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Abstract. We describe JDart, a dynamic symbolic analysis framework
for Java. A distinguishing feature of JDart is its modular architecture:
the main component that performs dynamic exploration communicates
with a component that efficiently constructs constraints and that inter-
faces with constraint solvers. These components can easily be extended
or modified to support multiple constraint solvers or different exploration
strategies. Moreover, JDart has been engineered for robustness, driven
by the need to handle complex NASA software. These characteristics,
together with its recent open sourcing, make JDart an ideal platform
for research and experimentation. In the current release, JDart sup-
ports the CORAL, SMTInterpol, and Z3 solvers, and is able to handle
NASA software with constraints containing bit operations, floating point
arithmetic, and complex arithmetic operations (e.g., trigonometric and
nonlinear). We illustrate how JDart has been used to support other
analysis techniques, such as automated interface generation and testing
of libraries. Finally, we demonstrate the versatility and effectiveness of
JDart, and compare it with state-of-the-art dynamic or pure symbolic
execution engines through an extensive experimental evaluation.

1 Introduction

JDart is a dynamic symbolic analysis framework for Java, under development
at CMU and NASA Ames Research Center since 2010. Our main goal in devel-
oping JDart has been to build a dynamic symbolic analysis tool that can be
applied to industrial scale software, including complex NASA systems. To reach
this goal, we faced challenges that required a significant amount of design and
engineering effort by several researchers over multiple years.

Our main design guideline has been to strive for a modular and extensible
architecture. As such, our vision has been for JDart to be a platform for ex-
perimentation not only in symbolic analysis, but also in other areas of research
? Supported in part by NASA Contr. NNX14AI09G and NSF CCF 1421678/1422705.



that may use symbolic analysis as a component. JDart has now reached a level
of robustness and efficiency that makes it ready for use by a wider community
of researchers and practitioners. With the opportunity of JDart’s recent open
sourcing 1, this paper describes the characteristics of the tool that make it unique
in its field. Moreover, it presents an extensive experimental evaluation of JDart,
comparing it with state-of-the-art tools on a variety of benchmarks, in order to
provide interested users with an understanding of its strengths and weaknesses
relative to other similar frameworks.

As mentioned, the key distinguishing feature of JDart is its modular archi-
tecture. The two main components of JDart are the Executor and the Explorer .
The Executor executes the analyzed program and records symbolic constraints
on data values. It is currently realized as an extension to the Java PathFinder
framework [19, 35]. The Explorer determines the exploration strategy to be ap-
plied. It uses the constraints library JConstraints (developed as part of the
JDart project) as an abstraction layer for efficiently encoding symbolic path
constraints and provides an interface for a variety of constraint solvers. JDart’s
current release supports the CORAL [31], SMTInterpol [4] and Z3 [22] solvers.
Furthermore, JDart provides several useful extensions, such as method sum-
marization and jUnit test case generation, that leverage the results of dynamic
symbolic analysis. Note that all these components of JDart can be configured,
extended, or replaced.

In addition to being easily extensible and configurable, JDart can also be
used as a symbolic execution component within other tools. In particular, we
discuss two such uses of JDart: Psyco [13,16] and JPF-Doop [7]. The former
is a tool that uses automata learning and dynamic symbolic execution to auto-
matically generate extended interfaces for Java library components. The latter is
a tool that combines random feedback-directed generation of method sequences
with dynamic symbolic execution for automatic testing of Java libraries.

Among benchmarks that we use to showcase the capabilities of JDart, we
emphasize a NASA case study that has been our main challenge and driver for its
development over the years. JDart has been used to generate tests for the Au-
toResolver system — a large and complex air-traffic control tool that predicts
and resolves loss of separation for commercial aircraft [9, 12]. Within this con-
text, JDart has demonstrated the capability to handle programs with more than
20 KLOC containing bit operations, floating point and non-linear arithmetic op-
erations (e.g., trigonometric), and native methods from java.lang.Math. For
the benchmarks considered in our experimental evaluation, we also demonstrate
that, from the set of available and maintained symbolic execution tools, JDart
is the most stable and robust.

Note that a preliminary version of JDart was presented earlier in [6]. Since
then, we have added support for additional constraint solvers and exploration
strategies, which are included in the open source release and discussed in this
paper. We have also conducted a thorough evaluation of JDart on multiple
benchmarks and compared it to state-of-the art tools.

1 JDart is available on GitHub: https://github.com/psycopaths/jdart

https://github.com/psycopaths/jdart


public class Example {
private int x;
public Example(int x) {

this.x = x;
}
public int test(int i) {

if (i > x) assert false;
int tmp = x;
x += i;
return tmp;

}
}

public static void main(String[] args) {
Example e = new Example(100);
System.out.println(e.test(0));

}

Fig. 1: Simple Java software under test (SUT) example. Method test() com-
pares parameter i to field x and can lead to an assertion failure.

Synopsis. The rest of the paper is organized as follows. Sec. 2 introduces dy-
namic symbolic execution. Sec. 3 describes the architecture of JDart and its
usage in other analysis techniques. Sec. 4 discusses features of JDart and re-
lated tools. Sec. 5 gives an extensive experimental evaluation with benchmarks
that include NASA examples. Our conclusions are discussed in Sec. 6.

2 Dynamic Symbolic Execution

Dynamic symbolic analysis is a program analysis technique that executes
programs with concrete and symbolic inputs at the same time. It maintains a
path constraint, i.e., a conjunction of symbolic expressions over the inputs that
is updated whenever a branch instruction is executed, to encode the constraints
on the inputs that reach that program point. Combined execution paths form a
constraints tree, which is continually augmented by trying to exercise paths to
unexplored branches. Concrete data values for exercising these paths are gen-
erated by a constraint solver. We explain how this works in JDart using the
example shown in Fig. 1.

Dynamic symbolic execution treats some (or all) parameters of an analyzed
method symbolically. This means that their values, as well as all decisions involv-
ing them, are recorded during execution. In the example of Fig. 1, parameter i
is treated as a symbolic value. For the initial concrete execution of the analyzed
method test(), JDart uses the value found on the stack, which is 0. Instance
fields are not treated symbolically in the default configuration of JDart.

Executing the method with a value of 0 for i does not trigger the assertion
failure because i <= 100. Since i is symbolic, we still record this check, and
add it to the constraints tree. The resulting partial constraints tree is shown in
Fig. 2 (left): the false branch of the condition i > 100 (note that x is not being
treated symbolically) contains the result “OK”, and a valuation of the symbolic
variables that allows exercising the corresponding path (in this case the initial
configuration, i = 0).
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Fig. 2: Different constraints trees for the example in Fig. 1. Leafs show program
states as well as the pre- and post-conditions of paths.

However, the constraints tree also contains an unexplored branch, namely
the true branch. Dynamic symbolic execution now attempts to exercise this
branch, by generating a valuation satisfying the path constraint i > 100, usually
using an SMT solver. SMT solvers provide decision procedures for first-order
logical formulas of predicates from different theories (e.g., integer numbers, bit
vectors or arrays). Given a set of constraints, the solver will generate a satisfying
assignment that makes the constraint satisfiable. In our example it could generate
the assignment i = 101. The program is now rewound to the state where the
analyzed method test() was entered. As parameter i is treated symbolically,
the corresponding stack contents are now changed to the value 101, and the
method is executed again. This time, the assertion failure is triggered. JDart
augments the constraints tree by recording the outcome “Error” along with the
corresponding valuation i = 101 (Fig. 2 (middle)). As the constraints tree now no
longer contains any nodes labeled by “?”, dynamic symbolic execution terminates.

By default, JDart treats only parameters symbolically. However, the sym-
bolic treatment can be extended to instance fields (e.g., this.x) and return
values as well. For example, Fig. 2 (right) shows the resulting constraints tree
for symbolic values of i and this.x. The return value _r as well as the post-
condition (the state of the instance after execution of the method) are given as
symbolic expressions over i and x.

3 JDart

The development of JDart has been driven by two main goals. The primary goal
has been to build a symbolic analysis framework that is robust enough to handle
industrial scale software. More precisely, it has to be able to execute industrial
software without crashing, deal with long execution paths and complex path
constraints. The second objective has been to build a modular and extensible
platform that can be used for the implementation and evaluation of novel ideas
in dynamic symbolic execution. For example, JDart is designed to allow for
easy replacement of all of its components: it supports different and combined
constraint solvers, and several exploration strategies and termination criteria.

This section presents the modular architecture of JDart, and discusses its
main components and extension points. It subsequently describes existing uses
of JDart as a component within other research tools.



target=Example // SUT class with main
concolic.method.test=Example.test(i:int) // Method declaration
concolic.method=test // Selection of target method
concolic.method.test.constraints=(i>=0) // Assumptions on inputs
symbolic.dp=z3 // constraint solver

Fig. 3: Configuration of JDart for the Example from Fig. 1.

3.1 Architecture

JDart executes Java Bytecode programs and performs a dynamic symbolic
analysis of specific methods in these programs. JDart also implements exten-
sions that build upon the results of a dynamic symbolic analysis:

– The Method Summarizer generates fully abstract method summaries for an-
alyzed methods [16]. In the generated summaries, class members, input pa-
rameters, and return values are represented symbolically.

– The Test Suite Generator generates jUnit test suites that exercise all the
program paths found by JDart.

Fig. 3 illustrates a basic configuration of JDart (no extensions included) for the
example of Fig. 1. The configuration sets the system under test to class Example,
and specifies method test(i:int) of the same class as the target of the analysis.
The last two lines tell JDart to explore the target method only for parameter
values i >= 0 and to use Z3 for solving constraints.

During dynamic symbolic analysis, JDart uses two main components to
iteratively execute the target method, to record and explore symbolic constraints,
and to find new concrete data values for new executions: Fig. 4 depicts the
modular architecture of JDart. The basis (at the bottom) is the Executor that
executes the analyzed program and records symbolic constraints on data values.
The Explorer organizes recorded path constraints into a constraints tree, and
decides which paths to explore next, and when to stop exploration. The Explorer
uses the JConstraints library to integrate different constraint solvers that can
be used in finding concrete data values for symbolic paths constraints.

3.2 Executor

The Executor runs a target program and executes an analyzed method with
different concrete data values for method parameters and class members. It also
records symbolic constraints for program paths. Currently, JDart uses the soft-
ware model checker Java PathFinder (JPF) for the execution of Java Bytecode
programs. JDart uses two extension points of JPF.

Setting Concrete Values. JPF uses “choice generators” to mark points in
an execution to which JPF back tracks during state-space exploration. JDart
implements a choice generator that sets parameter values of methods that are
analyzed symbolically.



Fig. 4: Architecture of JDart.

Recording Symbolic Constraints. JPF extensions can provide custom byte-
code implementations. JDart adds concolic semantics to the Java Bytecodes
that perform concrete and symbolic operations simultaneously, while also record-
ing path constraints. Using JPF as an execution platform has several benefits.
For example, is easy to integrate other JPF extensions in JDart (e.g., for dealing
with native code, or for recording test coverage). Moreover, JPF provides easy
access to all objects on the heap and stack, as well as to many other elements and
facilities of the JVM such as stack frames and class loading. On the other hand,
using a full-blown custom JVM for execution has an impact on performance.
This is one of the reasons why we are keeping the integration with JPF as loose
as possible. JDart has been built with the possibility of changing the underlying
execution environment from JPF to more light-weight instrumentation, as is the
case with other similar frameworks, such as PEX [34] or JCute [27].

3.3 Explorer

The Explorer organizes recorded constraints into a constraints tree, decides
which parts of the program to explore, when to stop, and how to solve con-
straints for new concrete input values.

Exploration. In order to hit interesting paths quickly when analyzing large
systems, JDart needs to be able to limit exploration to certain paths. JDart
provides configuration options for specifying multiple pre-determined vectors of



input values from which the exploration is started. It also allows the user to spec-
ify assumptions on input parameters as symbolic constraints. JDart will then
only explore a method within the limits of those assumptions. Finally, JDart
can be configured to simply skip exploration of certain parts of a program (e.g.,
after entering a specific method) — i.e., it supports suspending/resuming ex-
ploration based on method level descriptions. It also allows skipping exploration
after a certain depth.

Termination. For industry-scale systems, it is often not possible to run an anal-
ysis to completion. Sometimes one may even be interested in recording the path
constraint of a single program path (cf., e.g., Microsoft’s SAGE [15]). JDart
provides an interface for implementing customized termination strategies. So
far, it provides strategies for terminating after a fixed number of paths, or for
terminating after a fixed amount of time.

Constraint Solvers. In real world systems, path constraints can be long and
complex and may contain trigonometric or elementary functions, which may
challenge any state-of-the-art constraint solver. JDart provides several tech-
niques and extension points for optimizing constraints, e.g., by simplifying path
constraints, adding auxiliary definitions and/or interpolation that help solving
complex constraints, and using specialized solvers. These capabilities are based
on the constraints processing features of JConstraints. For example, trigono-
metric constraints can be approximated by interpolation before being submitted
to a solver (e.g., Z3), or they can be delegated directly to a solver that supports
them (e.g., CORAL). Floating-point constraints can also be processed before
submitting them to a solver. For the Z3 integration, floating-point constraints
are approximated using reals. Despite this not being sound (due to the limited-
precision effects), it might frequently yield valuable solutions even when they are
incorrect — in general, JDart always analyzes the solutions and tests whether
they can be used to exercise previously unexplored paths.

Constraints Tree. Finally, it is important to guarantee that progress is made
when only approximating Java semantics in solvers. Sometimes a solution sug-
gested by a solver may not be valid for a Java Bytecode program. JDart tests
all valuations produced by a decision procedure on the constraints tree by evalu-
ating path constraints with Java semantics before re-executing the program with
a new valuation (this is a feature provided by JConstraints, as explained later
in this section).

Potential Extensions. In extending the explorer, we are considering to im-
plement concolic heuristics for dealing with complex constraints, and to use
coverage metrics (e.g., branch coverage or MC/DC) to prioritize exploration of
decisions that may increase the selected coverage. Using JPF, in the future it
will also be possible to add support for concurrent programs.

3.4 JConstraints

JConstraints is a constraint solver abstraction layer for Java. It provides
an object representation for logic expressions, unified access to different SMT



Fig. 5: The JConstraints architecture.

and interpolation solvers, and useful tools and algorithms for working with con-
straints. While JConstraints was developed for JDart, it is maintained as a
stand-alone library that can be used independently. The idea has been explored
by others, e.g., PySMT [11], which has recently been developed for Python.

The architecture of JConstraints is shown in Fig. 5: It consists of the basic
library providing the object representation of logic and arithmetic expressions,
the API definitions for solvers (for SMT solving and interpolation, or for in-
cremental solving), and some basic utilities for working with expression objects
(basic simplification, term replacement, and term evaluation). Plugins for con-
necting to different constraint solvers can be added easily by implementing a
solver interface and taking care of translating between a solver-specific API and
the object representation of JConstraints.

Currently, plugins exist for connecting to the SMT solver Z3 [22], the in-
terpolation solver SMTInterpol [4], the meta-heuristic based constraint solver
CORAL [31], and a solver that implements the Concolic Walk algorithm [8].
JConstraints uses the native interfaces for these solvers as they are much
faster than file-based integration. It can also parse and export constraints in its
own format and supports a subset of the SMT-LIB format [29] which enables
connection to many constraint solvers that support this format. For example,
through the SMT-LIB format, we were able to experiment with using the dReal
solver [10] for non-linear constraints in JDart.

JConstraints supports both Java and user-defined types for expressions.
This enables it to record path constraints directly in terms of the analyzed pro-
gram types and semantics, as opposed to the types supported by the constraint
solver to be used. An advantage of this feature is that it is easy to validate so-
lutions returned by constraint solvers by simply evaluating the path constraint
stored by JConstraints with Java semantics.

3.5 Leveraging JDart

JDart is a mature and easy to use framework that has so far been leveraged in
several tools.

Automatic Testing of Libraries. Previous work on Randoop [23] has shown
that software libraries can often be effectively explored using feedback-directed



random testing, which generates test cases in the form of reasonable sequences of
public method invocations. However, while Randoop excels at generating method
sequences, its heuristic for selecting inputs for arguments of primitive data types
is simplistic — these inputs are selected from a small pool of mostly randomly
chosen values. This heuristic is often inadequate for reaching deep into the code
of methods with many conditionals over primitive types such as integers. On the
other hand, JDart’s capabilities are orthogonal: it cannot generate sequences
of method invocations, but it can explore deep code paths by leveraging the
power of SMT solving. Hence, we implemented JPF-Doop to combine the two
approaches [7].

JPF-Doop leverages Randoop to generate a collection of method sequences.
Next, JPF-Doop converts all primitive-type input parameters into symbolic
inputs in every generated method sequence. This in turn enables JDart to
be executed on such method sequences, and its dynamic symbolic execution
algorithm reaches deep paths within each method in a sequence. As a result,
more paths, and consequently branches and lines of code, are often explored by
JPF-Doop than by using the two tools in isolation [7].

Generating Interfaces of Software Components. Performing compositional
software verification is key to achieving scalability to large systems. Generating
interfaces for software components is an important sub-task of compositional
software verification. In our previous work [13, 16], we introduced an algorithm
(implemented in a tool called Psyco) for automatic generation of precise tem-
poral interfaces of software components that include methods with parameters.
Psyco generates interfaces in the form of finite-state automata, where transi-
tions are labeled by method names as well as guarded by symbolic constraints
over their parameters. It relies on JDart’s capability for computing method
summaries for the public methods of the analyzed component.

4 JDart and Related Frameworks

Dynamic symbolic execution [14, 28] is a well-known technique implemented by
many automatic testing tools (e.g., [3, 15, 27, 34]). For example, SAGE [15] is a
white-box fuzzer based on dynamic symbolic execution. SAGE has been routinely
applied to large Microsoft systems, such as media players and image processors,
where it has been successful in finding critical security bugs.

Several symbolic execution tools specifically target Java Bytecode programs.
A number of them implement dynamic symbolic execution via Java Bytecode
instrumentation. JCute [27], the first concolic execution engine for Java, uses
Soot [30] for instrumentation, and uses lp_solve as a constraint solver. JCute
is no longer maintained. CATG [33] uses ASM [1] for instrumentation, and
CVC4 [5] as a constraint solver. Another concolic engine, LCT [20], additionally
supports distributed exploration. It uses Boolector and Yices for solving, but
does not currently have support for float and double primitive types.

A drawback of instrumentation-based tools is that instrumentation at the
time of class loading is confined to the SUT. LCT for example does not by
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JDart
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X (X)2 X X X X X X X X X X
SPF X (X)2 X X X X X X X X X X X
jFuzz † X (X)23 X X X X X X X

JCute †

Code Instr.
(X)1 (X)2 (X)4 X X X X X

CATG (X)1 (X)2 (X)4 X X X
LCT (X)1 (X)2 (X)4 X X X X
1No float and double. 2Only fixed size.
3Only char[]. 4Symbolic inputs are injected by modifying SUT.
5Only for sequential programs. †No longer maintained.

Table 1: Comparing the features of JDart to other symbolic analysis tools.

default instrument the standard Java libraries thus limiting concolic execution
to the application classes. However, the instrumentation-based tools discussed
above provide the possibility of using symbolic (and/or simplified) models for
non-instrumented classes or using pre-instrumented core Java classes.

Several dynamic symbolic execution tools for Java are not based on instru-
mentation. For example, the concolic white-box fuzzer jFuzz [18] is based on
Java PathFinder (as is JDart) and can thus explore core Java classes without
any extra prerequisites. Finally, Symbolic PathFinder [25] is a Java PathFinder
extension similar to JDart. In fact, jFuzz reuses some of the core components
of (albeit an older version of) SPF, notably the solver interface, and its imple-
mentations. While at its core SPF implements symbolic execution, it can also
switch to concrete values in the spirit of concolic execution [24]. That enables it
to deal with limitations of constraint solvers (e.g., non-linear constraints).

Table 1 summarizes the main features of the tools discussed in this section.
Note that we only consider the features that are available in the official released
versions of the tools. For example, parallelizing SPF has been done [32] and
recently method summarization has been added too [26]. However, those features
are not a part of the official release. It can be seen that JDart supports a
large number of features that are desirable in symbolic execution engines to
accommodate analysis of industrial scale systems. On the other hand, JDart
does not currently support programs with concurrency in contrast to SPF and
JCute. Also, JDart does not feature a mechanism for dealing with unbounded
symbolic input data structures such as lists and trees. SPF supports this through
its lazy initialization mechanism [21]. Finally, JDart does not currently support
a parallel exploration of the constraints tree. However, JDart’s architecture
provides a solid basis for future extensions towards supporting such features. In
particular, some of the distinctive features of SPF are relatively easy to port to
JDart given the common foundation of the two tools on JPF. In general, we
expect that open sourcing will expedite extensions of JDart in new directions.



5 Experimental Evaluation

We base our evaluation of JDart on a comparison with SPF, CATG, LCT,
and random testing. For all experiments, we used a laptop with a 2.0 GHz
Intel Core i7 and 8 GB RAM running Ubuntu Linux. Random testing provides
a baseline, while the other tools are representative of the state-of-the-art in
symbolic analysis of Java Bytecode. We were not able to properly set up JCute
and jFuzz. We note that they are no longer actively maintained. Our evaluation
is performed on the following benchmarks:

AutoResolver is a sophisticated automated air-traffic conflict resolution sys-
tem developed at the NASA Ames Research Center. It is envisioned to be
part of the Next Generation Air Transportation System (NextGen). It fea-
tures complex constraints arising, among others, from spherical geometry
and great circle distance computations. We focus JDart on a single conflict
scenario, using the test driver developed in previous work [12] that exposes
a double-precision floating-point type controlling the heading difference be-
tween two aircraft at a collision point. Note that our coverage metrics take
into account the entire AutoResolver code base consisting of approxi-
mately 20 KLOC of Java code.

MER Arbiter is derived from a flight component for the Mars Exploration
Rover developed at NASA JPL. The arbiter module is based on a Simulink/S-
tateflow model translated into Java using the Polyglot framework [2].

TSAFE is a flight-critical system that seeks to provide separation assurance
for multiple aircraft. It features complex, nonlinear floating-point arithmetic
and constraints with transcendental functions.

TCAS is a component of a traffic collision avoidance system installed in aircraft;
its operation is controlled by 12 inputs.

Raytracer is a component for rendering shades on surfaces. It performs a num-
ber of calculations on 3D vectors taking into account light and color objects.

WBS has 18 integer and boolean inputs controlling the update operation in a
wheel brake system.

Minepump is a classic real-time system that performs monitoring and control-
ling of the fluid level and methane concentration in a mine shaft.

We use the following metrics: (i) analysis time; (ii) the quality of the symbolic
exploration of a benchmark in terms of multiple coverage criteria, such as general
coverage metrics (branch, instruction, line, method) and behavioral coverage, i.e.
the absolute number of paths exercised; (iii) the quality of the test suite produced
by the tools, i.e., the ratio of paths exercised while running the suite to the
number of tests. Table 2 gives our experimental results.

Evaluation of Symbolic Analysis Tools. With a time cap of 1 hour, we
monitor the analysis time and peak memory consumption for each tool to ter-
minate and return input valuations. For a consistent comparison, we measure
coverage of the valuations, as opposed to using output statistics of the tools.
For each tool, we construct a jUnit test suite based on the valuations, which is



Example Tool Solver R
un

ti
m
e
[s
]

M
em
or
y
[M
B
]

B
ra
nc
h
C
ov
.
[%
]

In
st
r.
C
ov
.
[%
]

Li
ne

C
ov
.
[%
]

M
et
ho
d
C
ov
.
[%
]

#
T
es
ts

#
Sa
t.
P
at
hs

#
O
K

#
E
rr
.

#
D
/K

AutoResolver

Totals 10,896 96,304 19,695 1,941 229§
JDart Z3 80 1,483 15 24 27 35 3 3 3 0 6,898
SPF ∗ CORAL 2 215 0 0 0 0 0 0 0 0 0
CATG † CVC4 - - - - - - - - - - -
LCT † Boolector - - - - - - - - - - -
Random - 80 - 16 24 27 35 1,969 229 229 0 214,982

MER

Totals 576 11,047 2,234 635 1,248
JDart Z3 69 340 50 81 79 77 1,248 1,248 1,248 0 0
SPF Z3 90 761 50 81 79 77 1,248 1,248 1,248 0 0
CATG CVC4 crash - - - - - - - - - -
LCT Boolector 2,839 51 50 81 79 68 1,256 1,248 1,248 0 0
Random - 69 - 38 71 72 62 8,259 81 81 0 231

TSAFE

Totals 20 137 26 4 21§
JDart CORAL 3 415 90 89 96 75 21 21 21 0 26
SPF CORAL 23 727 90 89 96 75 58 21 21 0 26
CATG † CVC4 - - - - - - - - - - -
LCT† Boolector - - - - - - - - - - -
Random - 3 - 70 85 92 75 54,318 9 9 0 13

TCAS

Totals 74 216 48 9 68
JDart Z3 <1 119 93 96 96 89 68 68 68 0 0
SPF Z3 5 118 61 72 92 78 68 36 36 0 80
CATG CVC4 33 88 93 96 96 89 68 68 68 0 0
LCT Boolector 32 77 93 96 96 89 68 68 68 0 0
Random - 1 - 5 19 29 22 19,067 1 1 0 3

Raytracer

Totals 44 798 119 18 83§
JDart CORAL 51 414 86 94 92 94 80 80 80 0 64
SPF ‡ CORAL 1,524 350 82 94 92 94 548 83 83 0 158
CATG † CVC4 - - - - - - - - - - -
LCT † Boolector - - - - - - - - - - -
Random - 51 - 68 79 81 89 186,953 80 80 0 26

WBS

Totals 90 356 149 3 24
JDart Z3 <1 119 67 77 76 67 24 24 24 0 0
SPF Z3 1 118 67 77 76 67 24 24 24 0 0
CATG CVC4 8 62 67 77 76 67 24 24 24 0 0
LCT Boolector 6 68 67 77 76 67 24 24 24 0 0
Random - 1 - 39 50 50 67 190,715 5 5 0 6

Minepump

Totals 100 552 139 43 1,200
JDart Z3 2 150 52 68 79 74 1,200 1,200 952 248 0
SPF Z3 48 212 52 682 79 74 1,200 1,200 952 248 0
CATG CVC4 420 64 52 68 79 74 1,200 1,200 952 248 0
LCT Boolector 522 83 52 68 79 74 1,729 1,200 952 248 0
Random - 2 - 52 68 79 74 39,966 1,200 952 248 0

∗SPF with Z3 crashes. CORAL does not handle constraints with Double.isNaN(double), thus ignoring them.
†Does not support constraints with floating points.
‡With PSO heuristic (used with JDart), SPF does not finish <1h. Instead, the AVM heuristic is used.
§Max # of sat paths explored by any tool. The total # of sat paths might be higher due to Don’t know paths.

Table 2: Experimental results. Numbers in bold font denote the total number of
units (e.g., instructions or branches) for the respective benchmark. “-” represents
when values do not apply, e.g., when an example is not supported by a tool.

then analyzed by the JaCoCo [17] coverage measuring library. JaCoCo gener-
ates a detailed report containing branch, instruction, line, and method coverage.
Behavioral coverage is not reported by standard code coverage libraries, so we
measure it by replaying valuations with JDart, where JDart is run without a
solver. JDart tracks the number of unique satisfiable paths that are exercised,
as well as whether a path yields normal termination (OK ) or an error state
(Error) — assertion violation or uncaught exception. We chose to use dynamic
symbolic analysis for this purpose, because it additionally checks for validity of
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Fig. 7: Test suite quality.

the valuations; as seen in the TCAS example results for SPF, 68 valuations are
produced, but only 36 of them are valid and contribute to path coverage.

We also keep track of the number of potentially unexplored subtrees/decisions
(D/K, short for Don’t Know); D/K s represent decisions in the constraints tree
that are not covered by the test suite. For symbolic analysis tools, when they
terminate, it means that the used solver was inconclusive as to the satisfiability of
these decisions. Such situations arise due to, e.g., insufficient solver capabilities,
constraints that are computationally intractable, or constraints from undecidable
theories (containing non-linear or transcendental functions).

For JDart, we select the solver and configuration that yields the best test
suite defined in terms of the above coverage metrics. Unless we found a better
configuration for SPF, the same configuration is used for SPF. Other tools do
not expose such rich set of configuration parameters or solver options.

Evaluation of Random Testing. For random test case generators, we set time
out to match the analysis time of JDart. Input values are randomly selected
from a uniform distribution from the value range of a particular parameter’s
data type. Note that our implementation of random testing is rather simplistic:
constraining the input ranges according to domain knowledge and picking values
from non-uniform distributions (e.g., from a known “usage profile”) would likely
increase its applicability.
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Fig. 9: Path coverage. JDart and random test-
ing on AutoResolver have 6,898 and 214,982
Don’t Know paths, respectively.

Observation 1: Analysis Time and Path Coverage. JDart outperforms
SPF, CATG, and LCT on all benchmarks in terms of analysis time — often
by an order of magnitude (see Fig. 6). Furthermore, with path coverage being
the primary metric for comparison, JDart provides at least as good results
as the other tools, except for the Raytracer benchmark (where SPF performed
slightly better) and the AutoResolver benchmark (where Random Testing
performed better). Fig. 9 summarizes these results. For Raytracer, SPF found
three more OK paths. In this particular case, however, SPF was run with a
slightly different configuration of CORAL that uses the Alternating Variable
Method (AVM) meta-heuristic — JDart uses the Particle Swarm Optimization
(PSO) meta-heuristic. If SPF is run with PSO, it does not terminate within 1
hour. On the other hand, if JDart is run with AVM, it performs worse than
with PSO and covers only 38 distinct paths. As a side note, the longer analysis
times of SPF might be attributed to the significant number of D/K paths.

Observation 2: Random Test Case Generation. Our experimental results
demonstrate that random test case generation performs poorly on the bench-
mark suite. In particular, in WBS it covers only 5 different paths with a test
suite containing 190,715 test cases. For AutoResolver, random testing slightly
outperforms JDart in terms of branch coverage (1 percentage point difference)
at the expense of having to run 1,969 test cases (taking 80 seconds). In contrast,
the test suite produced by JDart contains only 3 test cases (taking less than
a second to run). Note that the coverage results for AutoResolver are so low



because large submodules are not reachable from the entry point that only deals
with a single conflict scenario.

Observation 3: Performance of Instrumentation-Based Tools. CATG
obtains similar coverage results as JDart on the benchmarks it supports, but
is several orders of magnitudes slower. This might be attributed to the concolic
execution approach implemented in CATG, which (similar to JCute) allocates
a process for each execution — CATG reruns the instrumented program for
each explored path. JDart, on the other hand, harnesses the JPF infrastructure
and perturbation facility to efficiently restore program states and generate new
paths. LCT is also comparable to JDart on benchmarks that do not require
symbolic floating-point reasoning, but like CATG it is much slower. Note that
LCT supports parallel exploration that was not used in our experiments, which
is a feature currently not supported in JDart.

All instrumentation-based tools employ a pre-processing step where a bench-
mark (and classes potentially referenced by it) need to be instrumented before
the actual analysis can be performed. Our measured analysis times do not ac-
count for this step, which is often significant. For example, the instrumentation
of MER with LCT takes 13 seconds. JDart avoids this by leveraging the JPF
infrastructure to define a custom interpreter where the standard Java Bytecode
semantics are replaced with concolic semantics.

Observation 4: Test Suite Quality and Branch Coverage. Fig. 7 presents
the quality metric for the generated test suites. Random testing, due to a very
large number of generated test cases, has very low quality, often almost 0%.
On the other hand, all the dynamic symbolic execution tools typically generate
minimal test suites, i.e., those with 100% quality. SPF produces sub-optimal
test suites in three cases, with as low as 15% quality for Raytracer. We were not
able to find the reason for this unexpected behavior.

We give the usual branch coverage metric in Fig. 8. No tool reaches full
branch coverage on the analyzed benchmarks, which is due to infeasible paths,
exemplified by TCAS where JDart achieves full path coverage (i.e., #D/K is 0).
In other words, JDart explores all possible behaviors of TCAS, and therefore
93% is the highest possible branch coverage, thus indicating the presence of code
that cannot be reached from the entry point, i.e. dead code.

6 Conclusions

We presented JDart, a dynamic symbolic analysis framework for Java Bytecode
programs. We provided a detailed description of its architecture and features,
as well as an experimental evaluation of the tool in comparison to other similar
frameworks. After several years of development, JDart has reached a level of
efficiency, robustness, and versatility that lead to its recent open sourcing by
the NASA Ames Research Center. This paper is therefore meant as an intro-
duction of the tool to the research community. We hope that the tool’s current
capabilities and its existing use cases within other frameworks will inspire the
community to experiment and extend it in novel ways.
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