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Abstract
Tools for floating-point error estimation are fundamental to pro-
gram understanding and optimization. In this paper, we focus on
tools for determining the input settings to a floating point rou-
tine that maximizes its result error. Such tools can help support
activities such as precision allocation, performance optimization,
and auto-tuning. We benchmark current abstraction-based preci-
sion analysis methods, and show that they often do not work at
scale, or generate highly pessimistic error estimates, often caused
by non-linear operators or complex input constraints that define
the set of legal inputs. We show that while concrete-testing-based
error estimation methods based on maintaining shadow values at
higher precision can search out higher error-inducing inputs, suit-
able heuristic search guidance is key to finding higher errors. We
develop a heuristic search algorithm called Binary Guided Ran-
dom Testing (BGRT). In 45 of the 48 total benchmarks, including
many real-world routines, BGRT returns higher guaranteed errors.
We also evaluate BGRT against two other heuristic search methods
called ILS and PSO, obtaining better results.

Keywords Sequential and parallel programming; floating-point
error estimation methods; guided search.

1. Introduction
Computational errors caused by limited precision implementations
of floating-point routines are a central concern in high-performance
computing at all levels of scale ranging from high-end supercom-
puters through hand-held electronics. Researchers often allocate
limited precision to gain higher performance, and study this trade-
off using existing tools (e.g., [12, 31, 36]). Others have studied the
effect of parallelization strategy selection in the limited-precision
context, given that it has a direct impact on the effective shape of
expression trees (e.g., [2, 3, 9, 15, 16]).

There are many challenges in developing a general-purpose tool
for computing the worst error-causing inputs. The program struc-
ture as well as the operations employed can span a huge vari-
ety. Consequently, the output can exhibit high sensitivity to in-
put values as well as internal loss of precision. Closed-form so-
lutions for errors, or broadly applicable error-compensation tech-
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niques, are virtually impossible to develop except in special do-
mains (e.g., [25]). Short of exhaustive search, there are no obvious
ways to find the worst error-causing inputs. However, since real-
istic programs are quite complex and large, exhaustive search is
infeasible. The novel approach we propose is based on heuristic-
guided search, and we provide a new tool S3FP (input-space Sour-
Spot Searcher for Floating-Point) in support of this work. S3FP
can generate guaranteed lower-bounds on imprecision. To the best
of our knowledge, this is the first tool of its kind, which computes
guaranteed high lower bounds for many real-world programs, in-
cluding library functions within Magma [34], implementations of
FFT [39], benchmark suites such as Parboil [39], and also compo-
nents of active projects (e.g., Uintah [33], where, after significant
performance tuning, the developers sought our help to check for
precision loss). S3FP may also be used, for example, as an assistant
while publishing floating-point routines in a library—by tagging it
with the guaranteed lower-bound on relative error that a program-
mer can expect. Furthermore, it may find uses in auto-tuning com-
pilers where the search (for algorithms or implementations) may be
based both on performance and precision [2].

Automatic determination of inputs that cause high errors1can
be useful in many settings. In Precimonious [36], the allocation of
precision is based on manually provided training inputs; the work
in this paper can help automate this aspect. In recent work [17], the
authors report their initial efforts on proving safe separation zones
for aircrafts using the PVS theorem prover, and how these proofs
were re-done for finite-precision implementations in C. The authors
employed the static analysis tool Gappa [12] for estimating bounds
on variable values. We show in this paper that tools such as Gappa
can often generate pessimistic results, and therefore, it is possible
that the separation proofs will not carry over.2 In these cases, S3FP
can help confirm at least some of the Gappa findings as genuine,
allowing designers to probe further and refine their algorithm.

Related Work. Many existing tool-based approaches for preci-
sion estimation are based on static analysis, as supported by tools
such as Gappa [12] or SmartFloat [11]. While the use of Satisfi-
ability Modulo Theories (SMT) based tools is possible for more
precise estimation, we have not come across any such tools. Ideas
combining symbolic techniques and heuristics have been studied,
but not applied to the domain of imprecision analysis. (We later
study in §3.5 one of the algorithms used in previous work called
PSO [38].) Static analysis based precision estimation can yield pes-
simistic results (very high values of estimated relative error). This
problem becomes worse when non-linear operations are present, or

1 In §2, we define the term relative error and explain why we choose this as
our uniform metric (barring a few exceptions) for benchmarking.
2 The authors of [17] reported no such failure of proof carry-over, although
in personal conversation they agreed it was possible.



Benchmark Operators Used
Microbenchmarks {+,−, /}
Reductions (BR,IBR,IBRK ) {+,−}
DQMOM {+,−, /} (exp unrolled)
FFT {sin, cos,+,−, ∗, /}
LU and QR decomp, matrix mult. {+,−, ∗, /}

Table 1: Operators Used in our Benchmarks

when certain inputs are semantically related (we demonstrate these
through microbenchmarks in §2).

We believe that a practical way to handle large problem sizes,
complex code structures, as well as non-linear operators is to em-
ploy some kind of search over input configurations—mappings
of inputs to real-number intervals (e.g., for a two-input function,
a configuration may be: i1 7→ [0.5, 0.6], i2 7→ [1.5, 2.5]). Our
main contribution is a search method called Binary Guided Ran-
dom Testing (BGRT) for locating inputs that (heuristically) cause
the highest floating-point errors (“worst inputs”). For comparison,
we also implemented two other guided search methods to locate the
(inputs causing the) highest error: the first is based on Iterated Local
Search (ILS, [32]) and the second on Particle Swarm Optimization
(PSO, [26]). Our results are now summarized over 48 experiments
(Table 1 lists our benchmarks and the operators used in them):
• Unguided Random Testing (URT) found the highest error in 3

of the 48 experiments.
• BGRT found the highest error in 39 of the 48 experiments.
• ILS found the highest error in 5 of the 48 experiments.
• PSO found the highest error in 1 of the 48 experiments.
• Also, compared to URT:

BGRT found higher error in 45 of the 48 experiments.
ILS found higher error in 32 of the 48 experiments.
PSO found higher error in 22 of the 48 experiments.

To eliminate biases in terms of implementation, we confirmed
that BGRT produces these higher relative error values both for the
same overall runtime as well as for the same number of search steps
(Tables 6, 7, 8, and 10). Clearly, much like other search based al-
gorithms (e.g., Boolean satisfiability solvers), there is ample op-
portunity to further tune the heuristics of BGRT, now that we have
proposed one choice that appears to outperform previous methods.
In summary, our main contributions are these:
• We evaluate static analysis and SMT-based approaches for pre-

cision, and for the first time bring out their pros and cons.
• We offer BGRT as our current best choice for guided random

search, and evaluate it on real-world benchmarks (e.g., Parboil),
libraries (e.g., Magma), and sequential applications (e.g., linear
solver of DQMOM).
• We release the S3FP tool on our website [37] to help parallel

programmers conduct error analysis in practice.

2. Background and Microbenchmarking
We introduce error metrics commonly used in floating-point error
estimation followed by a microbenchmark-based study of various
existing tools, and finally our precision estimation techniques based
on shadow values.

The two most common indicators of floating-point error are ab-
solute error and relative error. For a program P whose output
is O, we use OR to denote P ’s output which is calculated under
infinite precision. We use OF to denote P ’s output which is cal-
culated under finite precision (such as 32-bit floating-point arith-
metic). The absolute error of P on its output O is then |OF −OR|.
The relative error on the output O is |(OF −OR)/OR|. When es-
timating relative error, the case of OR = 0 (which causes the
relative error to become undefined) must be properly handled. In

Tool Benchmark 1 Benchmark 2 Benchmark 3
Gappa Inf 7.7548e-16 NA
SmartFloat 1.0362e-15 NA NA
SMT 4.9960e-15 Timeout 2.4367e-14

Table 2: Experimental Results for Microbenchmarks. ‘NA’ stands
for the tool not handling the case correctly (see text). Timeout is set
to one hour.

this paper, we employ a padding constant, defining relative error
as |(OF −OR)/max(OR, δ)| similar to that employed in [5]. We
choose δ = 10−3, keeping it sufficiently away from 0 while being
relatively small with respects to the magnitudes of outputs in our
experiments.

We observe that floating-point precision has been approached
either through the metric of absolute error or relative error. For ex-
ample, SmartFloat reports relative errors by default. On the other
hand, Precimonious [36], an automatic floating-point bit-width al-
location tool, measures absolute error by default. In our work, we
select relative error as our default metric of floating-point error be-
cause, compared to absolute error, the scale of relative error is not
related to the scales of the precise (OR) and the imprecise (OF)
values. This property of relative error is helpful in pinpointing and
isolating those instructions that introduce the most floating-point
error in a program.

Recently, some floating-point precision estimation efforts have
focused on detecting specific phenomena such as catastrophic can-
cellation [5, 29]. BGRT can complement such efforts.

There are three main approaches for abstract analysis of floating-
point precision: interval arithmetic, affine arithmetic, and satisfia-
bility modulo theories (SMT). Abstract analysis over-approximates
floating-point error. It is generally used when verifying safety cri-
teria such as separation proofs for aircraft [17].

Interval arithmetic tools [12, 14] are usually combined with
proof assistants such as Coq [10] to work as lemma genera-
tors [6, 7]. Interval arithmetic based approaches tend to produce
pessimistic results when computed values are interdependent (e.g.,
when one value is generated as the sum of two inputs x + y and
the other as x − y, their sum must be recognized as x + x). This
situation is illustrated in Fig. 1a and further explained later in this
section.

Some interval arithmetic tools such as Gappa employ ex-
pression re-writing to improve this situation. Affine arithmetic
tools [11, 31] handle input dependencies better. However, when
applied to precision analysis of programs, they cannot smoothly
handle path conditions. While SMT [24, 27] based approaches3 do
not have these limitations, they are, however, limited by scalabil-
ity. While SMT has recently been used for floating-point exception
detection [4], their approach does not help with error estimation.

We use four benchmarks, three microbenchmarks and one real-
world benchmark, to illustrate the limitations of abstract analysis.

• We selected one tool from each abstract analysis approach to
measure the worst-case relative errors on the outputs of the four
benchmarks.
• For interval arithmetic approach, we selected Gappa [12].
• For affine arithmetic approach, we selected SmartFloat [11].

3 An approach to encode floating-point round-off errors was published
in [24], and the method of using binary search for bounding floating-point
numbers was published in [27]. A single tool combining these is what we
implemented; we have not encountered such a tool by others, yet.



1: double x0 ← [1.0, 2.0], x1 ← [1.0, 2.0],
x2 ← [1.0, 2.0]

2: double p0 ← (x0 + x1)− x2
3: double p1 ← (x1 + x2)− x0
4: double p2 ← (x2 + x0)− x1
5: double sum← (p0 + p1) + p2
6: compute error: sum // (x0 + x1) + x2

(a) Microbenchmark 1

1: double sum ← 0.0, x0 ← [1.0, 3.0], . . .,
x7 ← [1.0, 3.0]

2: for i = 0 to 7 do
3: sum← sum+ xi
4: end for
5: assume 1.0 ≤ x0 . . . x7 ≤ 2.0
6: compute error: sum

(b) Microbenchmark 2

1: double x← [−1.0, 1.0], y ← [−1.0, 1.0]
2: assume x ≥ y + 0.1 ∧ y ≥ 0.0 //

(x− y) > 0
3: double z = (x+y)/(x−y) // divide-by-

zero is impossible
4: compute error: z

(c) Microbenchmark 3

Figure 1: Microbenchmarks

Tool OR OF Rel. Error
Gappa [−9e+ 10, 9e+ 10] [−9e+ 10, 9e+ 10] 7.3186e+09
SmartFloat [−9e+ 10, 9e+ 10] [−9e+ 10, 9e+ 10] 2.2207e-11
SMT [−9e+ 05, 9e+ 05] [−9e+ 05, 9e+ 05] Timeout

Table 3: Results Returned by Abstract Analysis Tools on DQMOM.
Timeout is set to one hour.

• For SMT approach, we built our own tool that uses Z3 [13] as
its underlying solver. (The ideas of building this SMT based
tool are proposed in [24, 27]).
• Table 2 shows the worst-case relative errors detected by tools

for our microbenchmarks.
• Table 3 shows output ranges and the worst-case relative errors

detected by tools for our real-world benchmark.

Microbenchmark 1 (see Fig. 1a) illustrates the scenario that in-
terval arithmetic approaches could return pessimistic results. With-
out thoroughly considering the dependencies among p0, p1, and p2,
the range of sum is [0, 9]. (The true range is [3, 6].) When calculat-
ing the relative error of sum, 0 is considered to be a possible value
of the precise sum. Thus, interval arithmetic tools, which cannot
precisely reason about variable dependencies, could report infinite
as the bound of the sum’s relative error.

Microbenchmark 2 (see Fig. 1b) illustrates the scalability prob-
lem of SMT (timeout in Table 2). Also, this microbenchmark
contains a condition, encoded using the assume statement, which
SmartFloat cannot handle. In particular, note that SmartFloat pro-
vides predicate functions, called possibly and certainly, to check
whether a condition is possibly true or certainly true. In the mi-
crobenchmark, SmartFloat could check that 1.0 ≤ x0 . . . x7 ≤ 2.0
is true at line 5. However, SmartFloat cannot take the condition (on
line 5) into account when computing floating-point error. Thus we
report ‘NA’ as SmartFloat’s result for this microbenchmark.

Microbenchmark 3 (see Fig. 1c) illustrates the scenario that
mixes conditions and non-linear operations. Both Gappa and
SmartFloat were unable to handle this microbenchmark. To the
best of our knowledge, Gappa, a state-of-the-art interval arithmetic
tool, relies on saturation based solving to handle additional con-
ditions in measuring floating-point error. In our experiments with
this microbenchmark, Gappa failed to find the bounds of x− y. On
the other hand, given its precision, SMT successfully handled such
scenario.

Table 3 shows the results of using abstract analysis tools to
measure the range of the output values (computed both under finite
and infinite precision) and the relative error of DQMOM. (We
introduce DQMOM in §4.1.) We can observe that both interval
and affine arithmetic tools, namely Gappa and SmartFloat, returned
overly pessimistic results. We manually calculated the range of the
outputs and verified that SMT’s results were equal to our manually
generated answers. Thus we can conclude that SMT has potential to

P A program
I1 . . . In Input variables of P
R1 . . . Rn Value ranges (provided by users)

Ri
p/q

p, q ∈ N, 0 ≤ p < q

If Ri = [x, y] then

Ri
p/q =[
x+ (y−x)∗p

q
, x+ (y−x)∗(p+1)

q

]
C1 . . . Cn

Configurations: functions from
input vars to their ranges

Eval : P × C × N 7→ F
Evaluation of a program
under a configuration

URT Unguided Random Testing
BGRT Binary Guided Random Testing
ILS Iterated Local Search
PSO Particle Swarm Optimization

RT
Random Testing;
one of {URT, BGRT, ILS, PSO}

GRT
Guided Random Testing;
one of {BGRT, ILS, PSO}

Table 4: Terminology and Notations

precisely measure floating-point error. However, when estimating
the relative error for DQMOM, SMT was limited by its scalability.

To summarize, we conclude that the interval-arithmetic-based
approach for floating-point precision measurement cannot han-
dle input dependencies well (illustrated in Fig. 1a). The affine-
arithmetic-based approach cannot estimate floating-point error
while considering additional conditions (illustrated in Figs. 1b
and 1c). On the other hand, the SMT-based approach could over-
come both of these limitations. However, it is limited by its scalabil-
ity (illustrated in Fig. 1c and Table 3). Therefore, when measuring
floating-point precision for parallel programs, we consider none of
the three approaches is a suitable solution.

3. Guided Random Testing
3.1 Terminology and Notations
We now introduce terminology and notations common to all our
guided-search discussions (see Table 4).

Shadow Value Execution. Given a program P and its legal (in-
tended) range of inputs, we execute P under the given precision
setting, and also conduct a higher (“infinite”) precision execution.4

Given these outputs of P , we can compute the absolute/relative er-
rors, as described in §2.

4 Given the high difficulty of correctly modifying all external benchmarks
to the same higher precision, we sometimes have ended up choosing 64 bits
and sometimes 128 bits for our “infinite” precision. However, within each
comparative study, we employ only one high-precision allocation.





I0 7→ [0.0, 1.0]
I1 7→ [0.0, 1.0]
I2 7→ [0.0, 1.0]
I3 7→ [0.0, 1.0]
I4 7→ [0.0, 1.0]
I5 7→ [0.0, 1.0]
I6 7→ [−1.0, 1.0]
I7 7→ [−1.0, 1.0]
I8 7→ [−1.0, 1.0]


(a) Original Configuration

k Rel. Error
101 3.7270e-07
102 1.6205e-06
103 1.4213e-05
104 1.6553e-04
105 2.7246e-04
106 8.6022e-04

(b) Evaluation Results

Figure 2: Original Configuration of DQMOM and its Evaluation
Results

Valid Input. Here we describe how a valid input is found. For an
input variable Ii of a program P , there is a corresponding (floating-
point) value range Ri that contains all possible values of Ii. If I1
is the only input of P , a valid input is a random value in R1. If
P has multiple input variables I1 . . . In, a valid input is a random
sampling, one from each range R1 . . . Rn. We often denote Ri by
[x, y] where x ≤ y. A sub-range Ri

p/q , where 0 ≤ p < q, is a
subset of Ri defined by[

x+
(y − x) ∗ p

q
, x+

(y − x) ∗ (p+ 1)

q

]
Configuration. A configuration is a function from program in-
puts to ranges of values. For two configurations, cx and cy , cy is
tighter than cx if they have the same domain (input variables) and
for every i in this domain, cy(i) is contained in cx(i). In our work,
we assume that users supply the initial configurations, starting from
which the search proceeds seeking the tightest configuration that
maximizes error (within resource limits, and perhaps finding a lo-
cal maximum).

Evaluation of a Configuration. During GRT, an initial configu-
ration will be recursively divided into tighter configurations. (The
intuition and the algorithm are introduced in §3.4.) We need to eval-
uate (tighter) configurations and compare them through shadow
value computations. More specifically, for a configuration C, we
sample k valid inputs from C and also perform shadow value ex-
ecution k times on the program P . From the k measured floating-
point errors, we use the highest one as the evaluation result. Func-
tion Eval takes a program, a configuration, and an integer as its
arguments. For example, Eval(P,C, k) evaluates the given config-
uration C by performing shadow value execution k times on P ,
and reports the highest measured floating-point error. Finally, one
configuration is chosen as “better” based on such comparisons.

3.2 Intuition behind Guided Random Testing
In this section, we give an intuitive description of GRT methods,
using the Direct Quadrature Method of Moments benchmark (DQ-
MOM, detailed in §4.1) as an illustrative example. First, Fig. 2a
shows the initial (user-given) configuration of DQMOM mapping
9 program inputs I0 . . . I8 into their ranges. Fig. 2b shows its evalu-
ation results (highest relative error obtained) after the shown num-
ber of evaluations (trials) going from 101 . . . 106. As is to be ex-
pected, the higher the k parameter in Eval(P,C, k), the higher is
the generated relative error. Fig. 3 illustrates the intuition further
with two experiments: Exp1 and Exp2 . For each experiment, we
find a “good” and “bad” configuration to replace the initial con-
figuration, and then we evaluate both. Note that both good and bad
configurations are tighter than the initial configuration. Figs. 3a and
3b show the bad and good configurations of Exp1 and Exp2 , re-
spectively. Fig. 3c gives the highest computed relative errors for
these four configurations. Figs. 3d and 3e plot the comparison of

the computed relative errors for the original configuration, and the
bad and good configurations of the two experiments. From these
two plots we can observe the following:
• With higher number of iterations k, the exhibited error in-

creases.
• The choice of the initial configuration matters.
• After only a few iterations (i.e., 10–100), it is possible to select

a better/worse error inducing configuration.
The search heuristics we have experimented with attempt to capi-
talize on these observations.

3.3 Unguided Random Testing

Algorithm 1 Unguided Random Testing
1: Input: P , Cinit

2: Output: Computed highest floating-point error
3: WorstErr ← 0.0
4: while has resources do
5: CurrErr ← Eval(P,Cinit, 1)
6: if CurrErr >WorstErr then
7: WorstErr ← CurrErr
8: end if
9: end while

10: return WorstErr

Unguided random testing takes as input a program to measure
floating-point error for and its initial configuration. Then it just
repeatedly samples inputs from the initial configuration and com-
putes the highest floating-point error by performing shadow value
executions. Algo. 1 shows the pseudocode of unguided random
testing. It basically repeatedly calls the evaluation function Eval
until running out of the given resource limit (runtime or the total
number of shadow value executions).

3.4 Binary Guided Random Testing
In this section, we describe our custom binary guided random test-
ing (BGRT) algorithm, which is the best guiding heuristic we dis-
covered so far. BGRT takes the initial configuration, and iteratively
zooms into tighter configurations that result in higher error. Each
BGRT iteration starts with an configuration (not necessary the ini-
tial), enumerates some of its tighter configurations, and selects the
one that (locally) maximizes the error. The selected tighter config-
uration starts the next BGRT iteration. With a certain probability,
we also allow restarts to the user-given initial configuration so that
we prevent getting stuck in a local maximum.

To explain how BGRT enumerates tighter configurations, we
first introduce some helper routines. PartConf randomly parti-
tions a configuration into two non-empty configurations such that
the domains are mutually exclusive and exhaustive with respect to
the domain of the incoming configuration. For example, cq and cr
could be one possible result of PartConf (cp):

cp :

 I0 7→ [−1, 1]
I1 7→ [0.1, 0.2]
I2 7→ [−0.2,−0.1]


cq :

{
I0 7→ [−1, 1]
I2 7→ [−0.2,−0.1]

}
cr :

{
I1 7→ [0.1, 0.2]

}
We define the upper half and the lower half configurations of an
incoming configuration c as

︷︸︸︷
c and c︸︷︷︸, respectively. The upper

half is obtained by changing each range (say Ri) of the incoming
configuration to its upper half sub-range (i.e., Ri

1/2). Examples
of the upper and the lower halves of the configuration cp are as
follows:

︷︸︸︷
cp :

 I0 7→ [0, 1]
I1 7→ [0.15, 0.2]
I2 7→ [−0.15,−0.1]

 cp︸︷︷︸ :

 I0 7→ [−1, 0]
I1 7→ [0.1, 0.15]
I2 7→ [−0.2,−0.15]





Bad Config. Good Config.

I0 7→ [0.3, 0.4]
I1 7→ [0.2, 0.3]
I2 7→ [0.2, 0.3]
I3 7→ [0.3, 0.4]
I4 7→ [0.2, 0.3]
I5 7→ [0.2, 1.3]
I6 7→ [−0.5,−0.4]
I7 7→ [−0.4,−0.3]
I8 7→ [−0.3,−0.2]





I0 7→ [0.6, 0.7]
I1 7→ [0.4, 0.5]
I2 7→ [0.9, 1.0]
I3 7→ [0.9, 1.0]
I4 7→ [0.9, 1.0]
I5 7→ [0.4, 0.5]
I6 7→ [0.9, 1.0]
I7 7→ [−0.7,−0.6]
I8 7→ [−0.1, 0.0]


(a) Bad and Good Configurations of Exp1

Bad Config. Good Config.

I0 7→ [0.1, 0.2]
I1 7→ [0.0, 0.1]
I2 7→ [0.0, 0.1]
I3 7→ [0.0, 0.1]
I4 7→ [0.1, 0.2]
I5 7→ [0.0, 0.1]
I6 7→ [−0.8,−0.7]
I7 7→ [−0.9,−0.8]
I8 7→ [−0.8,−0.7]





I0 7→ [0.0, 0.1]
I1 7→ [0.8, 0.9]
I2 7→ [0.0, 0.1]
I3 7→ [0.8, 0.9]
I4 7→ [0.1, 0.2]
I5 7→ [0.6, 0.7]
I6 7→ [0.3, 0.4]
I7 7→ [−0.9,−0.8]
I8 7→ [−0.9,−0.8]


(b) Bad and Good Configurations of Exp2

k
Exp1 Exp2

Bad Config. Good Config. Bad Config. Good Config.
101 1.4218e-07 1.9292e-05 2.0404e-07 1.4894e-05
102 1.6768e-07 3.1482e-05 2.1905e-07 1.7829e-05
103 2.1361e-07 1.6898e-04 2.4907e-07 4.0045e-04
104 2.2047e-07 5.2483e-04 3.0191e-07 1.3234e-03
105 2.4011e-07 1.3093e-03 3.3055e-07 1.7865e-03
106 2.5629e-07 1.6118e-03 3.6362e-07 4.3456e-03

(c) Evaluation Results of Bad and Good Configurations
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Figure 3: Two Experiments Illustrating the Intuition behind GRT

These are both tighter configurations with respect to the incoming
configuration.

NextGen (in Algo. 2) is a function that takes an configuration
(conf ) and enumerates a set of its tighter configurations (held by
nextg) to explore. NextGen first partitions conf into two config-
urations cx and cy . Then it finds the upper and lower halves of
the two partitions and permutes them. Such divide-and-permute
will be repeated Npart times, which is one of the parameters of

BGRT. Note that
︷︸︸︷
cx ∪

︷︸︸︷
cy =

︷︸︸︷
conf . Thus, we add the upper

and the lower halves of conf into nextg once in the beginning of
NextGen . In NextGen , we use ∪ to denote the union of the two
tighter configurations (with disjoint domains) into one configura-
tion. We use ] to denote forming a set of configurations (discrimi-
nated union).

Algo. 2 shows our BGRT algorithm. A BGRT iteration is shown
from lines 16–30. The starting configuration of a BGRT iteration
is LocalConf , and it is used to enumerate tighter configurations
(NextConfs) at line 17. From the enumerated tighter configura-
tions, we choose the one whose evaluation results in the highest
error (lines 18–24). The number of shadow value executions k is
also a parameter of BGRT. Lines 25–27 keep track of the all-time
highest floating-point error in WorstErr . Line 29 resets the start-
ing configuration to the user-given initial configuration if BGRT
decides to restart.

3.5 Other Guided Random Search Strategies
Beside BGRT, we have also implemented and explored two other
GRT strategies: iterated local search (ILS) and particle swarm opti-
mization (PSO). However, our experimental results currently show
that ILS and PSO do not usually find higher floating-point errors
than BGRT. The reason why we explored ILS and PSO is that they
have been successful in finding (heuristically) optimal solutions for
other problems. ILS is used in a framework called ParamILS [22]
that automatically searches for optimal parameter settings of algo-
rithms. It defines neighborhood relationships between models in

Sequential Parallel (GPU)
BR IBR DQMOM FFT LU QR MM

Original 32 32 32 32 32 32 32
High Prec. 128 128 128 128 64 64 64

Table 5: Benchmark Precisions Used in Shadow Value Execution

a search space, and searches for the optimal model by iteratively
evaluating selected models and their neighbors. PSO is used in a
randomized constraint solver called CORAL [38] that is capable of
finding floating-point models for given floating-point constraints. It
keeps track of a group of models with their evaluation results, finds
the next group to explore based on the current group, and reports
the optimal among all explored models. In this paper, we omit the
details of our implementations of ILS and PSO; those details can
be found on our website [37].

4. Experimental Results
To assess the effectiveness of the four proposed random search
techniques, namely URT, BGRT, ILS, and PSO, we implemented
them in our prototype tool S3FP and compared on our bench-
mark suite. The benchmark suite includes both sequential and par-
allel programs. Our sequential benchmarks comprise of balanced
reduction (BR), imbalanced reduction (IBR), and direct quadra-
ture method of moments (DQMOM). Although DQMOM itself is
sequential, we extracted it from a parallel computational frame-
work [33]. Our parallel benchmarks are well-known GPU prim-
itives including fast Fourier transform (FFT), LU decomposition
(LU), QR decomposition (QR), and matrix multiplication (MM).
FFT is taken from Parboil parallel benchmark set (v0.2) [39]; LU,
QR, and MM are from Magma library (v1.4.0) [34].

All examples in our benchmark suite perform 32-bit floating-
point arithmetic. To be able to perform shadow value execution,
we created higher precision versions employing 64- or 128-bit



Algorithm 2 Binary Guided Random Testing
1: Input: P , Cinit, k, Npart

2: Output: Computed highest floating-point error
3:
4: procedure NextGen(conf )

5: nextg ←
︷︸︸︷
conf ] conf︸︷︷︸

6: for i = 1 to Npart do
7: (cx, cy) = PartConf (conf )

8: nextg ← nextg ] (
︷︸︸︷
cx ∪ cy︸︷︷︸) ] ( cx︸︷︷︸∪ ︷︸︸︷cy )

9: end for
10: return nextg
11: end procedure
12:
13: WorstErr ,LocalErr ← 0.0
14: LocalConf ← Cinit

15: while has resources do
16: LocalErr ← 0.0
17: NextConfs ← NextGen(LocalConf )
18: for c ∈ NextConfs do
19: err ← Eval(P, c, k)
20: if err > LocalErr then
21: LocalErr ← err
22: LocalConf ← c
23: end if
24: end for
25: if LocalErr >WorstErr then
26: WorstErr ← LocalErr
27: end if
28: if random restart then
29: LocalConf ← Cinit

30: end if
31: end while
32: return WorstErr

floating-point arithmetic. Table 5 summarizes the floating-point
bit-width of the original benchmarks and their higher precision
versions. Although various versions of the benchmarks compute
with different bit-widths, S3FP generates only 32-bit floating-point
numbers as inputs. Using exclusively 32-bit floating-point inputs
guarantees that, when doing shadow value execution, the original
and higher precision version are executed on identical inputs. If we
used higher bit-width (i.e., 64- or 128-bit) inputs instead, we would
immediately lose precision when type casting to 32-bit inputs for
the original benchmarks, and the two executions would potentially
diverge.

Outputs of most of our benchmarks are arrays or matrices, and
hence defining relative errors for such benchmarks is not trivial.
Our strategy for measuring relative errors for such benchmarks is
to select one of the output array/matrix elements as a representative
output, and measure only its relative error. This manual selection
process is based on our study of the benchmarks: we chose the
elements which are calculated using the highest number of floating-
point operations since these are likely to exhibit the largest relative
errors.

To perform a meaningful comparison of our random testing
methods, we relied on measuring (or limiting) two different re-
sources. The first resource is elapsed time, where we would limit
the allocated running time (i.e., set a time out) to, for example,
one hour. This gives us a good estimate of how well the pro-
posed random testing techniques work in practice. However, it
includes potential algorithm and implementation overheads. The

Algo. IBRK (2048) BR (2048) IBR (2048) DQMOM (960)

Exp1

URTp 3.6151e-03 1.4106e-02 1.1035e-01 8.8729e-03
BGRTp 2.7132e-01 9.6636e-01 4.4229e+01 6.0333e+00
ILSp 2.5134e-02 4.3401e-01 5.0068e-01 4.6705e-02
PSOp 8.6183e-03 1.4833e-01 5.2374e-02 1.0133e-02

Exp2

URTp 3.1396e-02 3.5851e-01 3.2051e-01 2.4357e-03
BGRTp 2.9659e-01 8.0504e-01 1.3488e+01 1.8198e+00
ILSp 2.1614e-02 7.9974e-02 5.2502e-02 7.6498e-03
PSOp 3.1449e-02 2.7312e-01 9.4350e-01 5.9729e-03

Table 7: Relative Errors for Sequential Benchmarks. The number
of allowed shadow value executions is set to 106.

second resource we measure is the total number of times a shadow
value execution is repeated. This demonstrates the power of RT
techniques under the assumption that all have the same algo-
rithm/implementation overhead.

We have implemented in S3FP both sequential and parallel ver-
sions of all four runtime testing methods. In our tables with results,
URT, BGRT, ILS, and PSO denote single-core implementations,
while URTp, BGRTp, ILSp, and PSOp denote multi-core imple-
mentations. We parallelized URTp by allowing simultaneous calls
of Eval(P, ci, 1). BGRTp, ILSp, and PSOp are parallelized by al-
lowing a call of Eval(P, ci, k) to simultaneously perform shadow
value executions. However, our current multi-core implementations
can only be applied to sequential benchmarks. We will explore
more parallelism in GRT implementations and apply them to par-
allel benchmarks in our future work.

4.1 Results for Sequential Benchmarks
Our benchmark suite contains four sequential programs. The se-
quential balanced reduction (BR) simulates parallel reduction [18],
while the sequential imbalanced reduction (IBR) simulates mul-
tiple threads accumulating values using atomic operations. Since
we have not fully investigated how non-deterministic thread inter-
leavings affect floating-point precision, we converted parallel re-
ductions into sequential versions to perform this comparison. This
allows us to compare IBRK , IBR, and BR. These examples are fur-
ther discussed in §5. IBRK is a variant of IBR that employs the
more precise Kahan summation [25]. In our experiments, all BR
and IBR input variables are initially mapped to ranges [−100, 100].

The direct quadrature method of moments (DQMOM) is a core
function of a combustion simulation component of Uintah compu-
tational framework [33]. DQMOM models the transform of particle
density between moments, converts the transform as a linear sys-
tem AX = B, and solves the system. In our initial configuration
of DQMOM, the first 3/5 input variables are mapped to [0.0, 1.0]
and the last 2/5 input variables are mapped to [−1.0, 1.0].

Table 6 gives the (highest) relative errors discovered by the four
random testing methods on our sequential benchmarks within one
hour time budget. In the table, “# SVE” denotes the total number
of shadow value executions. (A call to Eval(P, ci, k) is counted
as k shadow value executions.) The input size (the number of
input variables) of each benchmark is given in parentheses next
to the benchmark name. For each benchmark, we compared the
four methods twice (denoted as Exp1 and Exp2), and highlighted
the highest relative error using bold font. Table 7 shows the results
of running RT methods with the same number of shadow value
executions (106). From Tables 6 and 7, we can observe that BGRT
usually returns the highest errors. Fig. 4 plots the results in Table 6.

4.2 Results for Parallel Benchmarks
For our parallel benchmarks, we have verified that their computa-
tional results (and hence, our error estimation) are unaffected by
thread schedules, based on the following lines of reasoning. First,
we assume the absence of data races (checking for races using tools



Algo. BR (512) IBR (512) DQMOM (240)
rel. error # SVE rel. error # SVE rel. error # SVE

Exp1

URTp 2.7416e-02 1.2*106 1.8757e-01 1.2*106 8.8585e-03 1.2*106

BGRTp 4.3774e-01 1.1*106 3.5947e+00 1.2*106 1.0000e+00 1.2*106

ILSp 8.4400e-02 8.8*105 2.9171e-01 8.7*105 1.1611e-02 1.1*106

PSOp 1.5789e-02 1.0*106 2.7611e-02 1.0*106 8.6954e-03 1.1*106

Exp2

URTp 2.1344e-01 1.2*106 4.1944e-01 1.2*106 4.1150e-02 1.2*106

BGRTp 3.6824e-01 1.1*106 1.7659e+00 1.1*106 1.0000e+00 1.2*106

ILSp 1.3739e-02 8.8*105 6.5749e-02 8.7*105 8.2554e-02 1.1*106

PSOp 3.5282e-02 1.0*106 1.1199e-01 1.0*106 1.5171e-02 1.1*106

(a) Small Input Size

Algo. BR (2048) IBR (2048) DQMOM (960)
rel. error # SVE rel. error # SVE rel. error # SVE

Exp1

URTp 1.4106e-02 6.4*105 1.1035e-01 6.5*105 8.8723e-03 6.6*105

BGRTp 9.6636e-01 6.1*105 4.4229e+01 6.1*105 1.0000e+00 6.4*105

ILSp 4.3401e-01 2.2*105 5.0068e-01 2.2*105 2.0105e-02 4.3*105

PSOp 3.9677e-02 4.6*105 4.4608e-02 4.6*105 1.0133e-02 5.9*105

Exp2

URTp 1.1031e-02 6.4*105 7.3680e-02 6.4*105 2.4357e-03 6.6*105

BGRTp 8.0504e-01 6.0*105 6.8056e+00 6.1*105 4.4318e-01 6.4*105

ILSp 7.9974e-02 2.2*105 4.8452e-02 2.0*105 2.7101e-03 4.3*105

PSOp 2.7312e-01 4.6*105 9.4350e-01 4.6*105 5.9729e-03 5.9*105

(b) Large Input Size

Table 6: Relative Errors for Sequential Benchmarks. Time budget is set to one hour.
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Figure 4: Relative Errors for Sequential Benchmarks. Time budget is set to one hour.

Algo. FFT (512) LU (256) QR (256) MM (770)
rel. error # SVE rel. error # SVE rel. error # SVE rel. error # SVE

Exp.1

URT 1.9481e-02 8.0*104 6.8969e-03 4.8*104 3.5228e-02 4.8*104 3.5777e-04 4.8*104

BGRT 2.3552e-02 8.0*104 1.7481e-02 4.9*104 3.0875e-02 4.5*104 1.2014e+01 4.8*104

ILS 3.8490e-03 7.9*104 9.3943e-03 4.9*104 3.9905e-04 4.8*104 2.0271e-02 4.8*104

PSO 4.7028e-03 8.0*104 1.2302e-03 4.8*104 1.2890e-02 4.2*104 7.0844e-04 4.7*104

Exp.2

URT 7.0919e-03 8.0*104 6.2447e-04 4.9*104 5.0282e-03 4.8*104 2.1496e-03 4.9*104

BGRT 2.0740e-02 8.0*104 1.8670e-02 4.9*104 6.1168e-02 4.7*104 2.5339e+00 4.8*104

ILS 2.8143e-02 8.1*104 5.3179e-03 4.9*104 2.2136e-03 4.8*104 1.0493e-03 4.8*104

PSO 1.2055e-02 8.0*104 1.3823e-03 4.8*104 2.0000e+00 4.7*104 1.9052e-03 4.8*104

(a) Small Input Size

Algo. FFT (2048) LU (1024) QR (1024) MM (3074)
rel. error # SVE rel. error # SVE rel. error # SVE rel. error # SVE

Exp.1

URT 9.9671e-03 7.7*104 1.1942e-03 4.8*104 3.2723e-02 4.6*104 1.0016e-02 4.6*104

BGRT 3.4312e-02 7.6*104 2.6197e-02 4.8*104 1.9540e-01 4.6*104 3.1161e+00 4.6*104

ILS 6.8418e-02 7.5*104 3.3736e-03 4.7*104 2.1083e-02 4.7*104 1.6710e-01 4.4*104

PSO 3.5419e-03 7.6*104 2.8987e-03 4.7*104 4.3618e-02 4.1*104 8.6908e-04 4.1*104

Exp.2

URT 1.9560e-03 7.7*104 1.1742e-03 4.8*104 1.6825e-01 4.7*104 1.5422e-02 4.6*104

BGRT 1.2580e-02 7.6*104 2.5969e-02 4.8*104 1.0213e-01 4.6*104 1.7881e-01 4.6*104

ILS 4.4445e-02 7.5*104 7.9298e-03 4.8*104 3.9839e-02 4.7*104 7.6199e-03 4.4*104

PSO 1.4056e-02 7.5*104 9.3751e-03 4.7*104 8.1161e-02 4.6*104 3.2531e-03 4.5*104

(b) Large Input Size

Table 8: Relative Errors for Parallel Benchmarks. Time budget is set to one hour.

such as [30] is future work). Second, we have manually verified that
there are no schedule-dependent reduction operations (automation
of these checks is future work).

All input variables of our parallel (GPU) benchmarks are ini-
tially mapped to [−100, 100]. Table 8 shows the computed relative
errors for our parallel benchmarks given one hour time limit. We
can observe that BGRT returns the highest relative errors in most
of our experiments with parallel benchmarks. When limiting the

number of shadow value executions as resource, BGRT still works
the best among all four RT techniques (see Table 10). Fig. 5 plots
the results from Table 8.

In Table 8, the largest input matrix size is 32 × 32. However,
we observed that if the LU and QR benchmarks are called with
these sizes, they directly call LAPACK [1] routines to sequen-
tially compute the results. Table 9 show the results of applying
larger input matrix size (1200 × 1200) that triggers GPU (paral-
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Figure 5: Relative Errors for Parallel Benchmarks. Time budget is set to one hour.

Algo. LU (1440000) QR (1440000)
rel. error # SVE rel. error # SVE

Exp.1

URT 8.1670e-04 1630 1.4829e-01 2600
BGRT 5.3323e-02 1440 2.0008e+00 2130
ILS 6.4743e-03 1210 7.3494e-02 1670
PSO 3.9983e-03 1160 1.8321e-02 1580

Exp.2

URT 3.0200e-03 1630 1.9998e+00 2600
BGRT 2.1163e-02 1440 2.0009e+00 2140
ILS 6.1338e-05 1210 8.9875e-03 1670
PSO 1.7010e-02 1160 9.2871e-03 1570

Table 9: Relative Errors for LU and QR with Large Input Matrices.
Time budget is set to one hour.

FFT (2048) LU (1024) QR (1024) MM (3074)

Exp1

URT 9.9671e-03 1.1942e-03 3.2723e-02 1.0016e-02
BGRT 3.4312e-02 2.6197e-02 1.9540e-01 3.1161e+00
ILS 4.0819e-02 3.3736e-03 3.6521e-02 1.6710e-01
PSO 3.5419e-03 3.1306e-03 4.3618e-02 8.6908e-04

Exp2

URT 1.9560e-03 1.1742e-03 1.6825e-01 1.5422e-02
BGRT 3.1750e-03 2.5969e-02 1.0213e-01 1.7881e-01
ILS 3.8323e-02 7.9298e-03 3.9839e-02 2.7150e-02
PSO 1.4056e-02 9.3751e-03 8.1161e-02 3.2531e-03

Table 10: Relative Errors for Parallel Benchmarks. The number of
allowed shadow value executions is set to 5 ∗ 104.
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Figure 6: Relative Errors for Parallel Benchmarks with 1200×1200
Input Matrices. Time budget is set to one hour.

lel) computations in LU and QR. Fig. 6 plots the results from Ta-
ble 9. For the LU benchmark which performs LU decomposition,
A = P × L × U , we calculate the product of P , L, and U , and
measure the precision on one of the elements in the produced ma-
trix. This precaution is required because the permutation matrices
(P s) computed by different precision versions may be different.

Note that in our experiments in §4.1 and §4.2 we only compute
relative errors. However, we also performed limited experiments
showing that BGRT also successfully generates higher absolute
errors than URT. Table 11 gives the computed absolute errors for
our parallel benchmarks with time out set to one hour. BGRT still
returns the higher errors than URT in most of the experiments.

4.3 Discussion
From our experimental results we can observe that BGRT found the
highest floating-point error 39 times out of 48 experiments total.
The intuition behind such success of BGRT is that it could often
“zoom in” to a certain configuration that potentially causes high
floating-point error. By observing Figs. 3d and 3e, we could make
a hypothesis: bad inputs (inputs that result in low errors) and good
inputs (inputs that result in high errors) are not equally spaced in
the input domain. In other words, for a configuration, there may
exist a tighter configuration that contains many good inputs. On
the other hand, there may exist a tighter configuration that contains
many bad inputs. BGRT iteratively applies this hypothesis and
iteratively searches for “better” configurations Our experimental
results empirically show that the intuition is useful for measuring
floating-point error in practice. However, ILS and PSO do not
follow this hypothesis: when they encounter a configuration that
is evaluated to high error, they try to find a similar, but not a tighter
configuration, to explore. (Two configurations are similar if they
have the same domain and map most of the input variables to the
same ranges. But for those input variables which are mapped to
different ranges, those ranges are mutually exclusive.)

Finally, note that the algorithm tuning parameters of BGRT,
ILS, and PSO in our experiments were manually explored (e.g.,
k andNpart in BGRT, see Algo. 2). In particular, we manually var-
ied parameter settings for the GRT techniques and chose the best
one for our experiments. Admittedly, applying different parameter
settings to different GRT techniques could give them different ca-
pabilities of generating floating-point errors. We plan to investigate
automatic methods for tuning GRT parameters in our future work.

5. Applications
Combining Random Testing with Automatic Performance Tun-
ing. Automatic tuning tools (e.g., [28, 36]) increase program per-
formance by lowering floating-point bit-width of input variables
or instruction operands while at the same time satisfying a user-
provided precision constraint. The constraint is usually in the form
of an upper bound on floating-point error. A common approach to
checking whether a tuned program satisfies the precision constraint
is to concretely execute it with user-given or randomly generated
inputs. However, such inputs may not result in highly imprecise
outputs of the program. Consequently, the tuned programs may fre-
quently violate the expected precision constraint in practice. Our



Algo. FFT (512) LU (256) QR (256) MM (770)
abs. error abs. error abs. error abs. error

Exp1
NRT 9.8124e-05 2.7483e-05 2.0435e-03 5.7346e-01
BGRT 1.2366e-04 2.9065e-04 1.3575e-02 3.3573e+01

Exp2
NRT 1.0980e-04 2.6175e-05 5.0654e-03 6.8767e-01
BGRT 1.0325e-04 1.3049e-03 2.8785e-02 3.1175e+00

(a) Small Input Size

Algo. FFT (2048) LU (1024) QR (1024) MM (3074)
abs. error abs. error abs. error abs. error

Exp1
NRT 1.5593e-04 7.3125e-04 4.1454e-02 1.6142e+00
BGRT 1.6951e-04 3.5286e-04 1.1190e-02 8.6679e+00

Exp2
NRT 1.5268e-04 9.5654e-05 1.9666e-03 1.2067e+00
BGRT 1.5341e-04 1.2441e+00 5.7901e-03 8.0260e+00

(b) Large Input Size

Table 11: Absolute Error for Parallel Benchmarks. Time budget is set to one hour.

GRT approach could provide inputs that result in highly imprecise
outputs to such automatic performance tuning tools. Hence, using
GRT the final tuned programs are expected to violate the precision
constraint in practice much less frequently.

Input Generation for Floating-point Error Detection. Recently
proposed tools [5, 29] pin-point the critical instructions of a pro-
gram that cause high floating-point errors. They employ shadow
value execution and keep track of each value’s shadow value. By
comparing the original and shadow values they can find the source
of floating-point imprecision. However, such technique highly de-
pends on provided inputs: if the inputs result in precise outputs,
the tools may not accurately point out the imprecision-causing in-
structions. Our GRT approach could enumerate inputs resulting in
highly imprecise outputs, thereby increasing precision of floating-
point error detection.

Algorithm Comparison. Mathematically analyzing numerical er-
rors of algorithms is a tedious process, and it is not feasible that
algorithm designers perform it for their every new algorithm. We
believe that our random testing methods would provide the design-
ers with solid empirical data about the numerical error of their algo-
rithms. Publishing such data with an algorithm would in turn help
programmers to select algorithms based on the numerical precision
needs of their software. For example, Table 7 shows a compari-
son of three reductions: balanced (BR), imbalanced (IBR), and Ka-
han summation (IBRK ). The reductions calculate the summation
of a set of 32-bit floating-point values. However, Kahan summa-
tion uses an additional 32-bit floating-point number to hold round-
off value which “compensates” floating-point error. Such compen-
sated summation is suggested to be a more precise way to sum-
marize floating-point values [20]. Indeed, in Table 7 all random
testing methods reported that Kahan summation has lower relative
floating-point error than the other two. A programmer could rely
on such data to make a more informative choice when exploring
various trade-offs involving floating-point precision. We plan to in-
vestigate how to use GRT to more accurately compare numerical
precision among various classes of algorithms.

6. Future Work
Combining Random Testing with Input Constraint Generation.
A weakness of our current GRT methods, including BGRT, ILS,
and PSO, is that they do not guarantee path coverage. In other
words, given a set of randomly generated inputs, there may exist
some program paths which are not traversed using these inputs.
However, if there exists a path which could generate highly im-
precise results, it is highly likely to be traversed sufficiently many
times by our methods. Otherwise, the final floating-point error of
the program may be heavily under-approximated. (Figs. 3d and 3e
suggest that the fewer traversals of a path, the lower the floating-
point error detected from it will be.)

A potential approach to improving path coverage of GRT meth-
ods is combining them with weakest precondition [21] inference,
and related symbolic input generation techniques [8]. These tech-
niques can help GRT methods generate equal number of inputs for

each path, or even bias toward some designated paths. For example,
one can generate input constraints that help reach specific program
points. The difficulty of reasoning about floating-point values (not
well-supported by current SMT tools) may be overcome by up-
coming progress in SMT, and perhaps also by approximating the
reasoning (perhaps sufficient to bias search).

Fair Floating-point Range Division. BGRT, ILS, and PSO di-
vide floating-point ranges into sub-ranges with various granular-
ity. For example, when generating the “upper half” of a configu-
ration (see §3.4), we divide each range in half. For example, we
divide [2.0, 32.0] into [2.0, 17.0] and [17.0, 32.0]. However, based
on IEEE-754 standard [23], floating-point numbers are not equally
spaced between the largest and the smallest floating-point num-
bers. Hence, the number of floating-point numbers in [2.0, 17.0] is
not equal to the number of floating-point numbers in [17.0, 32.0].
(In fact, [2.0, 17.0] contains more floating-point numbers.) A side-
effect of such unfair division is that we may bias some floating-
point numbers to be chosen as input values. A fair division on
[2.0, 32.0] is [2.0, 8.0] and [8.0, 32.0] such that the two sub-ranges
contain the same amount of floating-point numbers. Our prelimi-
nary experiments are not conclusive to show that such fair division
could result in finding higher floating-point error—we are planning
to explore this direction further.

Compositional Random Testing. Random testing could some-
times be expensive, in particular when even one run of the program
under test takes a long time. In addition, input size could be very
large as well. For example, Table 12 shows our experimental results
for the parallel FFT from the NAS Parallel Benchmarks (NPB),
MPI version [35]. The input of this benchmark contains about 0.5
million floating-point numbers, while the number of shadow value
executions performed in an hour is about 8.5 ∗ 102. Hence, only a
tiny fraction of the input space can be covered in an hour, which
is sometimes not enough to find a satisfactory floating-point error.
These are some challenges for GRT to detect high floating-point
error for large-scale programs. A potential solution is to extract
critical functions using a custom static analysis, and then focus
RT only on those. For example, a large FFT program (Cooley-
Tukey FFT [19]) recursively breaks down discrete Fourier trans-
forms (DFTs) into smaller DFTs, and then gathers their results.
We could potentially precisely measure the floating-point error for
DFT, and leverage it to compositionally estimate the floating-point
error of the whole program. We will further investigate such com-
positional GRT approaches for handling large scale programs.
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Algo. FFT (524288)
rel. err. # SVE |abs. err.| # SVE

Exp1
URT 4.9803e-07 870 8.8437e+00 880
BGRT 4.6859e-07 830 1.6545e+01 790

Exp2
URT 5.6224e-07 870 9.9878e+00 870
BGRT 5.3524e-07 840 9.6160e+00 760

Table 12: Experimental Results on a Large Scale Program: Parallel
FFT of the NAS Parallel Benchmarks (NPB)
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