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Abstract—Technology scaling and techniques such as dynamic
voltage/frequency scaling are predicted to increase the number of
transient faults in future processors. Error detectors implemented
in hardware are often energy inefficient, as they are “always
on.” While software-level error detection can augment hardware-
level detectors, creating detectors in software that are highly
effective remains a challenge. In this paper, we first present a
new LLVM-level fault injector called KULFI that helps simulate
faults occurring within CPU state elements in a versatile manner.
Second, using KULFI, we study the behavior of a family of
well-known and simple algorithms under error injection. (We
choose a family of sorting algorithms for this study.) We then
propose a promising way to interpret our empirical results using
a formal model that builds on the idea of predicate state transition
diagrams. After introducing the basic abstraction underlying our
predicate transition diagrams, we draw connections to the level
of resilience empirically observed during fault injection studies.
Building on the observed connections, we develop a simple, and
yet effective, predicate-abstraction-based fault detector. While
in its initial stages, ours is believed to be the first study that
offers a formal way to interpret and compare fault injection
results obtained from algorithms from within one family. Given
the absolutely unpredictable nature of what a fault can do to a
computation in general, our approach may help designers choose
amongst a class of algorithms one that behaves most resilient of
all.

I. INTRODUCTION

With the growing scale of systems and the level of inte-

gration of transistors within CPU and GPU cores, undetected

bit-flips pose a serious challenge to our ability to rely upon

computational results. Recent studies [1] show that it is

unaffordable to employ hardware-only solutions to detect (and

hopefully correct) hardware faults. A follow-on study [2] in

fact expresses the need for software-based solutions to be used

in tandem with hardware-based solutions. The reason hardware

solutions are deficient is that they are “always on”—and hence

power inefficient—whereas well-designed software level solu-

tions have the advantage of becoming active only when faults

occur (albeit with higher amounts of fault-handling latencies).1

One may think of these software solutions as “asserts” placed

within the code to trap errors.

It is clear, upon a brief reflection, that the synthesis of

assertions capable of trapping faults is not so straightforward.
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1Interestingly, many of the faults themselves are caused by power-saving
mechanisms such as dynamic voltage/frequency scaling [2].

In a sense, a piece of software subject to transient bit-flips

during execution is akin to the same piece of software where

one secretly sows one of a myriad of possible bugs! Given

the daunting complexity of detecting even single logical bugs

in (otherwise perfectly working) software, the problem of

synthesizing effective assert statements that trap transient

faults appears much harder. We believe that the use of formal

methods can help the resilience research community make

measurable progress in the face of this complexity. Already,

several such formal methods have, or are being proposed

in resilience research. The use of likely program invariants

is suggested in previous work [3]. Other efforts go further,

proposing formal operational semantics for a faulty Lambda

calculus [4].

In this paper, we focus on ranking implementations of

different algorithms that solve the same problem—a study that,

to the best of our knowledge, is novel. While this approach

may help us synthesize better error detectors, this connection

is not the focus of this paper. However, we do believe that

ranking algorithms according to resilience may eventually

give us the necessary insights for synthesizing error detectors.

Our choice of sorting algorithms is based on their relative

familiarity, the fact that our research is in its early stages, and

that there are many different sorting algorithms.

We offer three specific contributions in this paper:

1) We present a new LLVM-level fault injector called

KULFI that helps simulate faults occurring within CPU

state elements conveniently. We describe how the features

of this (publicly released [5]) tool compare with existing

LLVM-level fault injectors.

2) We run the sorting algorithms under controlled situations

and observe their behavior empirically in terms of benign

faults, segmentation faults, and silent data corruptions.

We plot the faulty behaviors observed and provide evi-

dence that our results are statistically significant.

3) We devise a novel, promising abstraction method for

programs executing under faults. Our ideas build on the

basic tenets of predicate abstraction [6]–[8], although

we do apply abstractions that tend to reflect the degree

of degradation of control flows during program execu-

tion. We show how our abstraction seems to explain

the measured resilience results to some extent—at least

enough to serve as a way to rank one sorting approach

above another. In the end, we also develop a simple

predicate-abstraction-based fault detector, and prove its

effectiveness on our benchmarks.



II. BACKGROUND AND RELATED WORK

Fault-tolerant computing has been very actively researched

for decades, and forms the basis of many practical tech-

niques in use, including redundant designs, voting schemes,

and hardware-level error and correction schemes. There has

also been extensive study to identify and ameliorate fault

inducing mechanisms at the circuit level [9]. We do not intend

to perform a survey of this vast area; rather, our attention

is confined to the modern upsurge in resilience enhancing

mechanisms based on the use of software-level assertions.

The manifestation of faults at the software level can be

modeled by flips (changes) in bit-values of the computational

state. Depending on the nature of these state changes, one can

classify faults as follows.

Permanent Faults. Permanent faults are those that, once in-

troduced into a state element, persist for the remainder

of the computation, thus modeling permanent hardware

failures.

Transient Faults. Transient faults are those that may dis-

appear as well as reoccur during a computation. Since

transient faults model rare events, such as alpha particle

strikes or marginal circuit operation (often caused by

noise), it is customary to study a given computation under

a single transient fault occurrence.

When a fault occurs, the effect can be one of the following,

as captured by fault filtration that occurs across the hard-

ware/software stack [1]:

1) The fault falls within the micro-architectural don’t-care

set, thus effectively getting filtered.

2) The fault reflects as a visible micro-architectural state

effect, but is filtered by the instruction set architecture

(ISA), for example by being over-written by a good value

at the beginning of the next micro-architectural epoch.

3) The fault is reflected into a programmer visible register,

but falls within the don’t-care set of the application

logic, say by affecting a variable that does not form the

“answer” returned by a function call.

4) The fault causes the machine to hang, results in a seg-

mentation fault, or is otherwise clearly observed (say, by

tripping a built-in hardware-level error detector).

5) The fault silently corrupts the output of a computation

without tripping any observer or without being filtered.

We will use the term Benign Fault for categories 1–3 and

Silent Data Corruption (SDC) for category 5. We will assume

that Segmentation Faults are the only observed category 4 of

faults.

Algorithm level fault detection can be studied by focusing

either on memory faults or computational faults. Sorting

algorithms and data structure resilience have recently been

studied focusing on a DRAM fault model, where faults are

assumed to occur only on the algorithm inputs [10], [11]. In

this work, various algorithms are compared based on the k-
unsortedness metric. More specifically, the lower the number

of misplaced data items, the more resilient the algorithm is

deemed to be. In contrast, in our case study we assume a

more fine grained fault model that accommodates more fault

categories, specifically, at the register and control flow level.

We also compare algorithms based on the number of silent

data corruptions.

One of our main contributions is the development of a

fault injector called KULFI, based on the LLVM compilation

infrastructure [12], [13]. KULFI can inject transient faults

into a chosen data register of a randomly chosen program

instruction at run time. Several previous studies have ex-

ploited fault injectors similar to KULFI [14], [15]. There are

also efforts that directly inject faults into the hardware [16].

Hardware-based fault injection is less flexible [17] and not as

programmable. Fault injectors can also be built by exploiting

OS-level facilities [14], [15]. Other software-level fault injec-

tors include those based on PIN [18], [19]. Specifically, the

PDSFIS fault injector [18] uses Intel’s PIN framework.

In contrast to the above works, KULFI uses the open-source

LLVM compiler infrastructure, similarly to other recently

reported fault injectors [19], [20]. The fault injector LLFI [20]

is primarily geared towards injecting errors in soft-computing

applications. LLFI and KULFI were developed concurrently,

and currently they share many similar features. However, when

we started working on this project, KULFI was the only

tool available to us that had all of the required features.

For example, KULFI provides fine-grained error injection

control (briefly discussed in the next section), which suits

well our requirements for performing the empirical evaluations

described in this paper. The fault injector used in the Relax

framework [19] also uses the LLVM compiler infrastructure.

However, this fault injector is not publicly available. Further-

more, a recent informal study by a Relax user suggests that

KULFI is easier to control and fine-tune, while also providing

interesting command-line options not found in Relax [21].

There has been a significant amount of research on optimiz-

ing the placement of the fault detectors [22]–[25]. Research

on using compiler-based techniques to detect hardware faults

has also been reported [26], [27]. In recent work [28], the

focus is primarily on fault recovery (not on fault detection)

and custom annotations in the source language to convey the

degree of resilience desired. Casas et al. [29] make a large-

scale numerical application resilient by employing redundancy

methods to guard pointers, and showing that some algorithms

are able to recover from faults. Sahoo et al. [3] introduce an

approach that employs likely program invariants for detecting

hardware faults. SymPLFIED [30] is a formal framework

that uses symbolic values to represent hardware faults, and

performs symbolic execution to simulate the propagation of

such faults. It analyzes fault propagation patterns to optimize

the placement of fault detectors.

Several techniques have been proposed to detect transient

faults that cause control flow variations. The work by Oh et

al. [31] is based on assigning a unique signature to a basic

block and tracking the signatures at runtime. Subsequently,

Venkatasubramanian et al. [32] proposed a more refined and

optimized solution. In contrast to these approaches, ours is

based on the use of predicate abstraction [6].
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Fig. 1. Flowchart of Dynamic Fault Injection in KULFI

III. KULFI: A FAULT INJECTOR

We have developed an open-source instruction-level fault

injector named Kontrollable Utah LLVM Fault Injector (or

KULFI)2 on top of the LLVM compiler infrastructure [12],

[13]. KULFI is capable of injecting static and dynamic faults

into programs written in C. Static faults model permanent

faults and are injected to a fault site selected during compile

time. Dynamic faults emulate transient faults and are injected

to a fault site selected during program execution. KULFI can

inject faults into both data and address registers, and currently

it models only single-bit faults. It provides fine-grained control

over the fault injection process by allowing a user to specify

fault injection probability, injected byte location, fault site type

(data, address, or both), limit on the number of injected faults,

target functions to inject faults into, etc.

Figure 1 shows the flowchart of the dynamic fault injection

done by KULFI. At a high level, the fault injection loop

goes through all dynamic instructions. For each dynamic

instruction, a type of fault to be injected is selected as either

a data or pointer fault type. Subsequently, KULFI checks

whether it is feasible to inject a fault with the chosen fault

type into the selected instruction. If this check passes and

the provided fault injection probability is met, then a fault

is injected into the instruction. These steps are repeated for

2Available from http://github.com/soar-lab/KULFI/.
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Fig. 2. Transient Fault Occurring in a Register

all dynamic instructions. Once the loop is finished going

through all the dynamic instructions, the execution of KULFI

terminates.

Given that transient faults are the main focus of this paper,

we describe in more detail how KULFI models such faults.

Figure 2 illustrates a transient fault occurring at register level.

The shown register does not contain a fault at time t1. At time

t2 a fault occurs, and then it disappears at time t3. Dynamic

fault injection capability of KULFI models such transient

fault behavior. KULFI operates on the LLVM intermediate

representation (IR) level (i.e., LLVM bitcode level) in the static

single assignment (SSA) form. SSA ensures that every IR

variable (i.e., logical register) is assigned only once, which is

an advantage as opposed to operating at the source code level

when modeling transient faults. More specifically, injecting a

fault into an SSA logical register referenced by an instruction

is a one-time occurrence affecting only the instructions that

use that logical register. SSA naturally prevents references to

the same source code variable in the later instructions from

observing the injected fault. Note that the duration for which

a transient fault persists in an actual hardware register varies.

Therefore, it is possible that more than one instruction could

get affected from a single transient fault. Currently we do

not capture such timing-related behaviors of transient faults in

the software emulation of faults done by KULFI. However,

KULFI still provides a reasonable model of transient fault

behaviors, and similar models were adopted by other error

injectors [19], [20].

IV. AN EMPIRICAL CASE STUDY

We have performed an empirical case study that assesses

the resilience of several popular sorting algorithms. Previous

work suggests that algorithms and data structures that solve a

particular problem not only vary in time and space complexity,

but also in how resilient they are to faults [11]. In that line

of work, a memory (i.e., DRAM) fault model is assumed to

study the resilience of sorting algorithms [10]. However, the

memory fault model is often too restrictive since it fails to

cover classes of faults not directly tied to memory, such as

register corruptions, control flow corruptions, and incorrect

computation, which are prevalent in real-world systems. In

our empirical study, we choose to use a more expressive

fault model supported in KULFI. The chosen fault model

considers all instructions of a program as candidate fault

occurrence locations, including memory reads and writes,

register operations, and control flow instructions.

In our case study, we consider implementations of five

well-known sorting algorithms: BubbleSort (with preemptive



TABLE I
STATISTICS OF SORTING ALGORITHMS

Algorithm LOC SIC MinDIC MaxDIC AvgDIC

BubbleSort 56 13 68k 61442k 14818k
RadixSort 61 39 30k 2040k 565k
QuickSort 65 25 34k 1110k 303k
MergeSort 70 38 79k 1269k 364k
HeapSort 77 28 15k 1519k 500k

termination criterion), RadixSort, QuickSort, MergeSort, and

HeapSort.3 All implementations take as input an array of

integers to be sorted, and they output the sorted array. Since

this is a preliminary study, we do not bias on the size and

input data, i.e., the arrays are of random size (between 2000

and 10000) and contain random integer data. (As part of future

work, we plan to experiment with various fixed data sizes and

algorithm-specific inputs).

We perform a fault injection campaign for each sorting

algorithm implementation using KULFI. Each fault injection

campaign consists of 200 fault injection experiments. A single

fault injection experiment comprises of 100 executions of an

algorithm. Therefore, each algorithm is executed a total of

20000 times, which we split into 200 fault injection experi-

ments so that we can later compute the statistical significance

of our results. In each execution, the algorithm operates on

a different randomly generated input array, while a single

random bit-flip error is injected at runtime using KULFI. We

describe the details of our fault injection strategy next.

A. Fault Injection Strategy

Even with a fault injector such as KULFI available, selecting

a realistic fault injection probability requires careful planning;

we now present our approach in this regard. As noted in §II,
fault filtration naturally occurs across the hardware/software

stack where many faults fall into the “don’t-care” sets of the

higher layers. Specifically, Sanda et al. [1] report how an IBM

POWER6 processor was actually bombarded with protons and

alpha particles within an elaborate experimental setup. The

authors estimated that the percentage of faults that actually

reached the application logic was 0.2% of the overall number

of latch-level faults. While this approach to fault simulation

is quite realistic, such “bottom-up” fault injection approach

(and its infrastructural overheads) are clearly out of reach to

most researchers. On the other hand, there are a number of

recent approaches targeting software-level resilience enhanc-

ing mechanisms (see §II). Therefore, we decided to focus our

empirical study only on the effects of faults that do reach the

application logic since those are of a particular interest to the

software-level resilience community. We still had to devise a

reasonable and fair fault injection probability.

Given the above discussion, we now define additional no-

tions that help us elaborate our studies. By the term dynamic

instruction we refer to a runtime instance of a static LLVM

program instruction. We define the dynamic instruction count

3Source code of the examples and scripts for performing the experiments
are also available from the KULFI website.
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Fig. 3. Fault Injection Strategy

as the actual number of dynamic LLVM instructions executed

corresponding to a specific program execution. For example,

for a simple program consisting of five static instructions in a

loop that iterates 1000 times, the static instruction count is five,

while the dynamic instruction count is 5000. For our sorting

algorithms, the dynamic instruction count varies depending on

the algorithm considered and the input array, which we have

to take into account to ensure that all dynamic instructions are

considered for fault injection with equal probability. Table I

gives various statistics for our sorting algorithms:

• LOC is the number of lines of code,

• SIC the number of static fault site instructions,

• MinDIC the minimum dynamic instruction count,

• MaxDIC the maximum dynamic instruction count, and

• AvgDIC the average dynamic instruction count.

We initially perform a faultless run of an algorithm on an input

to compute the dynamic instruction count N for a particular

execution. We then define the probability of fault injection

for each dynamic instruction to be 1/N . This ensures that

all dynamic instructions are equiprobably considered for fault

injection in subsequent runs of the program on the same input.

Figure 3 illustrates our fault injection strategy for this

case study performed using KULFI. First, a sorting routine

is compiled using LLVM’s C/C++ front-end Clang into an

LLVM bitcode file, which contains LLVM’s intermediate

representation. Then, we execute the generated bitcode file



using the LLVM virtual machine (i.e., lli) and as input we

provide a randomly generated input array. We record the sorted

output array for later comparison. In the process, we also

measure the dynamic instruction count N for this particular

faultless execution. Using the dynamic instruction count we

compute the probability of fault injection for each dynamic

instruction as 1/N . The original LLVM bitcode file and the

computed fault injection probability are given as inputs to

KULFI. The tool generates a fault-injecting LLVM bitcode

file, i.e., an instrumented version of the original bitcode file

in which a transient fault might be injected during execution

into a dynamic instruction with the computed probability. The

fault-injecting LLVM bitcode file is then executed on the same

input array. We observe the number of injected faults and log

only the executions during which exactly one fault is injected;

we call such executions 1-fault executions. Executions where

the number of injected faults is not equal to one are discarded.

We record the outcome of every 1-fault execution to later

analyze the effect of fault injection.

B. Experimental Results

We identify three possible outcomes of an execution of a

sorting algorithm with a fault injected at runtime.

Benign Fault. In general, a transient fault is benign when the

program state at the end of a faulty execution is the same

as the program state obtained after a faultless execution.

In the context of sorting algorithms, the output array

obtained as the result of a faulty execution has to exactly

match the sorted output array of the faultless execution.

Segmentation Fault. We classify a transient fault that causes

a program to crash due to performing an invalid memory

access as a segmentation fault.

Silent Data Corruption (SDC). A fault is classified as an

SDC when the ordering, frequency, or the set of array

elements at the output of the faulty execution is different

from that of the faultless execution.

After each fault injection experiment (i.e., 100 1-fault execu-

tions), we log the number (i.e., fraction) of executions falling

into each category. For example, here is how one such log

entry might look like:

Benign: 41, Segmentation: 29, SDC: 30

In the end of every sorting algorithm fault injection campaign,

we are left with 200 such log entries, one for every fault

injection experiment. We perform statistical analysis of these

logs and present our empirical results next.

From Figures 4–6, we observe that the values in log entries

obtained after every fault injection campaign are strongly

clustered, and there is a statistically significant distribution

of the fractions for each outcome category. The larger shapes

(e.g., triangles) in the middle of clusters are indicative of the

larger number of instances of faults that are closer to the

middle. More specifically, the fractions of every category of

outcomes across the 200 fault injection experiments follow

the 68-95-99.7 (or three-sigma) rule of normal distribution.

Therefore, using our empirical data we can draw statistically
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significant conclusions about the behavior of the analyzed

sorting routines in a faulty environment.

Figure 7 details the comparison of the sorting algorithms

based on the average number of executions in each category

of fault outcomes. For example, we observe that Bubble-

Sort, though an algorithm with higher time complexity than

HeapSort, leads to more detectable faults. In fact, HeapSort

is the least resilient with respect to SDCs and results in

either benign faults or SDCs in its fault injection campaign.

QuickSort masks majority of injected faults and therefore its

high number of benign faults. It is worthwhile to note that the

three algorithms that have the least number of detectable faults

(MergeSort, QuickSort, and HeapSort), follow a recursive

divide-and-conquer algorithm design paradigm. On the other

hand, BubbleSort leads to more segmentation faults.4 We ob-

serve that approximately 85% of the executions of QuickSort

and 90% of the executions of BubbleSort avoid SDCs. To sum

up, QuickSort is the most resilient and available algorithm

of the algorithms considered. The following summarizes the

resilience-related observations, where the lower numbers are

better (lower number of faults in those categories):

SDCs : Bubble < Quick < Radix < Merge < Heap

Seg. Faults : Heap < Quick < Merge < Radix < Bubble

In addition to logging execution outcomes, we also main-

tained a mapping of the dynamic instruction where the fault

was injected to the outcome that was produced in that execu-

tion. We draw some interesting observations from this map-

ping. In BubbleSort, half of the faults injected into registers

that are employed in computing the index of the array access

in the expression Array[i-1] produce segmentation faults.

In HeapSort, injecting faults into the instructions executed just

4As to the reliability and repeatability of measuring segmentation faults,
one has to choose virtually identical runtimes and memory layouts as well
as mappings of user variables to memory locations. We will address these
considerations in future work.

bubbleSort(array[], size)
{

PP0: //state --> XXX
L0: for (i = (size - 1); i > 0; i--)

{
PP1: //state --> TXX
L1: for (j = 1; j <= i; j++)

{
PP2: //state --> TTX
L2: if (array[j-1] > array[j])

{
PP3: //state --> TTT
L3: swap(array[j-1],array[j])
PP4: //state --> TTF

}
else
{

PP5: //state --> TTF
L4: skip

}
}

PP6: //state --> TFX
}

}

Fig. 8. BubbleSort with Encoded Predicate States

before and just after the recursive calls causes a high percent-

age (close to 75%) of SDC faults. Such precise profiling of

fault injection sites enables us to observe critical instructions,

specific to a sorting algorithm, where error injection leads to

SDCs. Note that, as an area of future work, one can potentially

extend the notion of such critical regions of an algorithm to

other algorithms that follow similar design patterns. Further-

more, targeted fault detection and recovery mechanisms can

be employed around these critical regions to provide cheap

and effective means for improving resilience of programs to

transient faults.

V. TOWARDS A FORMAL APPROACH

In order to formally explain the behavior of programs under

faults, we found it natural to adopt a predicate-abstraction-

based approach. Our overall goal is to observe and explain

faults in terms of their effect on abstract predicate state

transitions. To the best of our knowledge, the use of predicate

abstraction in resilience research is a novel research direc-

tion. In this work, we adopt the predicate-abstraction-based

approach introduced by Ball [33]; while Ball used predicate

abstraction to define a novel program coverage metric, we use

it to study faulty behaviors in a more manageable abstract

state space. In addition, in §V-D we briefly discuss our

preliminary fault detector based on reachable abstract state

space deviations, where our detector reports a fault when

encountering an erroneous transition.

A. Predicate Transition Diagram for BubbleSort

We first present our approach that leverages predicate ab-

straction using BubbleSort as a running example (see Figures

8 and 9). Figure 8 gives the source code of BubbleSort for

which we generate a predicate transition diagram. In order

to as precisely as possible capture the effect of faults in

BubbleSort, for our set of relevant predicates we choose the

following: i > 0, j ≤ i, and array[j − 1] > array[j]. These
predicates govern the major control-flow steps in the program,

and therefore are important for understanding its behaviors.

The chosen set of predicates defines our abstract states. We
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evaluate a vector of these predicates at chosen critical program

locations, typically where one of the predicates governs control

flow, thereby effectively computing reachable abstract states

at those locations. In our example, we mark these program

locations PP0 through PP6. The evaluation of a predicate at

a program location depends on whether the predicate is in

scope (more specifically, all the variables in the predicate are

in scope). For example, at PP1 only the first predicate is in

scope, and at PP0 none of the predicates are in scope (i.e.,

none of the variables in any predicate are in scope). The truth

values of predicates not in scope are recorded as X, which

stands for “unknown.”

Having instrumented the BubbleSort program with appro-

priate predicate evaluators, we run it with and without injected

faults, observe the abstract state transitions made, and superim-

pose the transitions in a predicate transition diagram. Multiple

such runs are performed, one for each permutation of a fixed-

size input array, in order to accomplish a higher degree of

coverage of all possible executions of BubbleSort. That em-

pirically ensures that our predicate transition diagrams indeed

represent over-approximations of the reachable state space

even though they are generated dynamically. The outcome is

the diagram of Figure 9. We use the following conventions in

this figure:

• The solid (black) edges are valid transitions observed

TABLE II
STATISTICS OF PREDICATE TRANSITION DIAGRAMS

Algorithm Invalid Transitions Valid Transitions Total

BubbleSort 38 (71%) 16 (29%) 54 (100%)
RadixSort 64 (72%) 25 (28%) 89 (100%)
QuickSort 35 (53%) 32 (47%) 67 (100%)
MergeSort 67 (47%) 76 (53%) 143 (100%)
HeapSort 56 (66%) 29 (34%) 85 (100%)

during both fault-free and faulty executions, under some

input.

• The dotted (red) edges are invalid transitions that are

never observed during fault-free runs; they are spurious

state transitions caused by fault injection.

Note that in our current prototype implementation, we carry

out the described predicate evaluation concretely at runtime.

In our future work, we plan to employ symbolic techniques

(e.g., [7], [8], [33]) to obtain predicate transition diagrams

automatically.

The benefit of obtaining predicate transition diagrams with

and without fault injection is that it provides an instantaneous

visualization of the effect of faults on the overall program

execution. In our future work, we plan to construct these

diagrams not just using control-flow predicates, but also in-

teresting program invariants. Furthermore, §V-D provides a

preliminary assessment of our fault detector synthesized using

the predicates employed in predicate transition diagrams. One

of the outstanding challenges in this line of research is to

synthesize such fault detectors that impact the computation

the least, and are effective in trapping the most number of

faults.

B. Generating Predicate Transition Diagrams

The general approach to build predicate transition diagrams

of the kind illustrated in Figure 9 is as follows:

• Given a collection of predicates and instrumentation

locations in the program, we instrument each of these

locations with a call to a predicate evaluation function.

This function takes predicates as inputs, evaluates them

at the given program location, and returns a three-valued

vector containing values true (T), false (F), and unknown

(X) for each predicate. An unknown value is generated

for a predicate if there is a variable in the predicate that

is undefined at the program point.

• For a given program, let δ be its fault-free predicate

transition relation and δF its predicate transition relation

under faults. These transition relations are defined for a

general program input.

• To combine these transition relations into a meaningful

and informative predicate transition diagram, we create a

solid (black) edge for every transition in δ and a dotted

(red) edge for every transition in δF \ δ.

C. Results

We apply the procedure described earlier on all our sorting

algorithms to generate their predicate transition diagrams.
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Fig. 10. Abstract Predicate Transition Diagram of QuickSort

Then, we perform a preliminary assessment of the usefulness

of the generated diagrams for estimating resilience of our

algorithms. Figure 10 shows the abstract predicate transition

diagram of QuickSort.5 If we do a visual comparison of

Figures 9 and 10, we can notice a higher degree of invalid

transitions (dotted edges) in the BubbleSort diagram. This

corresponds to the fact that the number of benign faults in

BubbleSort is much lower than in QuickSort (see Figure 7),

which in turn lead us to compare the degree of valid transitions

in our diagrams against the fraction of exhibited benign faults.

Table II gives statistics of the generated predicate transition

diagrams with respect to the number of valid and invalid

transitions. We compared the percentage of valid transitions

against the percentage of benign faults, and as it turns out,

there appears to be a rough correlation between these numbers:

5Note that detailed predicate transition diagrams for other sorting
routines are provided at https://github.com/soar-lab/KULFI/wiki/
Predicate-Transition-Diagrams-for-Various-Sorting-Algorithms.

higher percentage of benign faults typically implies higher per-

centage of valid transitions. While this is a very preliminary,

crude exploration that should be taken with a grain of salt, as

an area of future work we are planning to explore this and

similar connections further. For example, we could refine our

diagrams to include probabilities of particular transitions being

taken, which would enable us to reason more precisely about

how often particular invalid transitions are actually taken.

D. From Predicate Transition Diagrams to a Fault Detector

In this section, we summarize our preliminary experiments

that illustrate how a fault detector may be synthesized based

on insights gained from predicate transition diagrams. In a

predicate transition diagram, the presence of invalid transitions

may be leveraged to detect occurrences of transient faults.

Hence, we devise a simple approach that uses generated

predicate transition diagrams to automatically detect faults

occurring during execution of a sorting algorithm. First, we



TABLE III
FAULT DETECTION STATISTICS

Algorithm % Faults Detected

BubbleSort 66.0%
RadixSort 88.4%
QuickSort 100.0%
MergeSort 100.0%
HeapSort 33.7%

Average 77.6%

compute a complete set of reachable abstract states for a fault-

free sorting routine by running it on all possible inputs as

described previously. Obviously, every subsequent run of the

program under zero faults must visit only states within this

complete set. If not, we can surmise that the program execution

has experienced a transient fault. These transient faults may

result in a segmentation fault, turn out to be benign, or worse

still, result in an SDC.

In order to demonstrate the effectiveness of this approach,

we used KULFI to empirically test it on our sorting routines.

We run every sorting routine on an array of a given size

where each element is initialized to a random value. During the

execution, we inject exactly one transient fault using KULFI;

in addition, we make sure that we only keep faults that cause

SDCs and disregard others that we are not interested in. We

also capture the set of reachable abstract states and check

whether it is included in our initial complete set of abstract

states. If not, we report a detected fault. We perform these

experiments for all five sorting routines with input arrays of

size 200; each routine is repeatedly executed until 1000 SDC-

causing faults is reached. Table III shows the obtained fault

detection statistics. Note that the fault detection statistics refer

to the detection of only those faults which cause SDC in

our experiments. The column “% Faults Detected” gives the

percentage of faults (out of 1000 SDC-causing faults injected)

that our approach successfully detected. The fault detection

percentage varies from 33.7% all the way to 100%, with an

average of 77.6%, which clearly shows the promise of the

approach.

Clearly, sorting is an extreme example of a system where

data (i.e., the items being sorted) directly affects control

flow. In general, the degree to which data affects control

will determine the success of error detection based purely

on control-flow tracking. Another point worth noting is that

for a small-scale study such as ours, to build a reachable

predicate state space we execute a program on all possible

inputs. In the future, and especially for larger experiments, we

might use static analysis and/or sampling-based techniques for

building the reachable state space. We will also incorporate

lessons from previous work on control-flow tracking based

error detection cited earlier. Our hope is to bring in the insight

of predicate transition diagrams into this field.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a unique, thorough case study

of resilience of several popular and widely used sorting

algorithms to hardware faults. To be able to perform such

an extensive resilience study, we first implemented a new,

open source LLVM-level fault injector called KULFI. Faults

injected by KULFI at the LLVM level provide a reasonable

fault model for actual hardware faults. Using KULFI, we

performed an extensive empirical study that observed behavior

of sorting algorithms when faults are being injected. Based

on the statistically significant results of this study, we drew

informative conclusions about resilience of these algorithms.

Our empirical results and conclusions aim to serve as a

guidance for software developers that have to take resilience

into account when choosing an appropriate sorting routine for

their task.

Apart from the empirical case study, we also introduce

our novel predicate-abstraction-based approach for analyzing

resilience of programs. In the approach, we dynamically

generate abstract predicate transition systems for fault-free

and faulty executions. Then, we superimpose these systems

in a meaningful way in order to generate abstract predicate

transition diagrams that visualize fault propagation at the

higher, abstract level. Our abstraction seems to often explain

at the more manageable high-level the empirically measured

resilience of algorithms. In the end, we leverage our predicate

abstraction approach to build a simple fault detector, and we

show its effectiveness on our set of benchmarks.

There are numerous avenues for future work we are plan-

ning to explore. While abstract predicate transition diagrams

are a useful high-level visualization of the effects of faults,

more research is needed in coming up with the right visual

metaphors. Currently, our predicate abstraction prototype tool

performs abstraction dynamically, at runtime. In the long

run, we would like to employ well-known symbolic predicate

abstraction techniques instead. That would enable us to also

leverage automatically generated predicates of global system

invariants, instead of just relying on predicates we syntactically

observed in source code. Apart from improving our foun-

dational techniques, we will also perform similar empirical

resilience studies with other classes of algorithms. When we

find good ways to estimate resilience through empirical studies

and formal approaches, we will have the basis for selecting

among a class of algorithms those that emerge to be more

resilient. Finally, in addition to observing faults at a higher-

level, formal approaches may also help us design better fault

detectors, which is clearly an exciting direction of future

research. All these ideas will be experimented on a much

larger collection of benchmark examples drawn from scientific

computing and other areas.
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