed concurrently by twice as many
(i.e., 1,024) threads. The threads are now split between Block 0 and Block 1 (see
Fig. 1(left)), and observe that inter-block synchronization through barriers no
longer works. For example, even with Barrier 1 and Barrier 4 present, accesses
X1 and X2 can conflict (i.e., involve the same memory location with one of
them being a write). Similarly, potential conflicts are also (X1,Y2), (Y1,X2), and
(Y1,Y2). Next, imagine that the user has realized “lock” (l) and “unlock” (ul)
instructions using CUDA atomics. (Also, you may now stop ignoring the l()

and ul() instructions in the figure.) Now, if we protect the pair (X1,X2) using
the same lock variable x, we will avoid one data race. Likewise, assuming that
(X1,Y2) and (Y1,X2) involve different addresses, we can protect (Y1,Y2) using
another lock variable y. This will prevent data races among all pairs of accesses.

Following standard terminology (e.g., [10, 27]), we distinguish between or-
dinary and synchronizing memory accesses. Two conflicting synchronization in-
structions are not involved in a race; however, two conflicting ordinary instruc-
tions are involved in a race. For example, lock instructions in Fig. 1 are conflict-
ing, but are not involved in a data race. In general, property checking requires
that non-commuting actions [5], such as atomic regions protected by locks, be ex-
plored under all interleavings. For illustration, suppose Fig. 1(left) executes the
program in the order the barriers are numbered 0 through 5 (thus performing the
Y1 action before the Y2 action). Then, Fig. 1(right) illustrates a conflict-directed
alternative schedule in which the order is Y2;Y1.

Let us now turn to Fig. 2 to understand the basics of scheduling. As it turns
out, data races can be detected by running a single schedule. In particular,
as described in our previous work [17], we can execute a specific sequential
schedule [1] shown by the zig-zag lines, running T0, T1,. . . . We call this schedule
the canonical schedule. During a canonical schedule, suppose we record every
access (read/write), and the (symbolic) path conditions under which the access
occurs. Then, at the end of the canonical schedule, we can check for a race
as follows. For each access pair containing at least one write, such as (P,Q),
we check whether the conjunction of the path conditions can be satisfied, and
also whether the address expressions become equal; if so, we report a race. If all
access pairs visited along the single (canonical) schedule avoid a conflict, then no
other schedule needs to be considered for race checking. Essentially, all schedules
are equivalent for finding a “first race” [16]. Clearly, the canonical schedule can
detect races across thread blocks (such as between (A,B) in the figure) as well.

3

Block 0 Block 1

T0 T1 T2 T0 T1 T2

Barrier 0 Barrier 3

©A ©B

Barrier 1 Barrier 4

���P ���Q

Barrier 2 Barrier 5

Block 0 Block 1

T0 T1 T2 T0 T1 T2

Barrier 0 Barrier 3

CS1

©A ©B

Barrier 1 Barrier 4

���P ���Q

Barrier 2

CS2

Barrier 5

Fig. 2: Illustration of Canonical (left) and CD (right) Scheduling

Historically, it was the canonical scheduling approach that allowed us to extend
the KLEE [4] sequential program concolic analyzer to handle GPU concurrency.

As illustrated previously with respect to Y1 and Y2, property checking in the
presence of synchronization instructions requires generating alternative sched-
ules of non-commuting actions. Unfortunately, the conflict-directed approach can
require us to explore all possible orderings of the atomic regions (e.g., similar to
dynamic partial order reduction or DPOR [9]). In this context, the CD algorithm
can be understood to be a suitable search bounding method inspired by previous
work [8], but tailored to handle atomics in the context of canonical scheduling.
Assume that we have executed a canonical schedule, and in this schedule we
observe a conflict between A and P, with A encountered before P (see Fig. 2
(right)). As per the DPOR algorithm, we will be required to execute another
schedule where P is executed before A. However, before we can execute P, we
must execute all the threads in the barrier interval [3-4] (including instruction
B), cross Barrier 4, and only then be able to execute P. The CD algorithm has
been designed to smoothly handle such details, and also apply bounding.

In summary, the CD algorithm can be seen as a light-weight design that
(1) is conflict-directed in its approach to delay-bounding (original paper [8] was
not so), (2) is a light-weight approximation to DPOR while also incorporating
the barrier semantics and happens-before predecessors, and (3) is built on the
backbone of canonical scheduling, allowing us to incorporate other interesting
heuristics related to canonical scheduling to improve performance and scalability.
In particular, one such technique that enables scalability to a large number of
threads is described in our recent work [18].

2 CD Algorithm for Schedule Generation

We now provide a rough sketch of the CD algorithm. Consider Fig. 2, where
instructions {A,B,P,Q} are synchronization instructions (e.g., atomicCAS, lock,
atomicMin) guarding specific regions of the user code. We first execute the
CUDA program along a canonical schedule while checking for data races (among
ordinary accesses) as well as recording conflicts among synchronization instruc-
tions. These conflicts are inserted into a delay list D,4and used to delay threads

4

when the program is re-executed to generate alternate schedules. We now walk
through an illustrative CD execution with the help of Fig. 2(left and right).5 Ini-
tially, let list D = [] and delay-bound K = 2. Anytime |D| > K, skip over this D
list (details in §4). We present step-by-step several executions of the algorithm.

• First, while executing the initial canonical schedule shown in Fig. 2(left), collect
the conflicting pairs, which are (A,B) and (P,Q) in our example. Based on the
collected conflict pairs, obtain a list L of delay points. The delay points are the
first instructions of each conflict pair, where the notion of first is defined by the
delaying canonical scheduling order. In our example, we will obtain L = [A,P].

• For each member l of L, append l at the end ofD, thus obtaining an augmented
D list. In our example, given that we started with D = [], the initial augmented
D lists are [A] and [P]. Now re-execute with D set to [A] and [P] in turn.

• Consider the execution with D = [A]. This delays A, switching (via the CS1

arrow) to T0 of Block 1. After we remove A from D, we have D = []. Continue
the canonical execution of Block 1 entirely (Barrier 3 through Barrier 5). By this
time, we would have observed instruction B in Block 1’s barrier interval [3-4],
and the conflict (P,Q) again. At the end of the execution of T2 at Barrier 5,
the execution resumes with A, and then finishes the code between Barrier 1 and
Barrier 2. The conflicts observed are (B,A) and (P,Q), and we augment the initial
D = [A] with B and P to obtain D = [A,B] and D = [A,P], respectively.

• Re-execute with D = [A,B], which generates the following execution: (1) delay
A; (2) go to Block 1 and there delay B; (3) resume by executing A, and then
resume with B. This traverses the conflicting instructions in the order A,B, P,Q.
Notice that because of the barrier semantics, we must necessarily cycle over A

and B again before we reach into P and Q.

• Re-execute with D = [A,P]. (It is helpful to point out that Fig. 2(right) de-
picts how CD executes with D = [A,P].) This generates the following execution:
(1) execute till A, then delay A; (2) execute through Block 1’s Barrier 4; (3) de-
scent into the barrier interval [4-5] of Block 1; (4) delay P since it is now at
the head of D; (5) switch via transition CS2 to resume A and finish the barrier
interval [1-2] of Block 0; (6) finally, resume at P and finish up Block 1 entirely.

• Since we assumed delay-bound K = 2, after exploring the delay list [A,P], we
do not augment it any further. (Such augmentations generate 3-instruction delay
lists which are skipped.) Instead, we backtrack and re-execute with D = [P].
Implementation note: we process all smaller D sets before going to larger sets.

The above CD execution achieves several interesting schedules, and in the
end we get the following orders of dependent actions in global traces:

– ...; A ;...; B ;...; P ;...; Q ;... (in the run with D = []),
– ...; B ;...; P ;...; Q ;...; A ;... (in the run with D = [A]),
– ...; A ;...; B ;...; Q ;...; P ;... (in the run with D = [P]),
– ...; B ;...; Q ;...; A ;...; P ;... (in the run with D = [A,P]).

4 Later, we will show that D is in fact a list of lists, but for now a simple list suffices.
5 For simplicity, assume here that the same instructions A,B, P,Q will be encountered
each time we replay. In general, the control flow will change due to global state
differences caused by delaying, and different instructions are likely to be encountered.

5

leafid := tree [target] ;1

if leafid 6= LOCK then2

leafid := tree [target] ;3

if leafid = atomicCAS(&tree [target], leafid ,LOCK) then4

assert(leafid 6= LOCK) ;5

tree [target] := func() ;6

Fig. 3: Code Excerpt from a GPU Implementation of the N-Body Algorithm

A precise formal specification of CD is in §4. Next, we present a case study and
assess how well CD performs on it.

3 Motivating Example T0 T1

line 2
leafid = 0

line 3
leafid = LOCK

line 4 leafid =
tree[target] = LOCK

line 5
tree[target] = LOCK

line 5
assert(leafid 6= LOCK) line 6

Fig. 4: Schedule Revealing N-Body Bug

In this section, we motivate the need
for CD with a realistic example: an
aggressively optimized GPU-based
implementation of the well-known
Barnes-Hut algorithm for perform-
ing an N-body simulation [21]. The
pseudocode shown in Fig. 3 is a vari-
ant of the original code excerpt con-
taining a bug planted by us. In the
example, each thread tries to insert
a node into a tree structure (en-
coded by tree array) where target is
the index of the intended insertion. It is possible for multiple threads to have the
same target. Variable leafid contains the value pointed by target in tree; if this
value is LOCK, then the target location is currently unavailable for modification.
Note that line 3 is the extraneous line—a bug—not present in the original code.
It presents a redundant read from tree[target] that had already been done on
line 1. The value read is used by the consequent atomicCAS .

The central operation of our interest is atomicCAS (addr , expected , new) which
atomically: (1) checks whether addr holds the expected value; (2) if so, it replaces
it with new , else it leaves the value in addr unaffected; (3) it always returns the
original value in addr . In the example, atomicCAS instruction on line 4 tries to
put LOCK in tree[target] and returns the original value in tree[target]. Once a
thread succeeds on condition in line 4 and proceeds to line 5, it exclusively owns
tree[target] until it releases the ownership by assigning to it on line 6. Therefore,
the old value of tree[target] should not be LOCK on line 5; if it were, it would
mean that the location is already owned by another thread. We consider this to
be our safety property of interest, and we encoded it as an assertion on line 5.

Fig. 4 shows why the code in Fig. 3 is erroneous. Suppose that threads T0

and T1 are accessing the same target, whose value was initialized to 0. Thread

6

T0 first executes lines 1-2, then is delayed, and preempted by T1. Thread T1

executes lines 1-5, then is delayed, and preempted by T0. Thread T0 on line
3 reads leafid from tree[target] ; since its value is LOCK, after T0 executes line
3, leafid is LOCK. (If buggy line 3 was not introduced, leafid would still be a
non-LOCK value thanks to the conditional on line 2.) Then, T0 proceeds to line
4 and atomicCAS succeeds even though it has also succeeded for T1. On line 5,
T0 triggers a failure of our safety property of interest. Note that this error takes
at least two delays to be discovered. As our experimental results will show, our
implementation of CD was successful in detecting such bugs within a reasonable
number of overall delays and with acceptable runtimes.

4 Formal Description of CD

Let N = {0, 1, 2, . . .} where numbers can also be viewed as sets, e.g., 3 = {0, 1, 2}.
Consider a CUDA program pgm meant for execution within BID ∈ N thread
blocks. Let barid ∈ N number the barriers within each block, with lastbar(bid) ∈
N being the number assigned to the last barrier within block bid ∈ BID .6 A
barrier interval (BI) is the interval (block of code) enclosed by two successive
barriers. There are TID ∈ N threads per block with identifiers tid ∈ TID . For
each thread, let pc ∈ N be its program counter.

We employ the tuple cs = 〈bid , barid , tid , pc〉 to specify the control state
of execution. The way in which cs advances is depicted in Fig. 2. A canoni-
cal schedule begins at InitCS = 〈0, 0, 0, 0〉. (Here, barid = 0 models being in
barrier interval [0-1].) Predicate DoneBar (bid , barid , tid) tells whether thread
tid has executed barrier barid within block bid . This predicate is initialized to
InitDoneBar where InitDoneBar (0, 0, 0) is true.

The entire state of the execution of pgm is captured by cs and S, where S is
the data state (CUDA shared, global, and local variables). We do not elaborate
on S, nor the CUDA instructions that update S. We maintain S0, a shadow
copy of the initial data state used during program re-execution. Given the current
instruction ins = cur(S, cs, pgm), the state update of S caused by ins is modeled
using nxt(S, pgm , cs, ins).

Consider a CUDA program pgm , and let ins be Bar (barrier) for all S and cs.
Informally speaking, a canonical schedule that begins in this state moves each
thread until its pc is at the next barrier; then another thread is picked, and so
on until all threads are at their next barrier. Whenever a thread is at the next
barrier, the DoneBar predicate associated with that thread and barrier is set to
true. When all the threads are at their next barrier, execution must switch over
to the “next” barrier interval, determined as nxtBI (S, pgm , cs). Any reasonable
implementation of these abstract functions is permissible. For instance, nxtBI
could mean either (1) stay within the same thread block and execute the next

6 CUDA programs are assumed to be terminating. We also assume the usual textually
aligned barriers. For example, CUDA programs are expected not to branch on thread
IDs, with only half the threads encountering a barrier.

7

sequential barrier interval; or (2) switch over to the next thread block and execute

the earliest unexecuted barrier interval.

Delay List: Let [a, b, c] be a list. Then hd([a, b, c]) is a and tl([a, b, c]) is [b, c]. We
maintain the delay list D as a list of lists.7For example, D = [[], [a, b, c], [p, q, r]],
where a, b, c and p, q, r are instructions, is a delay list.

We describe the operational semantics of CD in terms of the rules in Fig. 5.
The rules are of the form pre

Σ→Σ′ , where if pre(Σ) holds then Σ can evolve
to Σ′; Σ is maintained as 〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉, where cs =
〈bid , barid , tid , pc〉. The CD algorithm starts with D = [[]]. If no conflicts are en-
countered, D remains [[]] until the entire program execution is finished, at which
point D becomes []. The only inference rule provided for the case D = [] is to
stop the entire execution of CD (Rule Termination). We keep a shadow-copy
of the starting delay list in D0. Suppose D0 = D = [[]] at the beginning, and say
it grows to D = [[a, b], [p, q]] at the end of execution as per the CD schedule. We
then re-initialize D0 and D according to D0 = D = [[a, b], [p, q]] and re-execute
the whole program. Here are the details of such a re-execution:

– When instruction a is encountered, it will be delayed, and D will be updated
to [[b], [p, q]], meaning that a (already delayed) need not be delayed any more.
(Rules nxtTidCSDel and nxtBidCS cover these cases.)

– Thereafter when b is encountered, it is delayed, and D is updated to [[], [p, q]].
Then (and only then) we start recording conflicts (Rule nxtPCBIrec; notice
that it checks for hd(D) = []). This is because the conflicts recorded must
be as a consequence of delaying a, b (and further conflicts discovered in the
process will later augment D). At the end of the entire pgm execution, let
us say we have encountered conflicts in the order (i, j) and (k, l). Then we
update D to [[p, q], [a, b, i], [a, b, k]] (Rule Retrig).

– Now if the delay bound K is 2, we will execute again with [p, q], but skip
over [a, b, i] and [a, b, k] (Rule Bound).

Read-Write Set: We maintain a read-write set RW that records all reads
and writes encountered; function rwOf (ins) obtains the reads and writes of
instruction ins . These will be used for race checking and also for forming conflicts.
(We do not detail race checking here.) Entries will be added to RW as/when
memory accesses (reads/writes) are encountered (Rule nxtPCBI).

Conflict List: We maintain a conflict list Confl as a list of pairs of the kind
shown above, e.g., Confl = [(i, j), (k, l)]. Confl is updated via function rec only
when hd(D) = [] (Rule nxtPCBIrec). At the end of pgm , we will change D0
from [[a, b], [p, q]] to [[p, q], [a, b, i], [a, b, k]].

Delay Bounding, Termination, Retriggering:Whenever length(hd(D0)) >
K, we update D to tl(D), which achieves delay bounding (Rule Bound). The
algorithm terminates when D = D0 = [] (Rule Termination). On the other
hand, if D 6= [], length(hd(D0)) ≤ K, and DoneBar (bid , lastbar (bid), tid) for all
bid , tid , we retrigger the execution with the augmented (function aug) D and

7 In our implementation, we maintain D sorted ascending in size. This allows all
shorter delay sequences to be executed before executing any longer delay sequence.
This is purely a heuristic, and has no bearing on the overall correctness of CD.

8

• Termination:

D=[]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → STOP

• Bound:

D 6= [] ∧ length(hd(D0)) > K

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs,DoneBar , tl(D0), tl(D),RW ,Confl〉

Assume D 6= [] ∧ length(hd(D0)) ≤ K is a part of the precondition of the rules below.
• Retrig:

∀b ∈ BID : ∀t ∈ TID : DoneBar(b, lastbar(b), t) ∧ D1=aug(D0,Confl)

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S0, InitCS , InitDoneBar , D1, D1, ∅, []〉

• nxtBI:

cur(S, cs, pgm)=Bar ∧ ∀t ∈ TID \ {tid} : DoneBar(bid, barid+ 1, t)
∧ Db = DoneBar [〈bid, barid+ 1, tid〉 ← true]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S,nxtBI (S, pgm, cs), Db,D0, D,RW ,Confl〉

• nxtTidCS:

cur(S, cs, pgm)=Bar ∧ ∃t 6= tid ∈ TID : ¬DoneBar(bid, barid+ 1, t)
∧ Db = DoneBar [〈bid, barid+ 1, tid〉 ← true] ∧ cs1=nxtTidCS(S, pgm, cs)

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1, Db,D0, D,RW ,Confl〉

• nxtPCBI:

hd(D) 6= [] ∧ ins=cur(S, cs, pgm) ∧ ins 6= Bar

∧ ins 6= hd(hd(D)) ∧ cs1=nxtPCBI (S, pgm, cs) ∧ RW 1=add(RW , rwOf (ins))

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D, RW 1,Confl〉

• nxtTidCSDel:

hd(D) 6= [] ∧ cur(S, cs, pgm)=hd(hd(D)) ∧ cs1=nxtTidCS(S, pgm, cs)
∧ ∃t 6= tid ∈ TID : ¬DoneBar (bid, barid, t) ∧ D1=D[hd(D)← tl(hd(D))]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl〉

• nxtBidCS:

hd(D) 6= [] ∧ cur(S, cs, pgm)=hd(hd(D)) ∧ cs1=nxtBidCS(S, pgm, cs)
∧ ∀t ∈ TID \ {tid} : DoneBar(bid, barid, t) ∧ D1=D[hd(D)← tl(hd(D))]

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl〉

• nxtPCBIrec:

hd(D)=[] ∧ ins=cur(S, cs, pgm) ∧ ins 6= Bar

∧ cs1=nxtPCBI (S, pgm, cs) ∧ Confl1 =rec(Confl ,RW , rwOf (ins))

〈S0, S, cs,DoneBar , D0, D,RW ,Confl〉 → 〈S0, S, cs1,DoneBar , D0, D1,RW ,Confl1 〉

Fig. 5: Operational Semantics of the CD Algorithm

9

D0, with cs reset to InitCS , S to S0, DoneBar to InitDoneBar , RW to ∅, and
Confl to [] (Rule Retrig).
Setting DoneBar :When cur(S, cs, pgm) equals Bar, we update DoneBar to true
for 〈bid , barid + 1, tid〉, and cs to nxtBI (S, pgm , cs) (Rules nxtBI, nxtTidCS).
Staying within a BI upon Delay: If cur(S, cs, pgm) = hd(hd(D)), we set D
to D[hd(D) ← tl(hd(D))], i.e., hd(D) is replaced with tl(hd(D)) in D. Now, if
there is a tid for which DoneBar (bid , barid , tid) is false, we stay in the same BI
and use function nxtTidCS (S, pgm , cs) to update cs (Rule nxTidCSDel).
Moving over to another BI upon Delay: When DoneBar is true of all the
threads except a thread tid , and this thread is delayed, we move over to the
next block in the scheduling order. Such a block must exist because (1) we are
replaying a schedule already traversed before, but with an instruction to delay,
(2) we recorded the first part of a conflict pair, (3) which means there is another
instruction (conflict partner in the pair) that is “yet to be seen”, and (4) we
will hit that instruction. Our selection policy in this case is to context-switch
to the next bid (in a modulo fashion) and the lowest barid such that for that
bid , barid , there is a lowest ranked tid for which DoneBar is false. We will use
function nxtBidCS (S, pgm , cs) to return this control state (Rule nxtBidCS).

5 Experimental Results

We have implemented CD in an extension of our tool GKLEE called GKLEEatm.
GKLEEatm was evaluated using the following CUDA benchmarks [2]: nbody: the
classical Barnes-Hut N-body algorithm [21], [260 LOC]; tsp: traveling salesman
algorithm [28], [130 LOC]; aMin: implements atomicMin for double-precision
floating point, [20 LOC]; aMinUpdate: use of atomicMin to set a shared lo-
cation to min, [35 LOC]; bintree: tree insertion designed similar to wait-free
ray tracing cache [7], [75 LOC]. The N-body (nbody) and traveling salesman
(tsp) benchmarks are real-life CUDA programs; others are synthetic bench-
marks we modeled after real programs. We created both bug-free and buggy
versions for each benchmark. Each buggy benchmark contains a non-trivial real-
istic bug related to a potential algorithm implementation error. We also inserted
assertions for checking correctness, which is a commonly used approach by pro-
grammers. The first four benchmarks (nbody, tsp, aMin, aMinUpdate) contain
lost-atomicity bugs similar to the bug shown in §3. Such bugs are commonly cre-
ated by programmers when they are trying to prevent side-effects of preemptions
using atomics, but fail at their attempt. Our last benchmark, bintree, contains
a missing-atomicity bug caused by unprotected shared memory accesses. In the
experiments, we test two versions of GKLEEatm with different conflict selection
policies: (1) unoptimized picks any detected conflict to trigger the generation of
a new schedule; (2) optimized picks conflicts containing at least one read/write
belonging to a “conditional atomic operation” such as atomicCAS.

For all of our benchmarks a delay bound of K = 2 was sufficient. We per-
formed two sets of experiments with two different CUDA configurations: (1) 2
thread-blocks with each of them containing one thread, and (2) 3 thread-blocks

10

benchmark
buggy bug-free

unoptimized optimized unoptimized optimized
#sch. t. rlt. #sch. t. rlt. #sch. t. rlt. #sch. t. rlt.

nbody(pa) 221 910 TP 64 182 TP 356 1134 TN 106 271 TN
nbody(fc) 44 278 TP 17 52 TP 356 1231 TN 106 295 TN
tsp(pa) 4 40 TP 4 40 TP 39 432 TN 27 293 TN
tps(fc) 4 41 TP 4 40 TP 39 426 TN 27 297 TN
aMin(pa) 25 28 TP 25 28 TP 53 57 TN 53 57 TN
aMin(fc) 4 5 TP 4 7 TP 53 56 TN 53 57 TN
aMinUpdate(pa) 18 32 TP 10 11 TP 51 81 TN 27 33 TN
aMinUpdate(fc) 18 32 TP 10 11 TP 51 88 TN 27 34 TN
bintree(pa) 83 90 FN 53 56 FN 83 90 TN 61 66 TN
bintree(fc) 2 3 FP 2 3 FP 2 3 FP 2 3 FP

(a) Experimental Results for 2 Thread-Blocks with 1 Thread Each

benchmark
buggy bug-free

unoptimized optimized unoptimized optimized
#sch. t. rlt. #sch. t. rlt. #sch. t. rlt. #sch. t. rlt.

nbody(pa) 448 2414 TP 126 429 TP 1195 4900 TN 336 1019 TN
nbody(fc) 83 606 TP 28 126 TP 1195 5366 TN 336 1137 TN
tsp(pa) 4 53 TP 4 56 TP 114 1738 TN 60 1019 TN
tps(fc) 4 55 TP 4 55 TP 114 2331 TN 60 1091 TN
aMin(pa) 107 117 TP 107 117 TP 431 463 TN 431 463 TN
aMin(fc) 6 7 TP 6 7 TP 431 464 TN 431 465 TN
aMinUpdate(pa) 6 8 TP 4 5 TP 653 912 TN 294 361 TN
aMinUpdate(fc) 6 7 TP 4 5 TP 653 882 TN 294 350 TN
bintree(pa) 14 17 TP 191 202 FN 835 902 TN 405 431 TN
bintree(fc) 2 3 FP 2 3 FP 2 3 FP 2 3 FP

(b) Experimental Results for 3 Thread-Blocks with 1 Thread Each

Fig. 6: Experimental Results. pa tags benchmarks with manually inserted asser-
tions for correctness checking; fc tags benchmarks where final state comparison
is performed for correctness checking; #sch. gives number of schedules explored;
t. gives runtimes in seconds; rlt. gives analysis results.

with each of them containing one thread. Other configurations were not neces-
sary due to the high symmetry of CUDA programs.

5.1 Results and Discussion

Our experimental results are shown in Fig. 6. The result (rlt.) column shows the
outcome of the analysis:
– true-positive (TP): a true bug was reported (successful detection);
– true-negative (TN): no bug reported, none exists (no false alarm or omission);
– false-positive (FP): a bug was reported, but no error exists (false alarm);
– false-negative (FN): no bug was reported, but a real bug exists (omission).

Note that none of these bugs can be detected using previous tools due to the
lack of support for atomic operations.
Comparison Between Different Thread Configurations. Benchmarks in
Fig. 6a use fewer blocks/threads than those of Fig. 6b. Using fewer blocks gener-
ates fewer conflicts and therefore also fewer schedules to explore. However, using
the two-block configuration for the bintree benchmark results in GKLEEatm miss-
ing a bug, since bintree requires at least three threads to trigger the bug scenario.

11

while true do1

if T[curr] 6= null then2

if T[curr] ≤ val then child := curr+2 ;3

else child := curr+1 ;4

if T[child] = null then5

new := atomicAdd(&TSize, 3) ;6

T[new] := val ;7

T[child] := new; break ;8

else curr := T[child] ;9

else10

if null = atomicCAS(&T[curr], null, val) then break ;

assert(the tree is valid and connected) ;11

Fig. 7: Pseudocode Showing a Bug in our bintree Benchmark

Next we further elaborate why our bintree benchmark bug requires at least three
threads to be discovered.

Fig. 7 gives an abstraction of our bintree kernel. The tree is encoded as usual
into an array T, where three consecutive elements in T denote a node. The first
of these elements is the value of the node (hence the index of this element is also
the index of the node). The value of the second element is the index of the left
subtree (node), which contains all values less than the value of the current node.
The value of the third element is the index of the right subtree (node), which
contains all values greater than or equal to the value of the current node. In the
pseudocode, curr denotes the index of the current traversed node, child denotes
the index of the subtree to visit, and new denotes the index of a newly created
node. Lines 2-9 perform tree traversal and the insertion of new nodes, lines 3-4
decide which subtree to traverse, and lines 5-8 insert a new node into an empty
subtree. Line 9 sets the current traversed index to continue the tree traversal.
The introduced bug is on line 8 where the user should have used an atomicCAS
operation to update T [child] and continue the tree traversal upon failure. The
buggy code instead directly updates the tree, resulting in dangling nodes.

T0 T1 T2

line 7
T[3] = 2

line 7
T[6] = 3

line 10
line 8

T[2] = 3
line 8

T[2] = 6

Fig. 8: Schedule Revealing bintree Bug

Fig. 8 illustrates a buggy scenario
where T0 builds the root node (line
10), and T1 and T2 are concurrently
attempting to insert a value (val) into
the tree. Suppose that T0 has value
1 to insert, T1 has value 2, and T2

has value 3. First, T0 runs through
the code and generates the root node.
Then, T1 traverses the tree and de-
cides to insert value 2 in the right sub-
tree of the root node. However, it is
preempted just before line 8. Thread T2 then traverses the tree and inserts
value 3 in the right subtree of the root node. When T1 resumes, it overwrites

12

the right subtree with value 2. The final tree is (1, 3, null, 2, null, null, 3, null,
null). The node (3, null, null) is a dangling node and the tree is not connected.
Note that while this scenario has 3 context-switches, it requires just one delay
(of T1) to be discovered.
Comparison Between Different Conflict Selection Policies. We observe
that using the optimized strategy explores fewer schedules and produces the
same results as the unoptimized strategy, except for bintree under the three-
block configuration. The most remarkable savings are obtained for the nbody
kernel: our conflict selection optimization reduces the number of schedules to
explore by nearly a third (221 versus 64 in Fig. 6a), while producing the same test
outcomes. However, in general, this optimization might prune a certain “critical
conflict” necessary to trigger a schedule leading to a bug. For example, in Fig. 6b,
the bug in bintree can only be detected without conflict selection optimization.
The “lost atomicity” bug in this example pertains to two instances of line 8 in
Fig. 7. In a sense, since the programmer “forgot” to guard T [child] = new on
line 8 with an atomic construct, these lines are in a real data race.
Comparison Between Different Correctness Checking Strategies. Our
two correctness checking strategies, fc and pa, produce different outcomes on
3 of our benchmarks: bintree, aMin, and nbody. In particular, fc produces a
false positive outcome for bintree in all experiments. This is because the bintree
benchmark inherently produces two distinct states (i.e., bit-level state layouts)
even for two logically equivalent trees. Therefore, checking correctness by simply
comparing final states will end up generating a false alarm for GPU programs
that generate nondeterministic bit-state outcomes (which are nevertheless logi-
cally equivalent). In contrast, for aMin and nbody, the fc strategy shows distinct
advantages, often exploring only a fifth of the number of schedules (e.g., 448
versus 83 for nbody) before finding a bug. Our results suggest that the final
state comparison strategy is better overall in terms of the number of schedules
that get explored before a bug is reached.

6 Discussion, Related Work, and Conclusions

GKLEEatm is the first tool we know that employs the combination of conflict-
directed and delay-bounded testing. Its CD algorithm extends the canonical
scheduling method which has already proven successful [17]. Since the intended
semantics of most CUDA programs is sequential, race/conflict freedom is the
norm. In these cases, we avoid generating interleavings. GKLEEatm also inher-
its additional features of GKLEE (e.g., test-case generation, test-case reduction,
bank conflict and memory coalescing estimation) that are now available for ex-
amples that employ CUDA atomics.

CD is not formally complete. For example, the initial canonical schedule in §2
gave us the delay points [A,P]. Suppose we had executed the sequential schedule
that began with thread T2 of Block 1, we would initially encounter [B,Q]. At that
point, the control flows may change, and instead of seeing [P,A] later, we may
see some other conflicting operations (or perhaps no conflicts at all). Our future

13

work may combine static analysis with CD to determine which other sequential
schedules to consider. The manner in which CD is realized using the abstract
functions nxtTidCS , nxtBidCS , nxtBI , and nxtPCBI gives us the intriguing
possibility of choosing these functions based on static analysis or randomizing
them for separate runs. In the paper, we have explored prioritizing atomics
involving conditional comparisons, such as atomicMin (see §5).
Race-directed Testing. Race-directed testing for traditional multithreaded
programs was proposed previously [25, 26]. It detects races in a schedule and
takes them as “hints” for introducing context-switches, which in turn gener-
ate more schedules for detecting property violations. GKLEEatm extends race-
directed testing with delay-bounding, and selects a subset of races suitable for
testing CUDA programs with atomic operations.
Bounded Testing. Bounded testing is a well-known technique for analysis of
traditional multithreaded programs (e.g., [8, 13, 20]). It was empirically shown
that most of concurrency bugs can be detected by introducing only a limited
amount of nondeterminism (e.g., context-switches, delays). GKLEEatm takes this
approach to efficiently detect bugs in CUDA programs, and mixes it with our
conflict-directed feedback for obtaining new delay locations. Traditional bounded
testing typically does not employ such feedback and blindly introduces delays at
all potential conflict locations.
GPU Program Testing Tools. Recently, several GPU program testing tools
were proposed [3, 6, 14]. Test amplification [14] starts with dynamic testing of
GPU programs, but employs a test amplification technique to generalize the
results of the dynamic analysis over a large space of inputs. The amplification
relies on a static information flow analysis to prune inputs not affecting the
property to be verified. GPUVerify [3] performs symbolic analysis of GPU pro-
grams similar to PUG [15], but provides a precise CUDA operational semantics
for predicated executions. KLEE-CL [6] employ symbolic analysis to perform
equivalence checking for C programs and their accelerated OpenCL implemen-
tations. KLEE-CL can also check data race for OpenCL programs. However,
none of these tools support atomic instructions.

Conclusions. We propose the first conflict-directed delay-bounding approach
to schedule multithreaded programs. We formally describe our CD algorithm
that implements this approach as a new tool GKLEEatm, and apply it for testing
aggressively optimized GPU programs that employ atomic instructions and bar-
riers. Furthermore, we evaluate several scheduling policies and property checking
approaches. In addition to detecting subtle concurrency bugs, CD proves to be
a light-weight and tailorable approximation to more complete (but also more
expensive) algorithms such as DPOR. Our future work will include exploiting
thread symmetry [18] and informing concolic verification through static analysis.

References

1. H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. Vechev.
Laws of order: expensive synchronization in concurrent algorithms cannot be elim-

14

inated. In POPL, pages 487–498, 2011.
2. http://www.cs.utah.edu/fv/CdDb.
3. A. Betts, N. Chong, A. F. Donaldson, S. Qadeer, and P. Thomson. GPUVerify: a

verifier for GPU kernels. In OOPSLA, pages 113–132, 2012.
4. C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs. In OSDI, 2008.
5. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Cheking. MIT Press, 1999.
6. P. Collingbourne, C. Cadar, and P. Kelly. Symbolic testing of OpenCL code. In

Haifa Verification Conference, 2011.
7. K. Debattista, P. Dubla, L. P. P. dos Santos, and A. Chalmers. Wait-free shared-

memory irradiance caching. Comp. Graphics and Applications, 31(5):66–78, 2011.
8. M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded scheduling. In POPL,

pages 411–422, 2011.
9. C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking

software. In POPL, pages 110–121, 2005.
10. B. Goetz, J. Bloch, J. Bowbeer, D. Lea, D. Holmes, and T. Peierls. Java Concur-

rency in Practice. Addison-Wesley Longman, Amsterdam, 2006.
11. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. 2008.
12. W.-M. W. Hwu. GPU Computing Gems Emerald Edition. 2011.
13. A. Lal and T. Reps. Reducing concurrent analysis under a context bound to

sequential analysis. Form. Methods Syst. Des., 35(1):73–97, Aug. 2009.
14. A. Leung, M. Gupta, Y. Agarwal, R. Gupta, R. Jhala, and S. Lerner. Verifying

GPU kernels by test amplification. In PLDI, pages 383–394, 2012.
15. G. Li and G. Gopalakrishnan. Scalable SMT-based verification of GPU kernel

functions. In FSE, pages 187–196, 2010.
16. G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. Rajan. GKLEE

technical report. http://www.cs.utah.edu/fv/GKLEE/gklee_tr.pdf.
17. G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P. Rajan. GKLEE:

concolic verification and test generation for GPUs. In PPOPP, 2012.
18. P. Li, G. Li, and G. Gopalakrishnan. Parametric flows: Automated behavior equiv-

alencing for symbolic analysis of races in CUDA programs. In SC, 2012.
19. M. Méndez-Lojo, M. Burtscher, and K. Pingali. A GPU implementation of

inclusion-based points-to analysis. In PPOPP, pages 107–116, 2012.
20. M. Musuvathi and S. Qadeer. Iterative context bounding for systematic testing of

multithreaded programs. In PLDI, pages 446–455, 2007.
21. CUDA implementation of the tree-based Barnes-Hut N-body algorithm.

http://www.gpucomputing.net/?q=node/1314.
22. H. Nguyen. GPU Gems 3. Addison-Wesley Professional, first edition, 2007.
23. Nvidia. CUDA parallel computing platform.

http://www.nvidia.com/object/cuda_home_new.html.
24. OpenCL. OpenCL - the open standard for parallel programming of heterogeneous

systems. http://www.khronos.org/opencl.
25. K. Sen. Race directed random testing of concurrent programs. In PLDI, 2008.
26. K. Sen and G. Agha. A race-detection and flipping algorithm for automated testing

of multi-threaded programs. In Haifa Verification Conference, pages 166–182, 2007.
27. D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory Consistency and

Cache Coherence. 2011.
28. http://www.cs.txstate.edu/~burtscher/research/TSP_GPU/.
29. M. Zheng, V. T. Ravi, F. Qin, and G. Agrawal. GRace: a low-overhead mechanism

for detecting data races in GPU programs. In PPOPP, pages 135–146, 2011.

15

http://www.cs.utah.edu/fv/CdDb
http://www.cs.utah.edu/fv/GKLEE/gklee_tr.pdf
http://www.gpucomputing.net/?q=node/1314
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl
http://www.cs.txstate.edu/~burtscher/research/TSP_GPU/

	Formal Analysis of GPU Programs with Atomics via Conflict-Directed Delay-Bounding

