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ABSTRACT
The Next Generation Air Transportation System (NextGen)
advocates the use of innovative algorithms and software to
address the increasing load on air-traffic control. AutoRe-
solver [12] is a large, complex NextGen component that
provides separation assurance between multiple airplanes up
to 20 minutes ahead of time. Our work targets the devel-
opment of a light-weight, automated testing environment
for AutoResolver. The input space of AutoResolver
consists of airplane trajectories, each trajectory being a se-
quence of hundreds of points in the three-dimensional space.
Generating meaningful test cases for AutoResolver that
cover its behavioral space to a satisfactory degree is a ma-
jor challenge. We discuss how we tamed this input space
to make it amenable to test case generation techniques, as
well as how we developed and validated an extensible testing
environment around AutoResolver.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic execution; D.2.5 [Software Engineering]: Test-
ing and Debugging—Testing tools

General Terms
Verification, Experimentation
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Figure 1: Loss of Separation and Resolution. Lateral
view of two airplanes, their trajectories, and areas
of horizontal separation assurance. Left: Conflict in
the near future. Center: Loss of separation. Right:
Detour that will prevent loss of separation.

1. INTRODUCTION

The Next Generation Air Transportation System (Next-
Gen) is a NASA research program that addresses the in-
creasing load on the air traffic control system through inno-
vative algorithms and software systems. This paper reports
on collaborative work between the Robust Software Engi-
neering (RSE) group and the NextGen group at the NASA
Ames Research Center. The work aims at developing an
automated, light-weight testing infrastructure for AutoRe-
solver, a proposed NextGen component for prediction and
resolution of loss of separation between multiple airplanes in
the 1 to 20 minutes time horizon. Loss of separation between
two airplanes occurs when they are closer to each other than
a predefined safe vertical or horizontal distance. Separation
assurance aims to eliminate the occurrence of loss of separa-
tion in the air space. Figure 1 shows a sketch of a potential
loss of separation between two aircrafts and how it can be
avoided by letting one airplane take a detour.

Testing AutoResolver presents various challenges. The
input data consists of several airplane trajectories, each tra-
jectory being a sequence of points in the three-dimensional
space that the airplane is expected to fly. If trajectory points
were exposed directly as input parameters to the testing
problem, the vast majority of generated test cases would
not correspond to a realistic airplane trajectory. It would
also be extremely hard to express constraints between tra-
jectory points to avoid this problem. Moreover, the Au-
toResolver logic involves millions of paths that must be
tested thoroughly. A practical challenge when testing Au-



toResolver is that it was designed and developed as a
component of a heavyweight airspace simulation environ-
ment named ACES [15].

Given the complexity of generating appropriate input data
for AutoResolver, the NextGen team typically uses his-
torical airport data recordings as test inputs. Such inputs
usually involve thousands of airplanes, and each test case
takes several hours to run. Note that it is hard to isolate
subsets of the airplanes that would lead AutoResolver to
similar behavior. Our efforts therefore concentrate on gen-
erating a light-weight but accurate enough testing environ-
ment, where thousands of test cases can be run within min-
utes to achieve some targeted coverage of AutoResolver.
To achieve this goal, our team has developed the following
components:

1. A wrapper that provides parameterized loss of sep-
aration scenarios for AutoResolver is presented in
Section 3. Each concretized scenario corresponds to
input airplane trajectories for AutoResolver. While
allowing flexibility through its input parameters, this
wrapper only generates realistic trajectories.

2. Stubs for the ACES database, which result in a less
precise, but significantly more light-weight testing en-
vironment overall (Section 3).

3. Black-box and white-box techniques for test case gen-
eration at the wrapper level, as described in Section 4.

4. Tools for evaluation of our developed environment. We
developed extensions to the coverage measuring tool
JaCoCo1 for comparing how different scenarios and
test case generation techniques contribute to test cov-
erage of AutoResolver (Section 5). We also con-
nected our tools to NextGen visualization tools and
evaluated the quality of the test inputs and the ACES
stubs that we created (Section 6).

In previous work, we focused on TSafe [16], a NextGen
component that also targets separation assurance but at a
shorter time horizon. Testing the more complex AutoRe-
solver system presented us with new challenges. TSafe
is a standalone application whose inputs consist of position,
airspeed, and heading for airplanes. This enabled us to gen-
erate inputs for the system directly; even so, only black-box
test case generation was successful at scaling for TSafe.
On the other hand, trajectory generation has been a major
challenge in testing AutoResolver, as has been the stub-
bing of the ACES system. Moreover, in the last four years,
we have developed robust white-box techniques; these have
been applied successfully to AutoResolver, as reported in
this paper. Finally, our new testing environment has been
integrated with NextGen tools to make its application and
evaluation simple and intuitive for NextGen developers.

Note that the topic of defining oracles for the testing pro-
cess, although crucial for automated testing, is not addressed
here. Similarly to TSafe [16], oracles are hard to define for
this type of problem. For example, AutoResolver produc-
ing a successful resolution does not necessarily correspond
to correct behavior, as the following requirement should be
met: “a proposed resolution should not create a more im-
minent conflict with a third aircraft”. We intend to identify

1http://www.eclemma.org/jacoco/

and formalize oracles in the future, in collaboration with the
domain experts.

2. AUTORESOLVER
The Advanced Airspace Concept (AAC) is a concept for

automating separation assurance in the future. A key fea-
ture of this concept is the use of multiple independent layers
of separation assurance for increased reliability. One com-
ponent of AAC is a strategic problem-solving tool known as
AutoResolver [12]. This algorithm was originally devel-
oped in the ACES environment taking full advantage of the
zero-error trajectory prediction available, and many studies
of the effectiveness of this algorithm in the zero-uncertainty
environment have been performed [13].

AutoResolver uses an iterative approach to resolve all
of the conflicts found by the conflict detection system. The
algorithm attempts to generate many different types of res-
olutions for each conflict. After the resolution trajectories
have been generated, the successful resolution expected to
impart the minimum airborne delay is chosen for implemen-
tation.

AutoResolver consists of approximately 65K lines of
Java code. For each resolution that it attempts, it commu-
nicates with ACES, a simulation environment whose core
consists of approximately 450K lines of code. Testing of
AutoResolver is typically performed using test cases of
4, 800 or 10, 000 airplanes, and take between 3 and 7 hours
to run. The results are monitored by domain experts to see
whether AutoResolver behaves as expected.

To ensure more systematic testing of the behavior of Au-
toResolver, potentially targeting some type of test cover-
age, a lighter-weight testing environment would be desirable
to complement the current testing process. The capability
to generate tests automatically would also be useful for gen-
erating smaller (in terms of numbers of airplanes involved),
more focused, and easier to run tests. The results of our col-
laborative work with the AutoResolver team in creating
such an environment are presented in the rest of this paper.

3. TEST ENVIRONMENT
As mentioned, the input to AutoResolver consists of a

set of trajectories as sequences of 300 points that an airplane
is expected to fly. Neighboring points are 5 seconds apart,
and each one describes the three-dimensional position of the
airplane (latitude, longitude, and altitude), as well as other
details such as airplane speed and heading. Based on these
trajectories, AutoResolver checks if loss of separation oc-
curs between any pair of airplanes within its time horizon
of 1 to 20 minutes. For any such pair, AutoResolver at-
tempts to resolve the loss of separation by proposing ma-
neuvers that modify the originally planned trajectory. The
ACES tool is responsible for creating new trajectories for
the proposed maneuvers.

3.1 Replacing ACES
ACES [15], developed at NASA Ames, is a sophisticated

tool that simulates airplane flights taking into account air-
plane characteristics as well as other factors that may affect
flight such as winds and weather. AutoResolver relies on
the ACES trajectory generation in order to evaluate reso-
lution maneuvers for each loss of separation scenario (as ).
Despite the fact that ACES is very precise, it is a heavy-

http://www.eclemma.org/jacoco/
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Figure 2: Integration of AutoResolver and ACES.

weight tool that adds a significant burden to the testing
process. In creating a light-weight testing environment, we
have therefore created stubs that replace the functionality
of ACES with more approximate behavior.

The main capability that our ACES stubs provide is the
generation and modification of airplane trajectories. In our
implementation, each airplane is associated with an abstract
trajectory. An abstract trajectory basically captures the in-
tent of a trajectory; it consists of a number of commands
that describe points in time at which the airplane changes
airspeed, heading, maintains some temporary altitude, or
climbs or descends to a target altitude. An abstract tra-
jectory with no commands corresponds to simply cruising
at the initial altitude with no heading or airspeed changes.
In our framework, the AutoResolver maneuvers are then
simply translated to the addition, removal, or modification
of commands in the abstract trajectory.

Consider, for example, the trajectories illustrated in Fig-
ure 3 (b) and (e). The resolution displayed in (e) cor-
responds to an Extend Altitude maneuver, which delays a
climb or descend command for a short period of time.

Abstract trajectories are turned into concrete trajectories
to be understood by AutoResolver. This is achieved by
computing flight points at 5 second intervals that correspond
to the abstract trajectory and initial airplane position. We
use the NASA open source WorldWind libraries [4] to per-
form required great circle calculations for computing lati-
tude and longitude.

3.2 Scenarios
How does one automatically generate airplane trajecto-

ries to exercise the behavior of AutoResolver? Our goal
with this work was to enable the application of existing test
case generation approaches to this complex system. As men-
tioned, it is practically impossible to automatically generate
realistic trajectories as sequences of unconstrained points in
the three-dimensional space.

Imagine, for example, that one was to use some sophis-
ticated symbolic execution tool [25, 30] to generate trajec-
tories that exercise the paths of the AutoResolver code.
Even if such a tool were able to scale to the size of the prob-
lem, the points generated by the tool would most likely not
correspond to a trajectory that can be flown by an airplane.
It would also be infeasible to introduce constraints between
the points to ensure that they represent a viable trajectory.
Moreover, our goal is for the majority of generated tests to
represent scenarios where loss of separation occurs.

Our approach to dealing with this problem is to create
a modular, extensible wrapper around AutoResolver that
implements parameterized loss of separation scenarios. Each
concretized scenario is translated into a set of trajectories
with which the wrapper invokes AutoResolver. Note that
loss of separation is handled for two airplanes at a time,
while each proposed resolution is evaluated against the set

of all airplanes in the airspace sector that AutoResolver
is currently handling (all other airplanes are called “sec-
ondary”). We therefore create loss of separation scenarios
between two airplanes.

In order to ensure that the test inputs that are thus gen-
erated mostly correspond to loss of separation scenarios, we
proceed as follows. First of all, a point is selected in three-
dimensional space, representing a position at which the two
airplanes will meet. Even though loss of separation will ac-
tually occur prior to the airplanes reaching that point, for
simplicity we will refer to this point as the loss of separa-
tion point. Given airplane heading, airspeed, altitude, an
abstract trajectory representing the targeted scenario, and
some time point t in the future at which the airplanes are to
reach the loss of separation point, we fly the two airplanes
backwards (headings are reversed) to reach their respective
initial positions. Trajectory generation is then used, as im-
plemented for the ACES stub, to create appropriate trajec-
tories for the two airplanes.

In the following, we describe three types of scenarios that
are currently implemented in our framework. These scenar-
ios are well understood by the AutoResolver developers
team to be standard loss of separation scenarios that may
exercise the behavior of AutoResolver in interesting ways.

The Cruise scenario represents the simplest case where
each airplane is in level flight (i.e., its altitude remains con-
stant). An example of such a scenario is illustrated in Fig-
ure 3(a). Since the exact position at which each scenario
occurs is not important, all parameters of one airplane are
kept constant, as is the point of loss of separation (its lat-
eral coordinates and altitude). However, we parameterize
the scenario on the heading (deg.) and airspeed (Kts.) of
the other airplane, as well as on the time (sec.) of loss of
separation and the offset (sec.) with which the airplanes
arrive at the specified point. By letting two airplanes pass
the same point in space with some time in between, we can
control if there will be a loss of separation, and create situ-
ations in which it is sufficient to slow down one airplane for
a little while in order to avoid a conflict.

In the Climb scenario, both airplanes climb or descend
for some portion of the short term trajectory. Figure 3(b)
illustrates such an example, where one airplane descends
and the other airplane climbs, and loss of separation occurs
during descent/climb. Variations of this scenario include
cases where the airplanes lose separation after one or both
of them level off. In addition to the input parameters of
the Cruise scenario, this scenario parameterizes the type
of trajectory for each airplane through the specification of
initial cruise (sec.) time, and the level-off (sec.) time, as
well as the climb (ft./min) rates.

The Turn scenario is similar to Cruise but introduces a
change of heading for one or both airplanes at some point in
the trajectory, as illustrated in Figure 3(c). In addition to
the input parameters of the Cruise scenario, this scenario
is for each airplane parameterized on the change of heading
(deg.) and the respective time of change (sec.).

We would like to stress that these are a subset of the
scenarios that one could define for this problem, and that
we are currently only dealing with loss of separation during
flight, as opposed to during arrivals and departures. We are
also not dealing with weather conflicts. The architecture
of our tool is extensible, making it easy for us, or the Au-
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Figure 3: Conflict Scenarios and Examples of Successful Resolutions. (a) Lateral view of Cruise conflict
and (d) resolution through Path Stretch maneuver; (b) longitudinal view of Climb conflict and (e) resolution
through Extend Altitude maneuver; (c) lateral view of Turn conflict and (f) resolution through Direct To
maneuver. Axes of lateral plots are longitude and latitude in degrees. Axes of altitude plots are time (in
milliseconds and minutes) and altitude in feet. Fig. (b) and (e) show commands from abstract trajectories.

AacTestWrapper,testCLCL,((climb1 != 0.0 || climb2 != ...
head1, DOUBLE, "[ 0.0 to 180.0 step 10.0]"
...
climb1, DOUBLE, "[-1500.0 to 1500.0 step 1500.0]"
cruise1, DOUBLE, "[ 0.0 to 240.0 step 120.0]"
levelOff1, DOUBLE, "[ 360.0 to 500.0 step 120.0]"
time, DOUBLE, "[ 120.0 to 540.0 step 60.0]"
...

Figure 4: TestGen Specification for Scenario Climb.

toResolver developers, to add more scenarios to exercise
additional behavior of the system.

4. TEST INPUT GENERATION
By instantiating with meaningful values the parameters

exposed by our test wrapper, it is possible to generate re-
alistic test cases for AutoResolver. In this section, we
present two different tools that we have developed for this
purpose. The two tools have very different philosophies and
characteristics, as described in detail below.

4.1 Black-Box Testing
To perform black-box testing, we developed a tool called

TestGen. TestGen generates test cases in a black-box
fashion, based on a declarative specification of the input
space of the system under test. TestGen takes as input a
method of some Java class and a description of ranges for
primitive parameter values that are to be tested. It then
generates test cases that correspond to the Cartesian prod-
uct of the input value ranges.

Figure 4 illustrates a TestGen specification for the Climb
scenario. Each scenario parameter is associated with a range
together with a step for generating values to be tested within
the range. For example, the heading values that are to be
tested consist of 0.0, 10.0, 20.0, . . . , 180.0. In addition, Test-
Gen also supports automatically filtering out uninteresting
cases. For example, the very first line of the specification
requires that the generated test cases include at least one
aircraft with a non-zero climb rate. This is to avoid gener-
ating tests that are covered by the Cruise scenario.
TestGen automatically generates all possible combina-

tions of the specified input values, filters out the uninterest-
ing ones, and turns the remaining ones into JUnit tests that
can be executed on the system under test. For the example
of Figure 4, TestGen generated 24,016 tests.

In our previous work [16], we used the Java PathFin-
der2 [36] open source model checking tool to generate black-
box tests. In this work, we decided to avoid using a heavy-
weight model checking tool to solve this relatively simple
problem. TestGen is intuitive to use. It can, if required,
automatically parse Java code to identify public methods
and their corresponding parameters, and create a csv spread-
sheet for developers to enter their test specifications.

4.2 Concolic Testing
JDart [22, 17] is a concolic execution [20, 31] engine

based on the Java PathFinder framework; it can be used
to generate test cases exercising a large number of paths
in a program. The tool executes Java programs with con-

2http://babelfish.arc.nasa.gov/trac/jpf
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crete and symbolic values at the same time, and records
symbolic constraints describing all the decisions (i.e., con-
ditional branches taken) along a particular execution path.
Combined, these path constraints form a constraints tree.
The constraints tree is continually augmented by trying to
exercise paths to unexplored branches. Concrete data values
for exercising these paths are generated using a constraint
solver. Even though we exclusively use Microsoft’s Z3 SMT
solver [10] at the moment, JDart is independent of a par-
ticular solver implementation thanks to a solver abstraction
layer.

The efficacy of concolic testing stands—and falls—with
the availability of a potent decision procedure for the re-
spective theory in which the program constraints are formu-
lated. As such, it seems unlikely that JDart would ever
be able to cope with a huge, complex system like AutoRe-
solver. However, under the motto failure is not an option,
we focused on improving the robustness of JDart to reap
the benefits of improving coverage even under adverse con-
ditions such as unsupported theories. The following para-
graphs briefly describe the major challenges we faced, and
how we were able to cope with or mitigate them.

Approximating Floating-Point Arithmetic. Unsur-
prisingly, AutoResolver makes heavy use of floating-point
calculations. At the time of publication, Z3 comes with only
a very rudimentary (and undocumented) implementation of
a floating-point theory. We quickly found that we would be
unable to benefit from this, especially as common operations
such as conversion between integers and floats are entirely
unsupported.

Therefore, similarly to some previous work [24, 3], we
chose a different approach of approximating floating-point
values using reals. While this approximation is not sound,
as it does not account for the limited-precision effects, it
might frequently yield valuable solutions—even if they are
incorrect (see below). Furthermore, in the latter case JDart
can be instructed to“try harder”by imposing additional con-
straints. For instance, if a constraint involving an integer-to-
float conversion yields an incorrect result, we will first try to
restrict the solution space to those integers that can be loss-
lessly stored in a floating-point number before giving up.
Similarly, the limited-precision effects affecting arithmetic
operations can be mitigated by restricting the relative differ-
ence of the operands involved. This, of course, increases the
chance that the solver might return don’t know or even un-
satisfiable (which also needs to be interpreted as don’t know
because of the additional constraints we imposed), but this
is no worse than the initial incorrect solution.

Another aspect concerns special floating-point values, such
as NaN (“Not a Number”) or infinity. These cannot be
mapped to a value in the solver’s theory on reals. In prin-
ciple, we currently assume that these values do not occur.
However, we intercept methods that are common sources of
NaN or infinity results, such as Math.asin: if the argument
is symbolic, we branch on whether it lies in the [−1, 1] in-
terval. As this branch is reflected in the constraints tree,
we at least identify some paths on which NaN values occur,
and can furthermore safely discard any symbolic information
about the function result.

Handling Native Calls. Most complex Java programs
make use of methods that need to be executed outside of
the JVM, e.g., if they are provided by a library implemented

in C. The Java PathFinder tool is not able to handle such
native calls out of the box. Instead, native calls need to
be reflected by so-called native peers, i.e., Java methods
that are executed in the host JVM (the JVM executing Java
PathFinder itself). Thanks to the recent jpf-nhandler ex-
tension,3 these native peers can now be generated automat-
ically on-the-fly for arbitrary third-party native methods.

However, we cannot keep track of symbolic information
during the execution of native methods, as this does not
happen under Java PathFinder’s control. JDart can be in-
structed to deal with this in three different ways (which can
be combined): (a) discarding all symbolic information and
simply continuing with the concrete value returned, (b) sym-
bolically annotating the return value with an uninterpreted
function over method parameters,4 or (c) performing sym-
bolic execution through a symbolic peer, which may aug-
ment the constraints tree and symbolically annotate return
values. These symbolic peers need to be implemented man-
ually. For AutoResolver, we used them to implement the
above-described branching in java.lang.Math methods pos-
sibly returning NaN. For trigonometric functions and other
mathematical functions we let JDart only annotate the re-
turn value symbolically with the function name. During
constraint solving we make some simple assumptions about
the ranges of these functions.

Dealing with Incorrect Solutions. The aforementioned
problems frequently cause the solver to return solutions which,
despite being correct modulo the employed theory, fail to ex-
ercise the intended concrete path in the program. Whether
this is due to the unsound approximation of floating-point
values by reals, or loss of symbolic information through a
native call, when analyzing a program like AutoResolver
such incorrect solutions have to be considered the default
rather than the exceptional case.

Simply discarding these solutions would hence be a huge
waste of computation time. Instead, JDart analyzes every
solution and tests if it can nonetheless be used to exercise
some (even if not the originally intended) path that is still
unexplored in the program. Hence, a computed concrete
solution is discarded only when we are absolutely sure that
no new information (i.e., paths) can be gained from it.

Selective Exploration. As described in Section 3.2, we
employ a wrapper to generate complex loss of separation
scenarios. This narrows down the input space from trajec-
tories consisting of 300 three-dimensional coordinates each
to a handful of floating-point variables, such as the airplane
speed or heading. To symbolically keep track of the effects
that these variables incur in the AutoResolver code, the
wrapper needs to be executed by JDart. JDart will then
try to exhaustively explore the behavioral space of the wrap-
per combined with AutoResolver.

However, given limited resources, it may be beneficial to
focus on maximizing path coverage for AutoResolver, and
not necessarily the wrapper. To achieve that, JDart can be
configured to explore the path-space selectively by suspend-
ing or resuming exploration upon method entry or exit. For
example, we could configure JDart to not explore the ini-
tialization phase (i.e., when executing the scenario genera-
tion wrapper). Exploration could be specified to start when

3https://bitbucket.org/nastaran/jpf-nhandler
4For non-pure native methods this is incomplete, but there
is no means of checking purity.
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a method of any class in the main AutoResolver package
nasa.arc.aac is invoked, and suspended again during meth-
ods of the uninteresting DataLogger class contained in this
package. This is complemented by the possibility of specify-
ing sets of input values for replay; JDart will replay these
cases and explore according to the above criteria.

5. COVERAGE ANALYSIS
In the previous sections, we described our infrastructure

for generating test suites for testing AutoResolver. The
generated tests must be evaluated both in terms of how well
they exercise the system under test, and also how realistic
they are with respect to the problem that is being solved.
We have established application-dependent measures of cov-
erage to complement standard structural coverage criteria
for AutoResolver. In this section, we describe these cri-
teria and the tool support that we have developed for eval-
uating and comparing test suites accordingly. Moreover, we
discuss how we have developed support for evaluating the
generated tests within visualization tools developed by the
AutoResolver team.

5.1 Coverage Metrics
Code Coverage. Among the multitude of code coverage
criteria that exist [1], branch coverage has been identified
as a good measure for comparison of test suite quality [18].
Moreover, path coverage (at the bytecode level), provides
the most exhaustive structural coverage for exercising all
behaviors of a system.

Branch coverage corresponds to the percentage of branch-
ing bytecode instructions (conditional jumps, or if and switch

statements on the language level) that have been executed
with both possible outcomes (jump or no jump). Each
branching instruction is considered in isolation. Path cov-
erage, on the other hand, also takes into account the com-
bination of the different branching instruction outcomes in
single executions.

Note that, in our experiments, we do not expect to achieve
100% coverage. First of all, our current scenarios do not
cover all the possible cases that AutoResolver is designed
to handle, such as arrivals and departures. It would be ex-
tremely hard for us to isolate the part of the code that deals
with our scenarios in order to establish a coverage target.
On the other hand, 100% coverage is very hard to achieve in
general, since it is a purely theoretical value. For example,
a program may contain unreachable code, the detection of
which is, in the general case, undecidable. Some branches
may not be satisfiable; determining whether the condition
of a branching instruction is satisfiable requires at the very
least a complete decision procedure for the underlying the-
ory.

For these reasons, we report our coverage results both in
terms of absolute numbers (of paths or branches covered)
and percentages.

Resolution Coverage. Branch and path coverage measure
the quality of a test suite at a very low level. A measure
more targeted to the system under test is to look at the sys-
tem’s high-level functionalities. As described in Section 2,
AutoResolver attempts different predefined maneuvers to
resolve loss of separation, and executes the optimal maneu-
ver among the successful ones. Hence, we introduce the res-
olution coverage metric by considering (1) maneuver types

Table 1: Maneuver Types.
ID Description

1 Temp. Altitude (climb to intermediate alt.)
3 Step Alt. (climb�level off�descend to original alt.)
4 Step Alt. (descend�level off�climb to original alt.)
5 Direct To (take a shortcut to route point)
8 Temp. Speed (temporarily increase/decrease speed)

13 Path Stretch (take a detour to route point)
15 Extend Altitude (extend current alt. for some time)
26 Offset (temporarily move to a parallel path)

that result in successful resolution attempts, (2) maneuver
types that are selected as the executed resolution, and (3)
how many unique combinations (sets of successful maneu-
ver types in order of application) of successful resolution
attempts are exercised while running a test suite.

The maneuver types attempted by AutoResolver in our
generated scenarios are shown in Table 1. This is only a
subset of all implemented maneuver types. Maneuvers not
shown in the table are outside the scope of our current sce-
narios. For instance, they are related to losses of separa-
tion during arrivals or departures, or to conflicts involving
weather, which we currently do not generate. Selection of
relevant maneuvers was performed for us by the AutoRe-
solver developers.

5.2 Analysis Tools
JaCoCo. JaCoCo is a free Java library for measuring code
coverage. We use this library to record branch coverage on
AutoResolver for the generated test suites.

CovComp. We developed CovComp to compare branch
coverage of different test suites. The tool uses the JaCoCo
library to measure branch coverage for multiple test suites
and then visualizes the differences. It displays branch cov-
erage for two individual test suites as well as for their union
at the level of classes or for the actual source code. Lines
with branching instructions in the code are colored accord-
ing to their coverage by the two test suites and their union.
We used CovComp for analyzing the differences in coverage
between generated test-suites in detail.

AacViz. AacViz is a tool for visualizing and replaying
resolutions produced by AutoResolver. It is used for de-
bugging and analyzing the behavior of AutoResolver by
its developers. To connect to AacViz, our wrapper and stub
code implementations output logging information to an SQL
database, which is the interchange format used by the Au-
toResolver development environment. We were thus able
to use AacViz to visualize the trajectories that we generate
in lieu of ACES, as well as trajectories that we generate in
response to attempted maneuvers by AutoResolver (e.g.,
see Figure 3). Hence, with the help of the AutoResolver
team, we were able to validate that our framework provides a
useful and realistic enough, low fidelity, testing environment
for the AutoResolver system.

6. EVALUATION
The components we have developed for testing AutoRe-

solver are assembled into a three-phase testing workflow
illustrated in Figure 5: data is shown as trapezoids and tools
as rectangles.
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Table 2: Statistics and Path Coverage for JDart Scenarios.
Explore

Scenario
No. of No. of Depth Decisions per Path Path Coverage Runtime

Wrapper Params. Seeds Limit Shortest Longest SAT UNSAT D/K [Sec.]

No
∆-Alt 1 2 ∞ 2,903 44,274 5 22,357 4 66
Level-Off 1 4 6,500 6,252 76,268 4 491 0 411
∆-Head 1 3 5,000 78,723 149,844 3 843 1,527 2,178

Yes
∆-Alt 30,000 5 33,132 19 78
Level-Off (as above) 2,000 (as above) 5 6,629 2,449 624
∆-Head 4,000 3 3,396 3,503 3,017

The first phase of the testing process consists of test-case
generation. TestGen and JDart (see Section 4) both take
as input a declarative specification for the target method,
also prescribing ranges or sets of valid inputs to this method.
The generated test cases target the wrapper scenarios for
AutoResolver. Test-case execution and information log-
ging happens during the second phase. We record branch
coverage using JaCoCo, path coverage using JDart, res-
olution coverage using the AutoResolver’s built-in log-
ging mechanism, as well as several performance statistics,
e.g., runtimes, sizes of test suites or path constraints. All
obtained results and statistics are analyzed and compared
during the third phase. We analyze and compare branch
coverage using the reports generated by JaCoCo and Cov-
Comp. Interesting or odd test cases can be studied in detail
using AacViz.

Our resulting framework is modular and extensible in all
of its components. It can easily accommodate new test-
case generation tools. Test specifications give us flexibility
in changing the focus of test suites within the domains of
the currently implemented scenarios. Additional scenarios
can be incorporated for arrivals/departures and for weather
conflicts. The abstract trajectories presented in Section 3.2
provide a robust basis for extending scenarios or defining
entirely new ones. Currently, we execute test cases with
JaCoCo to record code coverage. Since we generate JUnit
tests, we could also use other Java tools and record coverage
for alternative code coverage metrics.

In the following sections, we describe how we applied, eval-
uated, and validated our framework on AutoResolver.

6.1 Testing the AutoResolver
As discussed, our framework implements test scenarios

that tame the input space of AutoResolver by provid-
ing input parameters that enable the generation of realistic
trajectories. However, the input space of the scenarios is
still infinite since input values such as heading and speed
are continuous. Our test-case generation tools TestGen
and JDart have fundamentally different philosophies for
addressing this problem.
TestGen reduces the input space by enforcing discretiza-

tion of the specified input ranges, through the specification

of a step between values that it explores (see Figure 4).
JDart, on the other hand, relies on path constraints to cre-
ate equivalence classes of input values, where a single test
case is generated as a representative of each class. Bound-
ing the depth of exploration ensures that a finite number of
equivalence classes is created. We expect that JDart will be
successful in identifying tests that are not covered by Test-
Gen, when the step defined for the discretization of ranges
skips over values that are essential for covering specific paths
in the program.

Generating Tests with TestGen. To apply TestGen,
we define three scenarios that correspond to the ones dis-
cussed in Section 3.2, and specify value ranges and filters as
follows. In the Cruise scenario, headings for one airplane
range between 0 and 350 degrees with a step of 10 degrees.
We use airspeeds from 400 to 600 knots at increments of 50
knots. The time to loss of separation is set to whole min-
utes with a minimum of 1 minute and a maximum of 10
minutes. The time offset for the arrival at the point of loss
of separation is set from 0 to 40 seconds at intervals of 10
seconds, allowing for situations where no loss of separation
occurs. Ranges for all parameters were selected with help
of the developers of AutoResolver to create realistic con-
crete scenarios. A total of 9,000 test cases is generated as a
result (cf. Table 3).

For the Climb scenario, we let one or both airplanes climb
or descend at a climb rate of 1,500 feet per minute. Headings
range between 0 and 180 degrees at intervals of 10 degrees.
We do not use a time offset at the point of loss of separation,
and we use the same range for the time to loss of separation
as the Cruise scenario. Finally, we allow both airplanes to
start their climb/descent at multiples of 120 seconds and end
the climb/descent at multiples of 40 seconds. For Climb,
we include a filter that ensures that airplanes always cruise
at multiples of 1,000 feet (commercial aircrafts typically do
this) and do not climb above 35,000 feet. Moreover, to avoid
recreating Cruise scenarios, we use a filter to ensure that
at least one airplane climbs or descends. Altogether, this
results in 35,568 test cases, of which 34,784 exhibit loss of
separation (cf. Table 3).

For the Turn scenario, we use the same time and initial
heading ranges as for the Climb scenario. We allow both



Table 3: Resolution Coverage of Maneuvers by Test Suites per Scenario.

Tool Scenario
No. of No. of No. of Successful Executed Unique

Params. Tests Conflicts Resolutions Resolution Comb.

TestGen
Cruise 4 9,000 5,881 3, 4, 8, 13, 26 3(90.4%), 26(7.5%), 13(2.1%) 12
Climb 8 35,568 34,784 1, 3, 4, 13, 15, 26 15(72.2%), 3(19.6%), 4(4.8%), 13(3.1%), 26(0.3%) 34
Turn 6 72,960 49,484 3, 4, 5, 13, 26 5(47.3%), 3(35.7%), 13(16.4%), 26(0.6%) 21

JDart
∆-Alt 1 5 1 3, 4, 13, 26 3(100.0%) 1
Level-Off 1 4 3 4, 13, 15, 26 26(100.0%) 1
∆-Head 1 3 3 3, 4, 5, 13, 26 5(66.7%), 3(33.3%) 2

airplanes to change heading between −60 and 60 degrees
at a step of 30 degrees. Changes in heading are allowed at
multiples of 2 minutes. Our filters require that at least one
of the airplanes changes heading, thus avoiding to recreate
test cases covered by the Cruise scenario. With 72,960 test
cases, this is the largest test suite we generate. As discussed,
the filters that we use also ensure that the test suites for the
three scenarios are mutually disjoint (cf. Table 3).

Generating Tests with JDart. To apply JDart, we sim-
ilarly define three scenarios; these are small variations of the
scenarios for TestGen, or limited versions of them neces-
sitated by the scalability issues of this more sophisticated
tool.

∆-Alt fixes two airplanes in level flight. The only pa-
rameter exposed to JDart is the altitude difference at the
time of loss of separation. This is a variation of Cruise,
where the altitude difference was fixed to zero. We also con-
strain airplane altitudes to multiples of 1,000 feet, similarly
to TestGen.

Level-Off is a variation of the Climb scenario. We fix
two airplanes in a situation where one airplane is in level
flight and the other is climbing for some stretch of time. We
let JDart control the altitude difference at the time of loss
of separation. The effect in this case is different than in
the ∆-Alt scenario: since one airplane is in the process of
climbing at the time of loss of separation, this airplane does
not have to be at a multiple of 1,000 feet when the loss of
separation occurs. We only constrain the inputs that JDart
generates to an interval from −2,000 feet to 2,000 feet.

∆-Head is a variation of the Turn scenario. We fix all
parameters except for the change of heading for one of the
airplanes, i.e., JDart controls the new direction of the air-
plane’s flight. Similarly to the Turn scenario, the change of
heading ranges between −60 and 60 degrees.

We use two different configurations in our experiments
with JDart. In the first, we limit the initial exploration
until the execution enters AutoResolver; in the second,
we do not limit the start of the exploration, i.e., we explore
both the wrapper and AutoResolver, but, as a result, im-
pose stronger limits on the depth of exploration (i.e., the
depth up to which we negate path constraints to find new
executions). One configuration explores more paths, ana-
lyzing shorter prefixes of path constraints, while the other
one explores fewer paths but analyzes path constraints to a
greater depth. In both configurations we use a small number
of manually selected input values (seeds) as starting points
for the concolic execution.

Results. Table 2 reports statistics for test-case generation
with JDart. Note that we include both configurations, i.e.,
with and without wrapper exploration. The table shows
the number of parameters for each scenario, the number of
seeded input values, the manually fixed depth bound, the

number of satisfiable paths (used to generate test cases),
the number of unsatisfiable path prefixes, the number of in-
conclusive (don’t know, D/K) path prefixes, and runtimes.
Additionally, we ran JDart without a constraint solver and
only recorded the length of path constraints for the found
test cases. We report the length, in terms of number of
conjuncts, of the shortest and longest respective path con-
straint.

For all three scenarios, exploration proceeds faster and
deeper into AutoResolver when restricting exploration of
the wrapper. However, the test cases found in this deeper ex-
ploration are subsumed by the ones found in shallow explo-
ration. In general, few test cases are generated; as discussed
in Section 4.2, the high number of unsatisfiable path pre-
fixes is due to the exclusion of special floating-point values
NaN and infinity (methods isNaN() and isInfinite() are
used heavily in great circle computations). High numbers of
inconclusive path prefixes are seen for the ∆-Head scenario,
where symbolic parameters are often used in trigonometric
computations.

Table 3 shows the test suites that were generated for all
six scenarios and how the generated tests cover the maneu-
vers that AutoResolver uses to resolve conflicts. For each
scenario, we report the number of parameters exposed to
the test case generation tool (TestGen for the upper part
of the table and JDart for the lower part), the number of
tests generated, and the number of test cases exhibiting loss
of separation. We then report the set of successful resolu-
tions for each test suite, i.e., the classes of maneuvers that
resolve the loss of separation. (Note that AutoResolver
typically generates multiple successful resolutions for each
test case.) Among these resolutions, AutoResolver selects
a single one to be executed (executed resolutions). The table
reports the types of executed resolutions and the percentage
of test cases in the suite where they occur. Finally, we report
the number of unique combinations of successful resolutions
(see Section 5).

Unsurprisingly, TestGen generates much larger test suites
than JDart since it is cheap, fast, and unsophisticated—it
does not explicitly target coverage and does not attempt
to generate minimal test suites. Each TestGen test suite
(upper part of Table 3) includes unique successful resolu-
tions. Temporary Speed (8) maneuvers are only successful
in Cruise test cases. This maneuver became possible for
this scenario when we exposed as a parameter the offset in
time with which the airplanes arrive at the point of loss of
separation. Larger offsets, in combination with a temporary
change in airspeed, lead to both airplanes passing this point
with enough space to ensure separation. Temporary Altitude
(1) and Extend Altitude (15) maneuvers are only successful
in Climb scenarios since they do not apply to airplanes in
cruise flight. Finally, Direct To (5) maneuvers are only suc-
cessful in Turn, where the angle formed in the trajectory by



Table 4: Test Execution Times and Branch Coverage
for a Total of 10,568 Branches.

Scenario
No. of Execution Branch Coverage
Tests [Sec.] [No.] [%]

Cruise 9,000 333 1,800 17.0
Climb 24,016 1,101 2,000 18.9
Turn 72,960 3,451 1,843 17.4
∆-Alt 5 1 1,668 15.8
Level-Off 5 2 1,628 15.4
∆-Head 3 2 1,663 15.7

the change of heading can be shortcut by omitting a point in
the future route. The test cases generated with JDart for
the restricted scenarios cover only a subset of the successful
resolutions, executed resolutions, and unique combinations
covered by the corresponding TestGen generated tests for
the more general scenarios.

Finally, Table 4 shows execution times and achieved branch
coverage for all six test suites. As can be seen, in contrast
to the unique combinations coverage, the difference in per-
centual coverage between the smallest test suites (with only
three test cases) and the larger ones is modest. This in-
dicates that branch coverage may not be a good metric of
behavioral coverage for this application: AutoResolver
tries a limited set of maneuvers with different parameters in
changing order. All test cases exercise almost the same set
of maneuvers (maneuvers are tried to learn that they are not
successful). Additional coverage comes from (few) branches
when choosing parameters and rating successful maneuvers.

6.2 Discussion
The testing framework that we developed for AutoRe-

solver relies on four hypotheses that we assess in this sec-
tion based on our experimental results.

H1. The ACES stubs (a) allow for a light-weight and
targeted approach to testing AutoResolver, and (b) are
precise enough to yield meaningful results (see Section 3.1).

Evaluation. The hypothesis has two parts. Our experi-
ments show that we can run thousands of tests with a high
percentage of conflicts in minutes. Our environment accepts
small, approximate test cases, as opposed to fully detailed
scenarios with thousands of flights (not all of which are con-
flicts) corresponding to airport data.

The second part, namely that our stubs for ACES gener-
ate trajectories with sufficient precision, is harder to assess
without the help of domain experts. We tested this hy-
pothesis by logging trajectory and resolution data from test
cases and analyzing this data together with the developers
of AutoResolver (five trajectories for each of the three
scenarios). By expert judgment, our implementation of ma-
neuvers and generation of trajectories is good enough for
testing AutoResolver without ACES.

H2. Scenarios are sufficiently complementary and generic
to allow for exercising a relevant subset of the behavior in
AutoResolver (see Section 3.2).

Evaluation. To evaluate this hypothesis, we compared the
coverage contributed by each scenario. Figure 6 visualizes
the differences and overlap in coverage. It confirms the hy-
pothesis by showing that no scenario completely subsumes

another scenario in terms of coverage. Chart (a) compares
the overlap in unique combinations of successful resolutions
for the test suites generated with TestGen. For every pair
of scenarios, the lined and dotted parts of the bars represent
unique combinations that occur only in one scenario, while
the white area represents the number of unique combina-
tions that are exercised by both scenarios.

As can be seen, the overlap between the scenarios is sig-
nificantly smaller than the number of individually covered
combinations. This indicates that each scenario contributes
to the overall coverage of AutoResolver. Chart (b) visu-
alizes the overlap in branch coverage in the same fashion.
In this case, the overlap between scenarios is significant. As
mentioned, this indicates that branch coverage may not be
a good metric of behavioral coverage for this application.

H3. The parameterization of scenarios with only a few
primitive parameters is sufficient for generating test cases
of high quality (see Section 3.2).

Evaluation. At the current stage, we measure quality mainly
in terms of coverage, mostly concentrating on behavioral
coverage at the level of resolutions since this is an impor-
tant criterion for the AutoResolver team. In the future,
we plan on extending our work towards evaluating error-
finding capabilities of generated test cases.

The parameters that we expose control the airplanes in
the scenarios and enable us to create test cases that em-
ulate realistic situations. We checked our results for con-
sistency against the expectations of the developers of Au-
toResolver. They confirmed, for example, that Step Al-
titude maneuvers are expected to be chosen at a high rate
(90%) in the Cruise scenario as these maneuvers create very
little delay.

Further evidence that the hypothesis holds is provided by
the recorded branch coverage. We analyzed the coverage for
methods in the central classes of AutoResolver: though
branch coverage overall is low, for the targeted methods
(corresponding to maneuvers), the coverage is much higher
(approximately 50% on average). Uncovered branches are
mostly related to null checks on method parameters, and to
parameters of airplanes that we do not currently control in
our scenarios (e.g., flags that describe if an airplane can ma-
neuver). These flags could easily be exposed in additional
scenarios.

H4. The implementation of parameterized scenarios as an
interface between the tester and AutoResolver tames the
input space sufficiently to make AutoResolver amenable
to automated test case generation techniques (see Section 3.2).

Evaluation. This hypothesis is confirmed through the mere
fact that we were able to generate realistic input trajectories
for AutoResolver with both black- and white-box tech-
niques. Moreover, the other three established hypotheses
speak to the fact that the generated test cases are not only
realistic, but also useful for exploring the behavioral space
of this complicated system.

While we have spent considerable effort on making JDart
robust enough to run on AutoResolver, i.e., record and
analyze single paths, only the restrictions defined through
the scenarios drastically reduced the number of paths to be
analyzed.
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Figure 6: Coverage Comparison.

7. RELATED WORK
AutoResolver has previously been integrated and eval-

uated with other National Airspace System (NAS) simula-
tions which have non-zero trajectory prediction errors [26,
29, 33]. In contrast to these simulation-based approaches,
we address the problem of test-case generation.

The generation of structurally complex inputs is targeted
by several researchers. In a black-box setting, frameworks
like Korat [6] and Udita [19] support test case generation
through declarative specifications of the test inputs. In a
white-box setting, SAGE [21] is a fuzzer for security test-
ing based on concolic execution, applied successfully to Mi-
crosoft systems such as media players and image processors.
In [2], ideas from procedural content generation, an auto-
mated approach to generating content for computer games,
are used to generate complex test scenarios.

The generation of method sequences for object-oriented
systems is another focus of current testing research. In this
context, black- and white-box techniques are combined for
the generation of sequences and data values for primitive
method parameters, respectively [35, 23, 34]. JPF-Doop [11]
combines the Randoop approach [27] of feedback-directed
random testing with concolic execution (JDart) to improve
code coverage of testing Java software components. Garg
et al. [14] take a similar approach but for C/C++.

MACE [8] combines black- and white-box techniques (ac-
tive automata learning and concolic execution) to build an
abstract model of an application under test in order to in-
crease code coverage and exploration depth. MACE targets
testing of the protocol between a system under test and its
environment, and as such is not directly applicable to Au-
toResolver. However, our idea of restricting the initial
exploration of JDart in order to reach deeper into the Au-
toResolver code is similar in spirit to the MACE’s ap-
proach.

Existing test-case generation approaches can be added
to our testing framework for AutoResolver, e.g., plain

random input generation, or evolutionary test case gener-
ation [28], which targets large input domains and has been
used successfully in industrial applications [7]. However, as
already explained, it is impossible for any such tools to di-
rectly tackle the AutoResolver input space. Therefore,
they would have to be used as prescribed by this paper,
through our wrapper that tames the input space of the
problem. Note that the fact that AutoResolver makes
heavy use of nonlinear arithmetic and floating-point opera-
tions presents a major challenge for many existing tools.

Finally, some works focus on guiding or restricting test
case generation by program invariants inferred from execu-
tions [5, 9]. While our filters and input ranges are currently
derived manually from expert knowledge, it would be in-
teresting to investigate the potential of inferring these from
simulations of AutoResolver on recorded flight data.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we described collaborative work of several

years between formal methods and domain experts in gener-
ating a light-weight testing environment for a complex sys-
tem for separation assurance called AutoResolver. The
main challenge of this project has been to find a way to
tame the input space of AutoResolver. We achieved this
through the implementation of parameterized scenarios that
make the input space amenable to meaningful test case gen-
eration.

We developed a modular, extensible framework that puts
together several tools and techniques for test case gener-
ation, execution, and evaluation. Specifically, we stubbed
out ACES, developed TestGen and CovComp, put major
effort into robustifying and adding features to JDart, and
implemented logging to connect to AacViz used by the Au-
toResolver developers. Our efforts have paid off: we have
been able to generate thousands of meaningful test cases
that run in a matter of minutes.

In the future, we plan to extend the currently supported
test scenarios, introduce secondary aircrafts, as well as ex-
periment with new ways of combining our test-case gener-
ation techniques. For example, our experiments show that,
when limiting the exploration of the wrapper by JDart, the
space of behaviors that can be explored can be very narrow
unless the JDart seed values are chosen carefully. It would
be interesting to explore an approach where the tests gen-
erated by TestGen are used to create different paths for
entering the AutoResolver code for subsequent concolic
exploration.

Finally, our experiments have shown that trigonometric
constraints still limit the scalability of our concolic approach,
even though we have made advances in handling them. For
example, for the very restricted ∆-Head scenario, where
only the heading change of one airplane is explored, there
are 1,527 constraints that could not be solved, as opposed to
4 and 0 for the other scenarios under the same configuration
(see Table 2). We plan to investigate additional techniques
for dealing with trigonometric constraints such as using ran-
domized constraint solvers [32].
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