PRUNERS: Providing Reproducibility
for Uncovering Non-deterministic Errors in Runs
on Supercomputers

Kento Sato, Ignacio Laguna, Gregory L. Lee, Martin Schulz and Christopher M. Chambreau and Dong H. Ahn
Lawrence Livermore National Laboratory
Livermore, USA
{kento, ilaguna, lee218, schulzm, chambreaul, ahnl}@IInl.gov

Simone Atzeni, Michael Bentley,

Genesh Gopalakrishnan, Zvonimir Rakamaric and Geof Sawaya

University of Utah
Salt Lake City, USA

Joachim Protze
RWTH Aachen University
Aachen, Germany
protze @itc.rwth-aachen.de

{simone, mbentley, ganesh, zvonimir, sawaya} @cs.utah.edu

Abstract—Large scientific simulations must be able to achieve
the full-system potential of supercomputers. When they tap into
high-performance features, however, a phenomenon known as
non-determinism may be introduced in their program execution,
which significantly hampers application development. PRUNERS
is a new toolset to detect and remedy non-deterministic bugs and
errors in large parallel applications. To show the capabilities of
PRUNERS for large application development, we also demonstrate
their early usage on real-world, production applications.

I. INTRODUCTION

High-Performance Computing (HPC), the applied use of
supercomputers, has become critically important for R&D
efforts, scientific discovery and for many other fields. Ap-
plications running on supercomputers must rely on multiple
communication and synchronization mechanisms as well as
compiler optimization options to effectively utilize the hard-
ware resources. These complexities often produce errors that
occur only occasionally, even when run with the exact same
input (i.e., same binaries, configuration and input data) on the
same hardware. These so-called non-deterministic bugs are
remarkably challenging to reproduce and thus challenging to
debug.

PRUNERS is a new toolset to detect and remedy non-
deterministic bugs and errors in large parallel applications.
Prior to PRUNERS, programmers relied on manual techniques
using traditional parallel debuggers such as TotalView, DDT,
GDB and printf debugging. Although these techniques are
effective when the error deterministically occurs at the same
point of execution, stepping through source lines is often
ineffective on non-deterministic bugs because the process
of stepping may perturb the execution enough to mask the
bug. One of our recent case studies indicates that resolving
a single non-deterministic bug can require 3 person-months
worth of programmers effort and 19 years of compute-core

PRUNERS

w
\ NINJA FLIT

) Smart noise njector Test framework for Bug Fix
revealing
compiler-induced

floating-point variability

for quickly exposing
unintended MPI
message races

DEBUGGING + TESTING

Fig. 1. The PRUNERS toolset increases non-determinism coverage for
debugging and testing workflows

time in total [3]. Thus, tools that can detect and remedy non-
deterministic errors are highly valuable.

PRUNERS is the only software toolset that is designed
specifically to solve the challenges of debugging and test-
ing for non-deterministic software bugs with the scalability,
accuracy, composability and portability demanded by todays
high-end systems. Early usage on real-world bugs at LLNL
proves that PRUNERS is the first coordinated toolset for non-
deterministic software bugs and errors.

II. THE PRUNERS TOOLSET

Sources of non-determinism are multilevel — arising from
multiple levels of the software stack (e.g., applications, li-
braries and/or system) and from different programing models
and paradigms (e.g., message passing versus shared memory).
A single tool does not fit all required levels of reproducibil-
ity. Our solution to the challenge is the PRUNERS toolset
(Figure 1). A reason for having a toolset is to flexibly con-
trol sources of non-determinism and provide required levels
of reproducibility depending on specific code development
needs by users — levels of reproducibility versus perfor-
mance/scalability.

The PRUNERS toolset offers four novel debugging and test-
ing tools: Archer [1], ReMPI [2], NINJA [3] and FLiT [4]. Our



toolset specifically aims at the non-determinism introduced
by use of todays two most dominant parallel programming
models, MPI and OpenMP, as well as major compilers.

1) ARCHER: Archer is a scalable and accurate OpenMP
data-race detection tool. Archer’s static analysis passes classify
the given OpenMP code regions into two categories: guar-
anteed race-free and potentially racy. Its dynamic analysis
then applies state-of-the-art data-race detection algorithms to
check only the potentially racy OpenMP regions of code. The
static/dynamic analysis combination is central to the scalability
(while maintaining analysis precision) of Archer [1].

2) ReMPI: ReMPI is a scalable MPI record-and-replay
tool. After a buggy, non-deterministic run is recorded by
ReMPI, programmers can deterministically replay MPI mes-
sage exchanges, thereby, reproducing a target bug, even under
the control of a parallel debugger, for further root-cause anal-
ysis. With a new compression algorithm called Clock Delta
Compression (CDC), ReMPI enables scalable MPI record-and-
replay [2].

3) NINJA: NINJA is a smart noise injection tool for ex-
posing unintended MPI message races. NINJA controls and
manipulates the timings of non-deterministic message matches
in ways that maximize the chance to expose MPI message-race
bugs. With dynamic analysis of communication patterns of
applications, NINJA can minimize the overhead by selectively
injecting noise into only racy MPI message exchanges [3].

4) FLiT: FLiT is a test framework for quickly revealing
compiler-induced floating-point variability. FLiT can help a
programmer quickly quantify the extent of floating-point vari-
ability induced by compilers and their options, and by different
computing platforms. Give that there is a lack of compiler
standardization, it is crucial to have tools like FLiT to offer
warnings about the portability of code to different compilers
and platform [4].

To ensure wide applicability and flexibility, these com-
ponents are designed to complement each other while each
individual component also works effectively as a single, stand-
alone tool. PRUNERS provides a common multilevel toolset
that unifies complementary and targeted tools that can build
on the strengths of one another.

III. STATE-OF-THE-PRACTICE

To ensure that our capabilities work for large application
development, we have actively engaged many production
code-development teams at the Lawrence Livermore National
Laboratory (LLNL) and tested the utility of our tools on large
code bases. In this process, these users have challenged our
research team with those bugs that they previously deemed in-
tractable, and PRUNERS has consistently proven to be effective
on them.

For example, Archer detected and helped fix highly elusive
OpenMP data races in HYDRA, a very large multiphysics
application for Livermore’s National Ignition Facility (NIF),
that caused code crashes that only intermittently manifested
themselves after varying numbers of time steps and only at
large scales (8,192 MPI processes or higher). Further, as LLNL

code teams increasingly multi-thread their applications, they
have begun to integrate Archer directly into their build-and-
test systems to catch data-race bugs at testing time, before
production runs are conducted.

ReMPI has significantly been helping ParaDiS (disloca-
tion dynamics application) and Mercury (domain-decomposed
particle transport application) debug and test MPI non-
determinism. NINJA has been shown to manifest unsafe
message races consistently within LLNL Diablo’s (a massively
parallel implicit finite element application) use of Hypre (a
scalable linear solvers and multigrid method library). Hypre
had a message-race bug that has not been uncovered until
recently.

An easy-to-use and community-extensible tester like FLiT
is also becoming increasingly important in scientific work
dependent on supercomputers. Critical supercomputing ap-
plications such as the Community Earth Simulation Model,
for instance, have yielded inconsistent results when ported
across platforms and compilers, which hampered validation
effort. Similarly, errors in floating-point calculations have led
to inaccurate findings based on data analysis of Large Hadron
Collider experiments. FLiT offers earlier warnings as to the
portability of their code to different compilers.

IV. SUMMARY

Non-deterministic execution is becoming increasingly com-
mon and is particularly difficult for programmers to com-
prehend and debug. PRUNERS is the first coordinated toolset
that is designed specifically to help debug and test for non-
deterministic bugs, with features and attributes commensurate
for large supercomputers. It was designed specifically with
scalability, accuracy, and composability in mind. PRUNERS
has demonstrated early success on real-world bugs and already
resulted in cost savings at LLNL.

ACKNOWLEDGMENT

This work was performed under the auspices of the U.S.
Department of Energy by LLNL under contract DE-AC52-
07NA27344 (LLNL-CONF-737603).

REFERENCES

[1] S. Atzeni, G. Gopalakrishnan, Z. Rakamaric, D. H. Ahn, I. Laguna,
M. Schulz, G. L. Lee, J. Protze, and M. S. Mller, “ARCHER: Effectively
Spotting Data Races in Large OpenMP Applications,” in 20/6 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, pp. 53-62.

[2] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, and M. Schulz, “Clock Delta
Compression for Scalable Order-replay of Non-deterministic Parallel
Applications,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’15.
New York, NY, USA: ACM, 2015, pp. 62:1-62:12.

[3] K. Sato, D. H. Ahn, I. Laguna, G. L. Lee, M. Schulz, and C. M. Cham-
breau, “Noise Injection Techniques to Expose Subtle and Unintended
Message Races,” in Proceedings of the 22Nd ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, ser. PPoPP ’17.
New York, NY, USA: ACM, 2017, pp. 89-101.

[4] G. Sawaya, M. Bentley, I. Briggs, G. Gopalakrishnan, and D. Ahn, “FLiT:
Cross-Platform Floating-Point Result-Consistency Tester and Workload,”
in 2017 IEEE International Symposium on Workload Characterization

(IISWC), October 2017 (To appear).



