
Consistency-Aware Scheduling for Weakly Consistent
Programs

Maryam Dabaghchian, Zvonimir Rakamarić
School of Computing

University of Utah
Salt Lake City, UT, USA

maryam,zvonimir@cs.utah.edu

Burcu K. Ozkan
Max Planck Institute
for Software Systems

Kaiserslautern, Germany
burcu@mpi-sws.org

Erdal Mutlu, Serdar Tasiran
Computer Science

Koç University
Istanbul, Turkey

ermutlu,stasiran@ku.edu.tr

ABSTRACT
Modern geo-replicated data stores provide high availability by re-
laxing the underlying consistency requirements. Programs layered
over such data stores are called weakly consistent programs. Due
to the reduced consistency requirements, they exhibit highly non-
deterministic behaviors, some of which might violate program in-
variants. Therefore, implementing correct weakly consistent pro-
grams and reasoning about them is challenging. In this paper, we
present a systematic scheduling approach that is aware of the un-
derlying consistency model. Our approach dynamically explores
all possible program behaviors allowed by the used data store con-
sistency model, and it evaluates program invariants during the
exploration. We implement the approach in a prototype model
checker for Antidote, which is a causally consistent key-value data
store with convergent conflict handling. We evaluate our tool on
several benchmarks. The results show that our approach is effec-
tive in detecting buggy behaviors in weakly consistent programs.

1. INTRODUCTION
Modern Internet-scale programs often rely on high-performance
geo-replicated data stores. In such data stores, replicas are lo-
cated in geographically separate locations to avoid latency in the
wide area network and tolerate network partitioning. According
to the Consistency, Availability, and Partition tolerance (CAP)
theorem [16], partitioning is unavoidable, and data stores have
to sacrifice either strong consistency or availability. Modern data
stores provide high availability through weaker consistency mod-
els called eventual consistency [26]. We refer to an atomic step
that updates some data in such data stores as an event. In gen-
eral, eventual consistency guarantees that events occurred at each
replica will eventually be propagated and become visible on all re-
mote replicas.

Programs using such geo-replicated data stores maintain a copy
of their data on different replicas. However, due to the often lim-
ited synchronization guarantees, it is possible to have conflicting
concurrent events on different replicas. In order to provide even-
tual consistency, many replicated data types are equipped with
conflict resolution mechanisms [8, 9, 23, 13]. Such data types are
called conflict-free replicated data types (CRDTs) [24, 5].

Due to the relaxed consistency guarantees of the systems using
CRDTs, a wider set of program behaviors is possible when com-
pared to a strongly consistent system, some of which are unin-
tuitive. This makes it harder for developers to reason about
expected executions of their programs and specify the intended
program behavior correctly. Such subtle schedules (i.e., execution
orders) can violate the intended invariants of programs written
with CRDTs.

In order to assist the developers in overcoming the challenges

of writing correct CRDT programs, we introduce a systematic
scheduling approach that is aware of the underlying consistency
model. Our approach is parameterized both in terms of the used
schedule exploration strategy and instantiated consistency model,
i.e., it is consistency-aware. Since consistency-aware scheduling
takes the consistency guarantee into consideration while generat-
ing new schedules, it is precise in the sense that the generated
schedules satisfy the consistency requirements. Hence, it neither
misses bugs due to exploring only strongly consistent schedules
nor reports false bugs by exploring overly relaxed weakly consis-
tent schedules.

Within our approach, we propose two schedule exploration strate-
gies (random and extended delay-bounded [14]) to detect vio-
lations of the supplied program invariants. We implement our
approach in a tool for the Antidote platform [3, 2], which is a
highly available geo-replicated CRDT key-value data store. Our
tool helps the developer to properly specify the consistency level
needed for their program by providing counterexamples that break
the invariants if the chosen consistency is too weak. Finally, we
apply our tool on several use cases from the SyncFree project [25],
and we successfully detected bug-inducing schedules. Our contri-
butions are summarized as follows:

• We introduce and formalize a consistency-aware schedule
exploration approach for weakly consistent systems that is
parameterized by the scheduler and consistency model.
• We implement our approach in a prototype tool within the

Antidote CRDT platform and include two schedule explo-
ration strategies.
• We evaluate our tool on several benchmarks and show that

it can efficiently find real bugs.

Our technical report provides more details on this work [12].

2. MOTIVATING EXAMPLE
We provide a virtual wallet example to explicate how an interleav-
ing of a weakly consistent program, introduced by time nondeter-
minism, can result in an invariant violation. Our virtual wallet
has a balance data field, defined as a CRDT counter, with an
accompanying invariant of having a non-negative value at each
replica. The balance can be updated using credit and debit

events, where debit decrements the balance value by the specified
amount only if the current balance is sufficient. We implemented
the program using a causally consistent [1, 20] geo-replicated data
store that guarantees the causal delivery of each event and conver-
gence of the state in all replicas. Given the initial balance of 500
at every replica, Figure 1 gives two possible scheduling scenarios:
one that satisfies and another that violates our invariant.

Figure 1a shows a bug-free scheduling scenario. Suppose two

e4:credit(400)
balance=600

r1 r2

e2:debit(400)
balance=100

e3:credit(300)
balance=400

e5:balance=100

e1:debit(300)
balance=200

e6:balance=200

e7:balance=500 e8:balance=500

Initially: balance=500
Invariant: balance≥0

(a) Bug-free scenario

e4:credit(400)
balance=600

e1:debit(300) e2:debit(400)
balance=100

e3:credit(300)
balance=100

e5:balance=-200

balance=200

e6:balance=200

e7:balance=500 e8:balance=500

Invariant violation

r1 r2

Initially: balance=500
Invariant: balance≥0

(b) Buggy scenario

Figure 1: Two scheduling scenarios in the virtual wallet example.

clients C1 and C2 are connected to two different replicas r1 and
r2, respectively; the clients are issuing events to the same virtual
wallet concurrently. First, C1 debits 300 from the virtual wal-
let on r1, thereby making the balance 200 (e1). Then, C2 debits
400 from the virtual wallet on r2 (e2) and credits 300, thereby
making the balance 400 (e3). Afterwards, C1 credits 400 on r1,
and the balance becomes 600 (e4). Now, r1 propagates the C1’s
first event to r2, making the balance 100 (e5); r2 propagates both
events issued by C2 to r1, which makes the balance 500 (e6, e7).
Finally, the second event issued by C1 is propagated to r2, and
the ending balance is 500 (e8). In this scheduling scenario, the
value of balance is always non-negative, and the state of both
replicas converged in the end. Hence, a developer might think
that the invariant always holds, while that is not the case, as our
next scheduling scenario shows.

Figure 1b shows a buggy scheduling scenario, which starts the
same as the bug-free one. First, C1 debits 300 from r1, mak-
ing the balance 200 (e1), and C2 debits 400 from r2, making the
balance 100 (e2). Then, C1 credits 400, making the balance 600
on r1 (e4). Differently than in the bug-free scenario, but still al-
lowed by weak consistency, r1 now propagates C1’s first event to
r2, thereby making the balance value -200 (e5). This violates our
balance>=0 invariant. Note that the two debit events e1 and e2
are concurrent. Due to the nondeterminism in weakly consistent
systems, event e5 can be received either before or after e3; in fact,
it can be received even before e2! As shown in this schedule, if
e5 is scheduled right after e2 and right before e3, the program
invariant is violated, although the schedule still guarantees causal
consistency. Note that a scheduler guaranteeing a stronger con-
sistency model (e.g., serializability) would fail to detect this bug.
To catch such invariant violations, a developer has to take into
consideration and be able to explore different orderings allowed
under the given consistency model of the system. We address
this need by providing a consistency-aware schedule exploration
approach and a prototype implementation that helps developers
discover scheduling scenarios leading to such deep-seated bugs.
In this example, the invariant would be preserved if the balance
is defined as a CRDT bounded-counter, which enforces strong
consistency [22] on decrement operations.

3. WEAKLY CONSISTENT PROGRAMS
We formalize our approach based on the transactional consistency
framework proposed by Cerone et al. [10]. Let Rs = {r1, r2, ..., rn}
be the set of all replicas in the system and n = |Rs| the total num-
ber of replicas. We define Txns as the set of messages (transac-
tions) initiated by clients on replicas. We define Logs as the set of
messages (transaction logs) transmitting between replicas in the
system. Then, Msgs = (Txns ∪ Logs) × Rs is the set of all mes-
sages transmitting between clients and replicas or between differ-
ent replicas. For a message msg = 〈t , r〉, r denotes the originating
replica of the transaction t . We formally define events (i.e., atomic

steps in a program) as a set of tuples Events = Msgs ×Rs ×Zn
≥0.

Each event consists of a message, a replica to which the message
is being delivered, and a vector clock [15] denoting a snapshot of
the system that captures message dependencies.

Let historyH ⊆ ℘(Events) be the set of events {〈msg , r, vc〉 | vc ≺
nown} that occurred in the system so far, where nown denotes
the current snapshot replica r has. So, the history at the ini-
tial state, denoted by H0, is an empty set. We define a com-
mit time function ct : Events → Zn

≥0, such that for every event

e = 〈〈t, r′〉, r, vc〉, ct(e) = vc
[
r′ 7→ vc[r′] + 1

]
shows the visibility

vector clock of e. Let Obj be the set of data store objects, and
obj : Events → ℘(Obj) be a function mapping each event to a
subset of objects that the event reads or updates. Then, we de-
fine function relEvents : Events×Rs → ℘(Events) mapping every
event e to a subset of events that act on at least one shared object
as e does on the specified replica. For e = 〈msg , r, vc〉, relEvents
is defined formally as relEvents(e, r′′) =

{
〈msg ′, r′, vc′〉 | r′′ =

r′ ∧ obj (e) ∩ obj (e′) 6= ∅
}
.

3.1 Consistency Models
In this section, we introduce three well-known consistency models
and formalize the dependency restrictions of each model. We
informally specify the three models as follows:

Serializability Consistency (SR) guarantees that every trans-
action observes the effect of all other transactions updating
shared objects before executing, and no such transactions
are allowed to execute concurrently [22].

Eventual Consistency (EC) guarantees that the effect of a trans-
action is eventually transmitted and delivered to all other
replicas [26].

Causal Consistency (CC) guarantees that the effect of a trans-
action is transmitted and delivered to every other replica af-
ter all of its dependencies (i.e., other transactions it depends
on) have been delivered to that replica [1, 20].

To formalize these models, we first define a dependency function
updDep : CM×Events×H → Events, where CM = {SR,EC ,CC}
is the set of consistency models. Function updDep determines
the dependency of an event by updating its vector clock based
on the given system consistency model and history on which it
is operating. Note that updDep is parameterized by the system
consistency model. We also define a helper predicate isAllowed :
CM ×Events×H → B that determines if a given event is allowed
to execute on its target replica under the specified consistency
model, i.e., if all of events it depends on have already been exe-
cuted.

In the Causal Consistency model, a transaction t depends on all
transactions that update shared objects whose effects have been

seen by t. We define function isAllowed for event e = 〈msg , r, vc〉
where msg = 〈t, r ′〉 under this consistency model as follows. Sup-
pose obsClock = maxe′∈relEvents(e,r) ct(e′) denotes the time when
the related events are observable. Then,

isAllowed(CC , e,H) =

{
true vc � obsClock
false otherwise.

Finally, the updDep function for Causal Consistency is defined as
follows:

updDep(CC , 〈msg , r , vc〉,H) ={
〈msg , r , obsClock〉 isAllowed(CC , 〈msg , r , vc〉,H)
〈msg , r , vc〉 otherwise.

We provide the formalization of SR an EC models in our technical
report [12].

3.2 Scheduler
In this section, we give a basic scheduler definition parameterized
by a consistency model. A scheduler M =

〈
CM , D, empty, give,

take
〉

is a tuple consisting of a consistency model CM , a datatype
D = 〈DS ×H〉 of scheduler objects (where DS is a datatype for
maintaining scheduling events and set H is history as defined in
the previous section), a scheduler constructor empty ∈ D, the
function give : D×Events → D that receives posted events, and
the function take : CM × D → ℘(D × Events) that determines
which event at which replica operates next.

For the given consistency model cm, the scheduler M is deter-
ministic if for all m ∈ DS , take(cm, 〈m,H〉) has at most one
element. It is non-blocking if all scheduled events are allowed,
more formally if for all e ∈ Events and m,m′ ∈ DS :

〈〈m′,H ∪ e〉, e〉 ∈ take(cm, 〈m,H〉) =⇒ isAllowed(cm, e,H).

Definition 1. (Bag Scheduler) The multiset-based scheduler bag
is defined on the multiset domain Dbag of events as

emptybag := ∅
givebag(〈m,H〉, e) := 〈m ∪ {e},H〉

takebag(cm, 〈m,H〉) := {〈〈m\{e},H ∪ {e}〉, e〉 | e ∈ m}.

Accordingly, takebag returns a set of allowed events and thus the
bag scheduler is nondeterministic.

4. SCHEDULING STRATEGIES
In this section, we propose two scheduling strategies for weakly
consistent programs. Later in Section 5 we empirically evaluate
and compare the two strategies.

4.1 Random Scheduling
We define a random scheduler, which randomly exercises possible
program schedules. When an event is posted, it is added to a
bag of events. Then, the random scheduler randomly selects and
dispatches one of the legal events in the bag. We formally define
such a random scheduler as a tuple M =

〈
CM,Dbag, emptybag,

givebag, takebag
〉
, and we call it the Consistency-Aware Random

(CAR) scheduler. The scheduler proceeds if the current event
either (1) completes its operation or (2) is not allowed.

Definition 2. (Bag-based CAR Scheduler) Let BCAR be a bag-
based scheduler defined as a tuple: BCAR =

〈
CM ,

({Events} × ℘(Events)),〈ε,H0〉, givebag, takebag
〉
.

Let m, m′ be two bags, where m maintains all events to be sched-
uled, and m′ maintains all legal events with respect to the current
history H and under the specified consistency model. Suppose
output is a subset of D × Events, and e = 〈msg , r, vc〉 where
msg = 〈t, r′〉, such that t is in either Txns or Logs. Function
givebag takes a scheduler object 〈m,H〉 and an event e as the in-

put, and then it updates the scheduler to 〈m ∪ {e},H〉. Function
takebag takes the underlying consistency model cm and a sched-
uler object 〈m,H〉 as the input. If either m is an empty bag or
there is no legal event e in m for the specified history H, no event
is scheduled, i.e., takebag returns an empty set. Otherwise, all
legal events in m with respect to cm and H are maintained in m′.
Thereby, for every event e = 〈〈t, r′〉, r , vc〉 in m′, takebag does the
following: (1) updates the dependency of e if t ∈ Txns, according
to updDep(cm, e,H) as defined in Section 3; (2) adds e to the
history H; (3) adds the tuple 〈〈m\{e},H〉, e〉 to the output set;
and (4) returns the set output.

4.2 Delay-bounded Scheduling
Delay-bounded scheduling as introduced by Emmi et al. [14] param-
eterizes a program search space by a deterministic scheduler and
delay bound k. A k-delay bounded scheduler generates differ-
ent schedules by delaying the execution of up to k events in the
deterministic scheduler.

In this paper, we propose a delay-bounded scheduler that is aware
of the consistency model of the underlying data store. In so doing,
to limit the nondeterminism in the default scheduler, we employ
a deterministic scheduler, and explore a limited number of devi-
ations from that deterministic schedule. We define such delaying
scheduler as M =

〈
CM , D, empty, give, take, delay

〉
. The func-

tion delay : D × Events → D allows the scheduler to postpone
the execution of an event. When an event is posted, it is en-
queued, and its execution could be postponed at the dispatch
time. We call such a scheduler, augmented with delay func-
tion, the Consistency-Aware Delay-bounded scheduler (CAD).
The scheduler advances to the next event when the current event
either (1) completes its operation, (2) is not allowed, or (3) is
delayed. An execution is k-CAD when the number of delay oper-
ations in that execution is at most k.

Definition 3. (List-based CAD Scheduler) Let LCAD be the
list-based delaying scheduler defined as a tuple: LCAD =

〈
CM ,

Events∗ × Events∗ × Z≥0 × ℘(Events), 〈ε, ε, 0,H0〉, give, take,
delay

〉
.

Let H be a set of events, denoting the history of the system,
and mr and md be two lists, where mr maintains the events to be
scheduled and md delayed events. Also, let event e = 〈msg , r , vc〉,
where msg = 〈t, r′〉. Function delay takes a scheduler object
〈mr,md, i,H〉 and an event e as the input. Then, it delays the
execution of e by appending it to md and returns the scheduler ob-
ject 〈mr,md⊕l, i,H〉, where l is the length of md, and ⊕l operator
inserts e to md at the position l (i.e., at the end of md). Func-
tion give takes a scheduler object 〈mr,md, i,H〉 and an event
e = 〈〈t, r′〉, r , vc〉 as the input. If t ∈ Txns, it inserts t in mr

at the position i and increments i; otherwise, if t ∈ Logs, it ap-
pends t to mr. In the end, it returns the scheduler with the
updated mr,md, and i. Function take accepts the underlying
consistency model and a scheduler object as the input. If either
both mr and md are empty lists or there is no legal event in mr

with respect to the specified consistency model and the current
history H of the system, then no event is scheduled and an empty
set is returned. Otherwise, if all events in mr have been either

CanonicalSchedule

Replayer

Scheduler

Verifier

violation

Recorder

No more schedule

check

satisfied

Consistency guarantee

Delay boundOriginal execution

Counter exampleVerified

Figure 2: Overview of the Commander architecture.

scheduled or delayed, the scheduler substitutes mr with md and
md with an empty list and also sets i to 1. Then, while mr[i] is
not a legal event, it delays mr[i] and increments i. Considering
mr[i] = 〈〈t, r′〉, r , vc〉 as a legal event, this function first updates
the dependency of mr[i] using updDep(cm,mr[i],H), if t ∈ Txns.
Then, it adds mr[i] to the history H and returns a set consisting
of a single tuple of the updated scheduler object and mr[i].

5. EMPIRICAL EVALUATION
We implement the proposed schedule exploration strategies in
a prototype stateless model checker for weakly consistent pro-
grams named Commander [11]. As shown in Figure 2, Com-
mander consists of four components: (1) Recorder is responsible
for recording the events that occur during the execution of the
test scenario written by the developer (the recorded sequence,
called CanonicalSchedule, is a deterministic canonical schedule);
(2) Scheduler reorders the events in CanonicalSchedule, using the
selected scheduling strategy, which is currently either CAR or
CAD; (3) Replayer exercises the events in the ordering that Sched-
uler provides; and (4) Verifier checks for program-specific invari-
ant violations after each scheduled event is replayed. If invariants
are not violated, Replayer replays the next scheduled event and
so on. Otherwise, Verifier provides a counterexample to the de-
veloper.

We empirically evaluate our approach using one real world and
three synthetic benchmarks. Since Antidote is a new data store,
there is only one real world benchmark written for it to date,
called FMK Medical Application. FMK Medical Application shares
a medical profile among different health institutions. The in-
variant we check for this benchmark is that every prescription
must be present in the corresponding patient’s prescription list.
In addition, we develop three benchmarks after the realistic use
cases from the SyncFree project [25]. Virtual Wallet manages vir-
tual economies of distributed computer game clients. Each client
maintains a local state and issues credits and debits to it (see
Section 2). The invariant we check for this benchmark is that the
balance must not become negative. Ad Counter implements a
distributed counter. Advertising platforms keep track of impres-
sions and clicks for ads in order to analyze advertising data. The
invariant we check for this benchmark is that the number of ad
views must not exceed the upper bound. Business to Business
(B2B) Order plays the role of a traveling salesman for large man-
ufacturers. Client store employees can see a catalogue of products
and place orders from a mobile device using a B2B order program,
concurrently. The invariant we check for this benchmark is that
the store budget must not become negative.

We perform our experiments in a testing environment with a
topology consisting of three data centers (DCs) as shown in Fig-
ure 3. We create a testing node that hosts Commander and com-

Testing node

DC2

DC3

DC1

ClientClientClient ClientClientClientClientClientClient

Record and replay synchronization

Replication

Figure 3: Testing environment for empirical evaluation.

municates with every DC and client to record and replay events
as described earlier in this section. We set up multiple DCs con-
nected using TCP/IP protocol on a single 4.00 GHz Intel Core i7
machine with 62 GB of memory.

To evaluate the effectiveness of our approach in detecting invari-
ant violations and to empirically compare the different scheduling
strategies, we seed a bug in each of our three synthetic bench-
marks. Then, we use Commander to discover the seeded bugs
using the proposed CAR and CAD schedulers. However, in our
realistic benchmark, FMK, we found a real bug which CAD sched-
uler with delay bound of 0 missed it. The FMK system allows
updating an entity, e.g., patient information, using its ID, even
if that patient does not exist in a DC. Therefore, creating that
patient later in a remote DC, after the update has been delivered,
fails. The developers of the FMK system fixed this bug after we
reported it.

Table 1 shows our experimental result. Given the inherent ran-
domness of CAR, we run it 15 times with different random seeds
on every benchmark, and we report min, max, median, and mean
values for the numbers of explored schedules and runtimes. As
the results show, CAR can generate buggy schedules almost im-
mediately, but there is also a great variation in its effectiveness,
which makes it brittle.

We implement two variations of our CAD scheduler. The first one
is called for-CAD, and it delays events starting from the beginning
of the canonical schedule. The second one is called back-CAD, and
it delays events starting from the end of the canonical schedule.
Table 1 shows the result we obtain using these two CAD scheduler
variations. As the results show, the for-CAD variation finds bugs
faster than the back-CAD variation. Since the events coming
from clients are being executed first according to our canonical
schedule and events’ dependencies are assigned only when they
are coming from clients, for-CAD quickly alters the dependencies
between events, which makes buggy schedules more likely to be
caught. If we compare the for-CAD variation against the CAR
scheduler, we notice that their effectiveness is comparable, while
for-CAD had the advantage of being predictable.

6. RELATED WORK
The most related approach to ours proposes a form of consistency
called explicit consistency [4, 17, 21]. Similarly to our work, users
can specify the required consistency model, and unsafe operations
are identified under concurrent executions using program-specific
invariants. However, the consistency rules must be manually spec-
ified using additional program-specific invariants. Hence, the cor-
rectness of the approach relies on the correctness of the provided
consistency rules. On the other hand, we guarantee the selected
consistency model of the underlying data store and require users

Table 1: Experimental results. Column Txns is the number of transactions in a benchmark; Events is the number of events; Time is
runtime in min:sec; #s is the number of schedules explored by Commander before it discovers a bug. With k we denote the delay
bound, and with * we denote runs where Commander misses a bug because of an insufficient delay bound.

CAR Scheduler for-CAD Scheduler back-CAD Scheduler
min max median mean k=0 k=1 k=2 k=0 k=1 k=2

Benchmark Txns Events #s Time #s Time #s Time #s Time #s Time #s Time #s Time #s Time #s Time #s Time
Virtual Wallet 30 90 1 1 37 42:06 8 9:10 11 12:31 1∗ 1:14 5 5:30 182 208:45 1∗ 1:15 54 61:32 53 60:04
Ad Counter 6 18 1 0:21 10 3:32 5 1:46 5 1:45 1∗ 0:26 8 2:48 10 3:27 1∗ 0:25 7 2:22 7 2:21
B2B Order 18 54 1 0:42 22 16:23 4 2:55 6 4:29 1∗ 0:50 7 5:07 173 128:52 1∗ 0:51 31 23:07 30 22:21

FMKe 70 210 1 0:21 11 27:07 4 8:07 4 8:00 1∗ 2:41 5 13:22 1 2:39 1∗ 2:39 >127 >328:00 >127 >328:00

to specify only program-specific invariants.

When it comes to checking of weakly consistent programs, ECRacer [7]
is a dynamic analysis tool that checks serializability of weakly con-
sistent programs. It first records an execution of such a program
and then performs an offline analysis to check for serializability.
It does not take the dependency between user-initiated transac-
tions into consideration, and therefore it can report false positives.
Bouajjani et al. [6] propose a set of bad patterns to check causal
consistency, causal memory, and causal convergence of an execu-
tion. If an execution contains a bad pattern with respect to a
replicated data type, it is not consistent.

In a recent effort, Zeller et al. propose a verification framework
called Repliss [28], which includes a property-based testing en-
gine [27] to check program specific invariants of programs built
on top of weakly consistent data stores. The testing engine is a
model of the underlying data store schema, and it randomly ex-
ercises different executions of a given program. Lesani et al. pro-
pose Chapar [19], which includes a model checker targeting weakly
consistent programs. Their work addresses an abstract model of
programs in contrast to our work that performs execution-based
model checking. Kim et al. [18] propose a consistency oracle that
simulates a distributed data store. The proposed consistency or-
acle supports neither causal consistency nor transactions which
are being widely used in different data stores.

Acknowledgments. This research is supported in part by Euro-
pean FP7 project 609 551 SyncFree (2013–2016).

7. REFERENCES
[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W.

Hutto. Causal memory: Definitions, implementation, and
programming. Distributed Computing, 9(1), 1995.

[2] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain,
A. Bieniusa, N. Preguiça, and M. Shapiro. Cure: Strong
semantics meets high availability and low latency. In
ICDCS, 2016.

[3] Antidote Reference Platform.
http://github.com/SyncFree/antidote.

[4] V. Balegas, N. Preguiça, R. Rodrigues, S. Duarte,
C. Ferreira, M. Najafzadeh, and M. Shapiro. Putting
consistency back into eventual consistency. In EuroSys,
2015.

[5] C. Baquero, P. S. Almeida, and A. Shoker. Making
operation-based crdts operation-based. In PaPEC, 2014.

[6] A. Bouajjani, C. Enea, R. Guerraoui, and J. Hamza. On
verifying causal consistency. In POPL, 2017.

[7] L. Brutschy, D. Dimitrov, P. MÃijller, and M. Vechev.
Serializability for eventual consistency: Criterion, analysis,
and applications. In POPL, 2017.

[8] S. Burckhardt. Principles of Eventual Consistency. 2014.

[9] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski.

Replicated data types: Specification, verification,
optimality. In POPL, 2014.

[10] A. Cerone, G. Bernardi, and A. Gotsman. A framework for
transactional consistency models with atomic visibility. In
CONCUR, 2015.

[11] Commander. http://github.com/Maryam81609/commander.

[12] M. Dabaghchian, Z. Rakamarić, B. K. Ozkan, E. Mutlu,
and S. Tasiran. Consistency-aware scheduling for weakly
consistent programs. Technical Report UUCS-17-002,
University of Utah, 2017.

[13] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,
A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
and W. Vogels. Dynamo: Amazon’s highly available
key-value store. In SOSP, 2007.

[14] M. Emmi, S. Qadeer, and Z. Rakamarić. Delay-bounded
scheduling. In POPL, 2011.

[15] C. J. Fidge. Timestamps in message-passing systems that
preserve the partial ordering. 1987.

[16] S. Gilbert and N. Lynch. Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web
services. ACM SIGACT News, 2002.

[17] A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and
M. Shapiro. ’cause I’m strong enough: Reasoning about
consistency choices in distributed systems. In POPL, 2016.

[18] B. H. Kim, S. Oh, and D. Lie. Consistency oracles: Towards
an interactive and flexible consistency model specification.
In HotOS XVI, 2017.

[19] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: Certified
causally consistent distributed key-value stores. In POPL,
2016.

[20] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with cops. In SOSP, 2011.

[21] M. Najafzadeh, A. Gotsman, H. Yang, C. Ferreira, and
M. Shapiro. The cise tool: Proving weakly-consistent
applications correct. In PaPoC, 2016.

[22] C. H. Papadimitriou. The serializability of concurrent
database updates. JACM, 1979.

[23] Riak - A Key-Value Store.
http://basho.com/products/riak-overview.

[24] M. Shapiro, N. M. PreguiÃğa, C. Baquero, and M. Zawirski.
Conflict-free replicated data types. In SSS, 2011.

[25] SyncFree Project. https://syncfree.lip6.fr.

[26] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers,
M. J. Spreitzer, and C. H. Hauser. Managing update
conflicts in bayou, a weakly connected replicated storage
system. In SOSP, 1995.

[27] P. Zeller. Testing properties of weakly consistent programs
with repliss. In PaPoC, 2017.

[28] P. Zeller and A. Poetzsch-Heffter. Towards a proof
framework for information systems with weak consistency.
In SEFM, 2016.

http://github.com/SyncFree/antidote
http://github.com/Maryam81609/commander
http://basho.com/products/riak-overview
https://syncfree.lip6.fr

	Introduction
	Motivating Example
	Weakly Consistent Programs
	Consistency Models
	Scheduler

	Scheduling Strategies
	Random Scheduling
	Delay-bounded Scheduling

	Empirical Evaluation
	Related Work
	References

