
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Rigorous Floating-Point Mixed-Precision Tuning

Wei-Fan Chiang Mark Baranowski Ian Briggs
Alexey Solovyev Ganesh Gopalakrishnan Zvonimir Rakamarić

School of Computing, University of Utah, Salt Lake City, Utah, USA
{wfchiang,baranows,ibriggs,monad,ganesh,zvonimir}@cs.utah.edu

Abstract
Virtually all real-valued computations are carried out using floating-
point data types and operations. The precision of these data types
must be set with the goals of reducing the overall round-off error,
but also emphasizing performance improvements. Often, a mixed-
precision allocation achieves this optimum; unfortunately, there
are no techniques available to compute such allocations and con-
servatively meet a given error target across all program inputs. In
this work, we present a rigorous approach to precision allocation
based on formal analysis via Symbolic Taylor Expansions, and
error analysis based on interval functions. This approach is im-
plemented in an automated tool called FPTUNER that generates
and solves a quadratically constrained quadratic program to obtain
a precision-annotated version of the given expression. FPTUNER
automatically introduces all the requisite precision up and down
casting operations. It also allows users to flexibly control precision
allocation using constraints to cap the number of high precision
operators as well as group operators to allocate the same preci-
sion to facilitate vectorization. We evaluate FPTUNER by tuning
several benchmarks and measuring the proportion of lower preci-
sion operators allocated as we increase the error threshold. We also
measure the reduction in energy consumption resulting from exe-
cuting mixed-precision tuned code on a real hardware platform. We
observe significant energy savings in response to mixed-precision
tuning, but also observe situations where unexpected compiler be-
haviors thwart intended optimizations.

Categories and Subject Descriptors D.2.3 [Software Engineer-
ing]: Coding Tools and Techniques; D.3.4 [Programming Lan-
guages]: Processors; G.1.0 [Numerical Analysis]: General

Keywords Floating-point arithmetic, Program optimization, Rig-
orous compilation, Precision allocation, Energy-efficient comput-
ing

1. Introduction
The use of floating-point arithmetic to carry out real arithmetic
on computers is almost standard practice, and finds applications
in a wide variety of computational problem domains such as
weather simulation, numerical linear algebra, and embedded com-
puting. The standard IEEE floating-point [32] precision choices

for computation are single-precision (32 bits) and double-precision
(64 bits), with quad-precision (128 bits) occasionally used, and
half-precision (16 bits) becoming available on certain platforms
(e.g., ARM NEON [2], Nvidia Pascal GPU [43]). These preci-
sion choices primarily decide the highest real number magnitude
representable as a floating-point number. They also decide the ex-
tent of round-off error incurred: the higher the precision, the lesser
the round-off error. Unfortunately, code performance goes down
dramatically if high precision is used everywhere: it can double
cache occupancy and more than double energy costs when going
from single- to double-precision, for example. The natural question
therefore is whether one can obtain the best error/energy trade-off
by allocating low precision almost everywhere, with high precision
used selectively — hereafter called mixed-precision tuning.

Challenges of Mixed-Precision Tuning. Past research [3, 10]
has shown that allocating only a few of the operators of a given
expression at higher precision and the rest at lower precision (i.e.,
a mixed-precision implementation) often suffices to keep round-off
error below a given threshold, while also improving performance.
For example, for a simple expression such as (a − b)/(c + d), it
may be best to carry out division in single-precision and the rest of
the operations in double-precision.

Unfortunately, round-off errors are highly non-intuitive both in
manifestation as well as accumulation. Floating-point values are
bunched up tightly closer to 0, but are astronomically far apart
when approaching the largest representable value; and round-off
error is proportional to this spacing (known as units in the last place
or ULP). For a given precision, the absolute error introduced by a
calculation is proportional to the magnitude of the computed result.
In practical terms, this means that given a complex expression of a
few variables comprised of linear, non-linear, and transcendental
operations, it is impossible to tell which inputs give rise to high
(intermediate) values within the expression tree. Each operation
application introduces further round-off error with respect to the
calculated result. This error is at best half an ULP of the computed
result for some operators, and higher for others. To make matters
worse, floating-point error analysis is highly non-compositional
and does not obey familiar algebraic laws such as associativity. For
example, Kahan has observed that (ez − 1)/z sometimes exhibits
higher round-off error in certain input ranges as compared to (ez −
1)/log(ez), even though the error in z is obviously lower than its
(real-equivalent) expression log(ez) [35].1 Given these challenges,
rigorous mixed-precision tuning must be driven by rigorous global
(whole-expression) round-off error analysis over the entire input
domain. Our main contribution is such an approach, which we
embodied in our new tool FPTUNER that is open-source and freely
available.2

1 We have confirmed this behavior using FPTaylor [52].
2 https://github.com/soarlab/FPTuner

https://github.com/soarlab/FPTuner


Challenges of Rigorous Round-Off Error Estimation. If the un-
derlying error analysis engine of a mixed-precision tuner produces
bloated error estimates, it will unnecessarily force the use of more
higher precision operations. In this work, we base error analysis
on our recently introduced rigorous method called Symbolic Tay-
lor Expansions [52]. This method accurately computes round-off
error for entire input interval combinations. We have shown that
this approach produces far tighter as well as rigorously provable er-
ror bounds compared to contemporary methods. It is also the only
available method that can handle transcendental functions. This
helps FPTUNER produce parsimonious as well as rigorous preci-
sion allocations across a wide variety of expressions.

Primary Related Work. The Rosa compiler for reals [18] is the
only prior line of work that implements precision allocation driven
by rigorous error analysis. However, Rosa does not support mixed-
precision tuning.

When it comes to non-rigorous methods, several whole-program
mixed-precision tuning approaches have been proposed. One of the
earliest efforts in this area is by Buttari et al. [11], with many more
vastly refined approaches appearing since then [37, 47, 48]. These
methods are based on a simple sampling of inputs, meaning that
they are driven by a few (typically a few dozen) program inputs
supplied by the user. Then, they employ various heuristics to con-
sider a small subset of the total (exponential) number of different
operator precision allocations, trying to reduce the overall number
of high precision operators. For each given input and candidate pre-
cision selection, the whole program must be executed. The search
stops when none of the inputs violate the chosen error threshold.

Given the enormity of the total number of inputs available
within typical input-intervals of interest, and the sensitivity of
floating-point error to actual data inputs, no guarantees are pro-
duced or implied by these tools (for the remaining inputs). For
example, after one of these tools tunes a piece of code using inputs
x1, . . . , xn that span an interval X , it is still possible to very easily
locate (e.g., through randomized search) a new input xn+1 ∈ X
that violates the stipulated error threshold. This makes these tools
inapplicable for tuning critical pieces of software (e.g., code resid-
ing in arithmetic libraries) where rigorous guarantees are expected
to be published. Nonetheless, these tools can still be quite useful in
practice. As an example, it has been shown that the code obtained
after tuning may often yield acceptable numerical convergence
rates within iterative solvers [11]. Unlike these sampling-based ap-
proaches, our work provides rigorous guarantees across entire input
intervals.

Versatile Handling of Precision Selection and Type-Casts. Dur-
ing the process of mixed-precision tuning, one must incorporate
precision up/down casting operations (e.g., to convert from double-
precision to single-precision). These casting operations are like ad-
ditional operators in that they detract from performance and pro-
duce extra round-off errors. This introduces a (meta-)circular de-
pendency in the tuning process. More specifically, precision tuning
is driven by error analysis, and each allocation generated by tuning
results in the introduction of casting operations that, in turn, can
affect error analysis. Our work naturally incorporates such depen-
dencies into its quadratically constrained quadratic programming
(QCQP [46]) formulation of the tuning problem.

The QCQP approach also provides added versatility. For in-
stance, one can easily incorporate additional QCQP constraints to
group a collection of operators to share the same precision, limit
the total number of higher precision choices, or limit the total num-
ber of type-casting operations. None of the prior efforts in mixed-
precision tuning provide such “knobs” to help improve the result-
ing code quality. As an example, grouping can encourage compiler

backends to generate vector instructions, thus potentially providing
additional performance benefits.

Careful Empirical Evaluation of Precision Tuning. One may be
tempted to jump to the conclusion (as we initially did) that any
precision allocation that maximizes the number of low precision
operators while meeting the error thresholds is the best. Unfor-
tunately, not all reduced-precision allocations are necessarily im-
provements in terms of overall computation time and energy, for
two main reasons: (1) the cost of the intrinsic instructions involved
in type-casting (e.g., [33]), and (2) the highly unpredictable effect
that specific precision selections have on compiler optimizations.
As we observed, some precision allocations in fact make the com-
piler suddenly choose software fallback paths or introduce unnec-
essary loads and stores, thus detracting from performance.

In our benchmarks, we are careful to check that the right com-
piler optimization levels are chosen to ensure that assembly code
truly carries the mixed-precision intent.3 We also conduct actual
energy measurements using a test hardware platform equipped with
an accurate wattmeter, revealing how energy consumption and ex-
ecution vary with precision allocation for two popular compiler
choices. These results may help inform work in approximate com-
puting that may take the route of tuning floating-point precision in
order to gain performance advantages. Such opportunities seem to
be on the rise, as evidenced by the availability of three hardware-
supported precision choices — single-, double-, and half-precision
in a recently released GPU [43]. While the exponentiality of the
overall precision allocation problem may limit practical applica-
bility without further research, our results suggest that designers
of library routines can begin to meaningfully employ FPTUNER
without facing undue turn-around times while tuning.

Contributions. To recap, our contributions are the following:

• We present a rigorous as well as automated approach for pre-
cision tuning of floating-point expressions. Our approach also
provides a versatile set of knobs to guide precision selection.

• We implement our approach in a prototype tool called FP-
TUNER, and apply it on many realistic benchmarks. We re-
leased both the tool and the benchmarks.

• We report the results of precision tuning with FPTUNER in
terms of performance and energy measurements on actual
hardware, and point out delicate interactions between mixed-
precision type declarations and compiler actions.

Roadmap. We first provide a reasonably self-contained overview
of our work, aided by examples (§2 and §3). We then describe
our methodology for generating optimization instances for tuning
(§4), and provide the implementation details of FPTUNER (§5). We
present our empirical evaluation in §6, and discuss the limitations of
our work in §7. In §8 we summarize related work. We end the paper
with conclusions and some future directions for research (§9).

2. Preliminaries
Notation. Let N = {0, 1, 2, . . .} be the set of natural numbers.
For brevity, we sometimes view n ∈ N as the set {x ∈ N : x < n}
(as in set theory). Thus, i ∈ 4 means i ∈ {0, 1, 2, 3}.

Floating-Point Arithmetic. We briefly recall all necessary prop-
erties of floating-point arithmetic. Our text is based on the ex-
position from previous work [52]. The IEEE 754 standard [32],

3 FPTUNER outputs a C program containing floating-point type declarations
to express its precision choices; in our experiments, we are extremely
careful to ensure that the right intrinsic machine instructions are present
in assembly code to account for the prescribed precision changes.



Precision (bits) ε δ

half (16) 2−11 2−25

single (32) 2−24 2−150

double (64) 2−53 2−1075

quad (128) 2−113 2−16495

Table 1: Rounding to nearest operator parameters.

concisely formalized and explained in previous work [24, 25], de-
fines three floating-point formats: single-precision or ‘single’ (32
bits), double-precision or ‘double’ (64 bits), and quad-precision
or ‘quad’ (128 bits). Rounding plays a central role in defining the
semantics of floating-point arithmetic. Denote the set of floating-
point numbers (in some fixed format) as F. A rounding operator
rnd : R → F is a function which takes a real number and returns
a floating-point number which is closest to the input real number
and has some special properties defined by the rounding operator.
Common rounding operators are rounding to nearest (ties to even),
toward zero, and toward±∞. A simple model of rounding is given
by the rounding rule

rnd(x) = x(1 + e) + d, (1)

where x ∈ R, |e| ≤ ε, |d| ≤ δ, and e × d = 0 [25]. The
parameter ε (or machine epsilon) specifies the maximal relative
error introduced by the given rounding operator. The parameter δ
gives the maximal absolute error for numbers which are very close
to zero (relative error estimation does not work for these small
numbers called subnormals). Table 1 shows values of ε and δ for
the rounding to nearest operator of different floating-point formats.
We denote the machine epsilon corresponding to an n-bit floating-
point representation with εn.

Real Expression. Let E be a real-valued expression comprised
of real-valued constants, variables, and operators taking and yield-
ing real-valued quantities. We view E as denoting a function
λx. E : RN → R, where an N -dimensional vector x matches
E ’s variables. We write E (x) to denote the application of such a
function to an N -dimensional input vector x. We assume that the
inputs of E belong to a bounded domain I, i.e., x ∈ I. The domain
I can be quite arbitrary but we only consider products of intervals
in our benchmarks because we rely on an external global optimiza-
tion tool which does not support more complicated domains. In
the benchmarks presented later, we have ai ≤ xi ≤ bi for all
i = 1, . . . , n. In this case, I = [a1, b1]× . . .× [an, bn] is a product
of intervals (i.e., an n-dimensional rectangle).

Since we will be allocating specific precision values to differ-
ent operators of an expression, we need to refer unambiguously to
specific sub-expressions of E ; hence, we assume that E has a spe-
cific syntax-tree and a fixed numbering (e.g., preorder numbering)
for its operators. We use Ė to denote the principal operator of E ,
and p(S , E ) to denote the preorder number of a sub-expression
S within E . For example, if E = x + y, Ė is +, p(x, E ) = 1,
p(y, E ) = 2, and p(x+ y, x+ y) = 0. When there is little risk of
confusion and E is clear from the context, we useṠ (i.e., principal
operator of S ) in lieu of p(S , E ) (i.e., its preorder number).

Precision Allocation. Let AE be an allocation of precision to the
constituents of an expression E (simply written A when E is clear
from the context). An allocation is a mapping from E ’s nodes (their
preorder numbers) to a set of allowed machine epsilon values. For
instance, to model expression x + y with x set to 32 bits, y to 64
bits, and the + operator meant to yield 64-bit outputs, we use the
allocation function A = {(0, ε64), (1, ε32), (2, ε64)}. We assume

that when an operator such as + yields a certain precision (e.g.,
64-bit output), its inputs are also set to be at the same precision
(also 64-bit inputs). Thus, in our example, a type-casting opera-
tion is needed to elevate x to the input type of +. Clearly, these
type-casting operations are needed based on the actual intended al-
location itself. Hence, while exploring the space of allocations to
pick an “optimal” one, we must also take into account the type-
casting operations being “silently” introduced — and more impor-
tantly, the additional round-off errors these type-casting operations
may introduce.

Floating-Point Expression. Given a real-valued expression E
and an allocationA, let EA denote E under allocationA (i.e., inter-
preted according to allocationA). Similarly to a real expression, we
view EA as denoting a function λx. EA : FN → F. For example,
under the allocation functionA = {(0, ε64), (1, ε32), (2, ε64)}, ex-
pression x+y behaves like a function λx, y. (x+y)A : F2 → F.
Here, x is a ‘single’ and y is a ‘double’, and this function yields
a double. From the user perspective, when two reals are sent in, x
gets rounded as per ε32 (is “rounded more”) and y gets rounded
as per ε64 (is “rounded less”), the calculation gets carried out, and
the result is expressed as a double. This process is modeled by the
modeling expression associated with (x+ y)A, described next.

Modeling Expression. A modeling expression ẼA is a real-valued
expression that models the value yielded by the floating-point ex-
pression EA using multiple applications of the rounding rule from
Equation 1 — one such application at every operator node of E .
Thus, we view a modeling expression ẼA as denoting a function
λx, e. ẼA : RN × R|A| → R, where e is an additional |A|-
dimensional vector. The elements of e are the e arguments that each
application of the rounding rule at each operator site of E entails.
We call these es noise variables, in the sense that if they are all 0,
we get the value of the original real-valued expression E .

It is useful to keep in mind several facts associated with the
noise variables. (1) One can estimate the rounding error of EA by
computing a Taylor series whose first-order terms are the partial
derivatives of ẼA with respect to the noise variables. (2) By assum-
ing that the noise variables are independent, one can obtain a pes-
simistic error model. However, by equating noise variables (e.g.,
when EA has two identical sub-expressions), one can model errors
more precisely. We illustrate this by taking x−(x+y) as our exam-
ple expression. In this expression, if we equate the noise variables
for x, the round-off errors caused by xs cancel, and the result is af-
fected only by the round-off error of y (if any) and that introduced
by the + and− operators. (3) As already mentioned, while search-
ing for an “optimal” allocation, we must also take into account the
type-casting operations being “silently” introduced. A clean way
to present our theory, and obtain a straightforward implementation
thereof is to introduce 2×|A| noise variables. At each operator site,
we not only introduce the operator-specific rounding via e, but also
a type-specific rounding via t. We now introduce these ideas step
by step. For the sake of enhanced readability, in the remainder of
this section we continue to present our main ideas without doubling
the number of noise variables (we will address this detail in §4).

Formal Relationship between EA and ẼA. The gist of the con-
cepts discussed so far lies in the formal relationship between EA
and ẼA. For every valid input assignment x ∈ I of E , we can al-
ways find a certain assignment e to the noise variables such that the
condition EA(xA) = ẼA(x, e) holds (formally proved in previous
work [25]). Vector xA is the vector of floating-point numbers ob-
tained by rounding x under the types specified in allocation A. In
§4, we present how we generate the modeling expression ẼA from
a given expression E and an allocation A.



Partial Derivative of Modeling Expression. Given a modeling
expression ẼA, the partial derivative of ẼA with respect to noise
variable ei is denoted as D(ẼA, ei) = ∂ẼA

∂ei
. We prefer D(ẼA, ei)

to ∂ẼA
∂ei

for higher readability. As we elaborate in §4, we build on
Symbolic Taylor Expansions [52] and estimates the first-order error
by computing D(ẼA, ei) weighted by noise variables.

3. Motivating Example
To motivate our work, let us consider a simple example expression
E = x − (x + y). Let A64 be an allocation that assigns double-
precision to every operator and variable in E . That is, A64[i] = ε64
for i ∈ 5. The modeling expression ẼA64 is (x · (1+e1)− (x · (1+
e3) + y · (1 + e4)) · (1 + e2)) · (1 + e0). In ẼA64 , each operator
of E at position i ∈ 5 is associated with a distinct noise variable
ei, where |ei| ≤ A64[i]. Note that keeping e1 and e3 distinct gives
a pessimistic error estimate, as the round-off errors are allowed to
be uncorrelated.

Based on Symbolic Taylor Expansions [52], we can now state
an inequality bounding the magnitude of the absolute error of E :

∣∣∣ẼA64 − E
∣∣∣ ≤ max

x,y

∑
i∈5

|ei| ·
∣∣∣D(ẼA64 , ei)(x, y,0)

∣∣∣
+M2.

Here, 0 denotes a zero-vector that assigns 0 to the noise variables,
and each ei is bounded by a positive constantA64[i].M2 is a bound
of all higher order error terms. In general, this is a small positive
constant (of order ε264 in our example). For simplicity, assume that
M2 = 0 in our example; we describe how FPTUNER deals with
higher-order error terms in §5. Next, we replace each first derivative
D(ẼA64 , ei) by its upper bound

Uei = max
x,y

∣∣∣D(ẼA64 , ei)(x, y,0)
∣∣∣ ,

thereby obtaining the following bound on the absolute error of E :∣∣∣ẼA64 − E
∣∣∣ ≤∑

i∈5

Uei ·A64[i] (2)

In our approach, we follow this relaxed upper bound to formu-
late precision tuning as a quadratically constrained quadratic-
programming problem, in which the upper bounds Uei are treated
as constants. The variables employed in our quadratic-programming
formulation are the allocation variables, which are discussed next.

Mixed-Precision Allocation. Let Amixed be a mixed-precision
allocation that assigns single-precision to the subtraction operator
and double-precision to all the other operators. Under Amixed , the
modeling expression becomes

ẼAmixed = (x · (1 + e1) · (1 + t1)− (x · (1 + e3) · (1 + t3) +

y · (1 + e4) · (1 + t4)) · (1 + e2) · (1 + t2)) · (1 + e0) · (1 + t0)
(3)

Recall that t variables introduce type-specific rounding, i.e., they
capture type-casting. Note that by equating e1 and e3, we correlate
the operator-specific errors of the two x operators. Furthermore, e0
is bounded by ε32. On the other hand, t0 depends on the context of
the whole expression — if the context expects a b-bit precision for
b ≥ 32, then t0 = 0, as there will be no loss of precision when the
expression conveys its result to its context. (Here, context refers to
any operator that consumes the result of E .) In addition, t1 and t2
help cast a 64-bit computation to 32 bits, and thus are bounded by
ε32; observe that t3 and t4 are 0. Finally, e1, e3, and e4 are bounded

by ε64. Taking these into account, we bound the overall error with∑
i∈5

Uei ·Amixed [i] +
∑

i∈{1,2}

Uti · ε32 +
∑

i∈{0,3,4}

Uti · 0.

As illustrated by this example, the bounds of the type-specific t
variables depend on the type-casts occurring between the operators
and their operands. In the next section, we precisely describe how
our approach relates the t variables’ bounds to the given allocation
A. Note that, for the two noise variables e and t at the same operator
site, they share the identical expression as their first derivatives
(regardless of the allocations; this result can be easily seen in the
context of the example in Equation 3, and can be rigorously shown
on the full expression syntax through structural induction):

D(Ẽ , e) = D(Ẽ , t). (4)

Thus their upper bounds (Ue and Ut) only need to be calculated
once.

4. Methodology
As briefly described in the previous section, there are two possible
rounding steps at each operator site:
Operator-Specific Rounding. Each operation introduces one round-

ing step. The magnitude of this rounding error depends on the
type of the operator (its specification).

Type-Specific Rounding. The result of an operation may experi-
ence a second rounding step before flowing into the parent op-
erator’s argument position (e.g., if the parent operator expects
a lower precision data-type). We call this a type-cast, and it is
typically supported in the assembly code through an intrinsic
instruction.

Therefore, each operator with preorder number i is associated with
two noise variables, ei and ti, accounting for the aforesaid rounding
steps.

We enrich the notion of an allocation A by defining two differ-
ent allocation maps, namely Ae and At, that specify the bounds of
these noise variables. More specifically, given the preorder num-
bering i of an operator, Ae[i] (resp., At[i]) yields the bound of
ei (resp., ti). A given allocation A directly maps to Ae, meaning
Ae = A. In addition, At is implied by (or depends on) Ae in a
manner we shall precisely define.

Given a real-valued expression E , we generate the modeling
expression ẼAe,At (simply written Ẽ when Ae and At are clear
from the context) by introducing two independent noise variables
e and t at each operator site. Equation 3 provides an example of
such a modeling expression. The bounds of the noise variables are
defined as

∀i ∈|A| . |ei| ≤ Ae[i] ∧ |ti| ≤ At[i].
In a manner similar to Equation 2, the absolute error of E for a
given allocation is bounded by the following (recall Uei = Uti ):∑

i∈|Ae|

Uei ·Ae[i] +
∑
i∈|At|

Uti ·At[i]. (5)

Generating Ẽ and At. Figure 1 gives inference rules that induc-
tively define the relation B that maps (E , C,Ae) to (Ẽ , At), where
• E is the given real expression,
• C is E ’s context, i.e., the operator that consumes E ’s result as

an argument,
• Ae is identical to the allocation A,
• Ẽ is the generated modeling expression corresponding to E ,
• At is the generated type-cast allocation corresponding to Ae.

For example, let E be a binary expression where E = op(E0, E1).
Rule BINEXPR (Figure 1) first recursively generates the modeling
expressions Ẽ0 and Ẽ1 of the two operands, and then it uses them



BINEXPR
(E0,Ė , Ae)B (Ẽ0, A

0
t ) (E1,Ė , Ae)B (Ẽ1, A

1
t ) At = {(Ė , (Ae[C] > Ae[Ė ]→ Ae[C], 0))} ∪A0

t ∪A1
t

(op(E0, E1), C,Ae) B (op(Ẽ0, Ẽ1) · (1 + eĖ ) · (1 + tĖ ), At)

VAR
At = {(v̇, (Ae[C] > Ae[v̇]→ Ae[C], 0))}
(v, C,Ae) B (v · (1 + ev̇) · (1 + tv̇), At)

CONST b
At = {(ċ, (Ae[C] > εb → Ae[C], 0))}
(c, C,Ae) B (c · (1 + eċ) · (1 + tċ), At)

Figure 1: Inference rules for generating modeling expression and type-cast allocation.

BINEXPR
(E0,Ė , Ae)B (Ẽ0, A

0
t ) (E1,Ė , Ae)B (Ẽ1, A

1
t ) At = {(Ė , sĖ64 · sC32 ·Ae[C])} ∪A0

t ∪A1
t

(op(E0, E1), C,Ae) B (op(Ẽ0, Ẽ1) · (1 + eĖ ) · (1 + tĖ ), At)

VAR
At = {(v̇, sv̇64 · sC32 ·Ae[C])}

(v, C,Ae) B (v · (1 + ev̇) · (1 + tv̇), At)

CONST b
At = {(ċ, sċ64 · sC32 ·Ae[C])}

(c, C,Ae) B (c · (1 + eċ) · (1 + tċ), At)

Figure 2: Lifted inference rules: the rules of Figure 1 with pseudo-Boolean variables.

to construct the modeling expression Ẽ with the principal operator
op (also denoted with Ė ) and the two independent noise variables
eĖ and tĖ . The introduced type-cast noise variable tĖ is bounded
by (Ae[C] > Ae[Ė ] → Ae[C], 0), where “(a → b, c)” is a condi-
tional expression. This conditional is decided by the comparison of
machine epsilons of the principal operatorĖ and the context opera-
tor C. Hence, a potential type-cast introduces error only when C’s
bit-width is smaller than E ’s. The rule finally derivesAt by uniting
allocations A0

t and A1
t recursively derived from the operands with

the one derived for the current operator. Other rules in Figure 1 are
analogous to BINEXPR. Note that rule CONST b is parameterized
by the available bit-widths, meaning that one such rule is instanti-
ated for every bit-width b and applied based on the type of a con-
stant.

Generating Optimization Target Expression. Relation B is a
device that generates Ẽ and At from a given expression E , context
C, and specific allocation Ae. The generation of the modeling
expression Ẽ itself is quite mechanical, and achieved through a
recursive syntactic transformation of E . On the other hand, the
main goal of our approach is for an optimal Ae to be computed
automatically, instead of being given to us. To achieve that, we
must first “lift” B so that Ae[Ė ] and At[Ė ], instead of mapping to
constants such as ε32 and ε64, map to symbolic expressions that
capture the available allocation choices. The symbolic expressions
are constructed using two pseudo-Boolean variables (i.e., integer
variables that take on values 0 or 1) per operator.

More specifically, let sĖ32 and sĖ64 be two pseudo-Boolean vari-
ables associated with the top-level operator Ė of E . (We illustrate
our method for only two precision regimes; this can be extended
to any number of precision regimes through the use of a sufficient
number of pseudo-Boolean variables and suitable constraints over
them.) We then establish the following:
• We allow for only one pseudo-Boolean variable per operator to

be set, meaning sĖ32 + sĖ64 = 1 for sĖ32, sĖ64 ∈ {0, 1}.
• For every expression E , let Ae[Ė ] = sĖ32 · ε32 + sĖ64 · ε64. Such

lifted Ae evaluates to either ε32 or ε64 once sĖ32 and sĖ64 are
assigned.

• For every expression E , letAt[Ė ] = sĖ64 ·sC32 ·Ae[C], whereC is
the context of E . This corresponds to the conditional expression
(Ae[C] > Ae[Ė ]→ Ae[C], 0) introduced while defining B.

Finally, we must update accordingly the rules in Figure 1 by using
the lifted type-cast allocation. Figure 2 shows the updated rules.
From now on, B is referring to this lifted version.

Generating Expression to be Optimized. We now define another
relation, denoted I, that produces a final expression that is op-
timized to arrive at a precision allocation. More specifically, this
procedure results in generating the absolute error bound expression
with independent noise variables for an input real expression.

Let the “top level” input real expression to compile be G, its
context Cg , and Ae an allocation generated as a symbolic expres-
sion as described previously. Then, let G̃ and At be generated us-
ing the relation B, meaning (G, Cg, Ae) B (G̃, At). Figure 3 gives
inference rules that inductively define the relation I that maps
(E , C,Ae, G̃, At) to T , where E and C are the current real ex-
pression and context (similar to B), Ae, G̃, and At are the above
constants, and T is the generated expression to be optimized. No-
tice that we need to carry around G̃, because the first derivatives
D(G̃, eĖ ) and D(G̃, tĖ ) must be taken with respect to the noise
variables associated with E , wherever E may occur within G.

For example, let E = op(E0, E1) be a binary sub-expression of
G. Similarly to B, rule BINEXPR from Figure 3 first recursively
generates the expressions to be optimized T0 and T1 of the two
operands. Then, we refer to the modeling expression G̃ of the
top-level input real expression G to calculate the first derivatives
D(G̃, eĖ ) and D(G̃, tĖ ) and their upper bounds Ue

Ė
and Ue

Ė
over

the two noise variables eĖ and tĖ . (Note that it is always enough
to calculate just one of the upper bounds as per Equation 4, i.e.,
Ue

Ė
= Ut

Ė
= max

x∈I

∣∣∣D(G̃, tĖ )(x,0)
∣∣∣.) The final expression to

be optimized T of the current operator is the sum of the sub-
expressions T0 and T1 with the additional terms Ue

Ė
· Ae[Ė ] and

Ut
Ė
· At[Ė ] for the noise variables. Other rules in Figure 3 are

analogous to BINEXPR.



BINEXPR

(E0,Ė , Ae, G̃, At) I T0 (E1,Ė , Ae, G̃, At) I T1 Ue
Ė
= max

x∈I

∣∣∣D(G̃, eĖ )(x,0)
∣∣∣ Ut

Ė
= max

x∈I

∣∣∣D(G̃, tĖ )(x,0)
∣∣∣

(op(E0, E1), C,Ae, G̃, At) I (Ue
Ė
·Ae[Ė ]) + (Ut

Ė
·At[Ė ]) + T0 + T1

VAR

Uev̇ = max
x∈I

∣∣∣D(G̃, ev̇)(x,0)∣∣∣ Utv̇ = max
x∈I

∣∣∣D(G̃, tv̇)(x,0)∣∣∣
(v, C,Ae, G̃, At) I (Uev̇ ·Ae[v̇]) + (Utv̇ ·At[v̇])

CONST b

Ueċ = max
x∈I

∣∣∣D(G̃, eċ)(x,0)∣∣∣ Utċ = max
x∈I

∣∣∣D(G̃, tċ)(x,0)∣∣∣
(c, C,Ae, G̃, At) I (Ueċ · εb) + (Utċ ·At[ċ])

Figure 3: Inference rules for generating optimization target expression. Given G in context Cg to optimize, we first determineAe[Ė ] (defined
as sĖ32 · ε32 + sĖ64 · ε64) and then obtain (G̃, At) via (G, Cg, Ae)B (G̃, At). Thus, the definition of I is for the given G and Cg .

Optimization Problem. The goal of our approach is to compute
an optimal precision allocation resulting in the highest benefits
(e.g., performance or energy efficiency) for a floating-point com-
putation, while at the same time satisfying our prescribed error cri-
terion. Given a real expression E , allocation A, and user-specified
error threshold E , we must satisfy T ≤ E where (E , Cg, Ae) B
(Ẽ , At) and (E , Cg, Ae, Ẽ , At) I T .

In this setting, we can effect additional desired optimizations.
For instance, one can maximize the weighted sum of the number of
32-bit operators allocated, for suitably selected weights wĖ :

Satisfy T ≤ E while maximizing
∑
Ė

wĖ · s
Ė
32. (6)

Doing so will drive the allocation toward mostly 32-bit allocations.
Currently, we set the weights of regular operations to 1 and of cer-
tain expensive operations to 16 (see §6.1). In our implementation,
we use the Gurobi mathematical programming solver [28] to solve
the aforementioned optimization problem. We now discuss many
other practically important allocation control mechanisms, all of
which can be easily realized in our framework through quadratic
programming.

4.1 Additional Constraints for Fine-Grained Control
Limiting Type-Casts. Each precision regime crossing (e.g., 64 to
32 bits or vice versa) involves introducing an intrinsic type-cast in-
struction, which incurs a performance overhead. Our formulation
of the quadratic programming problem gives us the ability to sym-
bolically count the number of such precision casts generated when
the value of an expression Ė flows into a context C. For example,
the following captures such a count:

l(Ė ) = sĖ64 · sC32︸ ︷︷ ︸
high-to-low casting

+ sĖ32 · sC64︸ ︷︷ ︸
low-to-high casting

.

In addition, we can suitably weigh such expressions or their com-
ponents for fine-grained control. Note that even though the low-
to-high type-cast does not incur round-off error, it can still detract
from performance. Finally, given the maximum allowed number of
type-castsL, we constrain the sum of l(Ė ) across all subexpressions
E with L to control the total number of type-casts in the generated
precision allocation.

Ganging of Operators. In certain situations, we may want to as-
sign the same bit-width to a group of operators. For example, when
multiple additions are to be executed, one may be able to gener-
ate a SIMD instruction by assigning all these operations the same
bit-width. To force such an allocation, we allow for “ganging” of

operators together to make them share the same precision alloca-
tion. Given two operators opa and opb, we achieve such ganging
using the following constraint:

sopa32 = s
opb
32 and sopa64 = s

opb
64 .

5. Implementation
Figure 4 presents an overview of FPTUNER, the prototype tool that
implements our methodology. FPTUNER takes a real expression
E to be optimized as input. Using relation B it first generates the
modeling expression Ẽ under a lifted allocation A, and using rela-
tion I the error bound expression T by introducing only one vari-
able c at each operator site; we describe this optimization momen-
tarily. Then, the calculation of the bounds of the first derivatives
is performed using GELPIA, which is a scalable and performant
global optimizer that we implemented based on previous work [1].
(We describe GELPIA in more detail later in this section.) For each
provided error threshold E0 . . . EM , FPTUNER searches for opti-
mal allocations using the Gurobi [28] mathematical programming
solver. As the tool flow illustrates, both of these steps are embar-
rassingly parallel, which we plan to leverage in future releases of
FPTUNER. Finally, as described in the end of this section, the gen-
erated precision allocations A0 . . . AM are certified using the FP-
Taylor rigorous error estimator to ensure that higher-order errors
have no effect on our results. In the case where an allocation would
violate the error threshold due to higher-order errors, we could re-
fine the error expression T by adding a small constant to bound the
higher-order error, and then re-run FPTUNER.

Reducing Noise Variables. Relation B generates a modeling ex-
pression by introducing two independent noise variables, e and t,
at each operator site, and I generates one term for each indepen-
dent variable in the absolute error bound expression. However, re-
call from Equation 4 that the first partial derivatives with respect
to these noise variables are the same. Hence, in Equation 5, we can
factor outUei , which is equal toUti , and weight it byAe[i]+At[i].
This allows us to introduce only a single noise variable c whose
bound is obtained by adding the absolute values of the bounds of e
and t. We modify rule BINEXPR of relation B as follows

(E0,Ė , A)B (Ẽ0, A
0
c),

(E1,Ė , A)B (Ẽ1, A
1
c),

Ac = {(Ė , A[Ė ] + sĖ64 · sC32 ·A[C])} ∪A0
c ∪A1

c

(op(E0, E1), C,A) B (op(Ẽ0, Ẽ1) · (1 + cĖ ), Ac)



U0U0 U1U1 UNUN

D(Ẽ , c0)D(Ẽ , c0) D(Ẽ , c1)D(Ẽ , c1) D(Ẽ , cN )D(Ẽ , cN )

Program
real-valued expression EE

Modeling Expression Ẽ̃E  

with lifted allocation AA

(E , Cg, Ae)⊲ (Ẽ , Ac)(E , Cg, Ae)⊲ (Ẽ , Ac)

Error Bound Expression TT

(E , Cg, A, Ẽ , Ac) ◮ T(E , Cg, A, Ẽ , Ac) ◮ T  

T = D(Ẽ , c0) ·Ac[op0] + . . . D(Ẽ , cN ) ·Ac[opN ]T = D(Ẽ , c0) ·Ac[op0] + . . . D(Ẽ , cN ) ·Ac[opN ]

T = U0 ·Ac[op0] + . . . UN ·Ac[opN ]T = U0 ·Ac[op0] + . . . UN ·Ac[opN ]
objective function, 

ganging and 
type cast constraints

… GurobiE0E0 GurobiE1E1 GurobiEMEM

A0A0 … AMAMA1A1 FPTaylorFPTaylorFPTaylor

Gelpia Global 
Optimizer … 

Gelpia Global 
Optimizer

Gelpia Global 
Optimizer

Figure 4: FPTUNER tool flow.

and of relation I as follows

(E0,Ė , A, G̃, Ac) I T0 (E1,Ė , A, G̃, Ac) I T1

Uc
Ė
= max

x∈I

∣∣∣D(G̃, cĖ )(x,0)
∣∣∣

(op(E0, E1), C,A, G̃, Ac) I (Uc
Ė
·Ac[Ė ]) + T0 + T1

Other rules are modified analogously.

Global Optimization. We have developed a global optimization
tool called GELPIA4 to obtain the upper-bounds Uei from Equa-
tion 5. In general, finding the maximum value of an n-variable
function requires search over the n-dimensional space of its inputs
(i.e., an n-dimensional rectangle). Given the very large number of
floating-point n-tuples in this rectangle, exhaustive search is im-
possible, and sampling can cover only a vanishingly small frac-
tion of possible tuples. In general, approaches for precision esti-
mation and optimization leverage many tools and techniques, in-
cluding dReal [22], semi-definite programming [41], SMT [18],
and classical tools for interval and affine arithmetic [17, 18, 21].
Previous studies [38, 45, 52] have shown that using optimization
tools in this arena is promising, often proving to be superior to
more classical (e.g., SMT-based) methods that do not support im-
portant classes of functions (e.g., transcendental functions). When
the interval functions in question are monotonic (for rectangle r1
contained in rectangle r2, i.e., r1 v r2, the upper-bound calcula-
tion respects f(r1) v f(r2)), one can perform this search using a
combination of heuristics. The basic heuristics are to split a rect-
angle along the longest dimension, obtain upper-bounds for each
sub-rectangle, and zoom into the most promising sub-rectangle,
while also keeping alive a population of postponed rectangles [1].

4 https://github.com/soarlab/gelpia

GELPIA implements this basic algorithm with a number of im-
provements. Its performance and the quality of results exceed that
of SMT and other classical tools, comparing favorably or exceeding
the other tools.

GELPIA is a rigorous global optimizer — it guarantees that the
returned upper bound is greater than or equal to the global max-
imum, and the returned lower bound is less than or equal to the
global maximum. Key to its efficiency is its use of GAOL [23],
an interval library which uses X86 SIMD instructions to speed up
interval arithmetic, and also supports transcendental functions such
as sin, cos, tan. GAOL is sound as it satisfies the inclusion property
for interval arithmetic. For example, if [a, b]+[c, d] = [a+c, b+d],
where the addition is computed using real arithmetic, GAOL com-
putes the interval as [a, b]

⊕
[c, d] = [a+ c, b+ d], where a+ c

is the nearest double rounded toward −∞ and b+ d is the nearest
double rounded toward ∞. This guarantees the interval inclusion
property as [a, b] + [c, d] = [a + c, b + d] ⊆ [a+ c, b+ d] =
[a, b]

⊕
[c, d]. Since we are operating on real intervals, we em-

ploy rewriting to improve results. For example, if x = [−1, 1] then
x ·x equals [−1, 1] in interval arithmetic; we replace the input sub-
expression with x2 which evaluates to [0, 1]. We are also able to
determine statically if a division-by-zero error occurs, and emit an
appropriate message to the user. We implemented GELPIA using
the Rust programming language, and we parallelized the search al-
gorithm. We use an update thread that periodically synchronizes all
solvers to focus their attention on the current most promising sub-
rectangle. Additionally, information from other solvers is used to
boost the priorities of promising sub-rectangles.

Higher-Order Errors. The method described in §4 computes
bounds of the first-order error terms only. As pointed out in previ-
ous work [52], the higher-order terms produce only a very minor
effect on the error represented by the series.5

In our work, we do not compute higher-order errors (which
include the round-off effects of subnormal numbers) directly. We
estimate the total bound of all higher-order error terms with an
external tool (FPTaylor [52]). Then we use the FPTaylor-computed
bound in our precision tuning method in order to obtain rigorous
results. This can be done in one of the following two ways (we
choose the second approach):

1. The first approach is to first estimate a pessimistic higher-
order error bound by employing FPTaylor, and feeding this
error into our optimization step. The pessimistic estimation is
accomplished by considering an expression where all rounding
operations are replaced with double rounding (once for e then
for t) operations with the lowest precision. We simply add this
higher-order error bound to the optimization target expression
(which is expression T generated by relation I described in
§4) and solve the corresponding optimization problem. The
disadvantage of this method is that the pessimistic higher-order
error bound may exclude some allocations that are in fact valid
for a given error threshold.

2. A better approach is to start with a higher-order error set to 0,
obtain an allocation, and then verify it using FPTaylor to ensure
that the stipulated error bound is met even with higher-order
errors. If so, we accept the tuned result. If this verification step
fails, we iterate our tuning procedure while gradually increasing
the higher-order error bound until the verification succeeds.

In all our experiments, the precision allocations generated by FP-
TUNER immediately passed the verification step even when the
higher-order error bound was set to 0.

5 If it were to have a major effect, it typically would mean that the program
already suffers from potential instability, which is not the focus of our work.

https://github.com/soarlab/gelpia


6. Empirical Evaluation
In this section, we present an evaluation of FPTUNER on a collec-
tion of benchmarks, reporting several classes of results.

6.1 Benchmarks and Experimental Setup
Given that most of our benchmarks stem from the Rosa compiler
for reals work [18], and that they have performed the only prior
rigorous precision analysis (albeit all-quad or all-double), we find
it interesting to report what our mixed-precision allocation achieves
with respect to pushing more operations toward double-precision,
away from quad-precision. This evaluation is reported in Table 2 in
terms of the number of operations converted to double-precision,
with Table 3 reporting the resulting execution time savings, and
Figure 6 showing a scatter plot of these savings.

Given that FPTUNER is unique in being able to incorporate rig-
orous error analysis for non-linear and transcendental operations,
we also include three additional benchmarks into our empirical
evaluation.

• The Gaussian distribution benchmark is realized by the follow-
ing computation:

1

σ
√
2π
· e−

(x−µ)2

2σ2 ,

where x, µ, and σ are input variables. We prioritize assigning
low precision to the expensive exponentiation operation by in-
creasing its weight in Equation 6. This illustrates an important
fine-tuning “knob” of FPTUNER that allows for a programmer
to influence precision of expensive operations.

• The Maxwell-Boltzmann distribution benchmark is realized by
the following computation:√

2

π

x2e−x
2/(2a2)

a3
,

where a and x are input variables. Similar to the Gaussian
distribution benchmark, we prioritize assigning low precision
to the expensive square root and exponentiation operations.

• The cone surface area benchmark is realized by the following
computation:

π · r ·
(
r +

√
h2 + r2

)
,

where r and h are input variables. Again, we prioritize assign-
ing low precision to the expensive square root operation by in-
creasing its weight in Equation 6.

Finally, we stress-test FPTUNER on a balanced reduction
benchmark with 1,023 operators. Figure 5 presents the pseudocode
of this benchmark. This example also gives us the opportunity to
demonstrate the ganging strategy (see §4.1). The benchmark cal-
culates the sum of 512 elements of input array data using 9 re-
duction tree levels over which the outer loop iterates. We specify
10 gangs of operators for this benchmark. Our first gang, denoted
with Typedata , groups together all elements of array data into
one precision class; we assign this class as single-precision to help
minimize the cost of data movement. Next, we chose to gang all
operations at the same reduction tree level, resulting in 9 addi-
tional gangs denoted with TypeL where L ∈ 9. This allows for
FPTUNER to vary precision in a reduction-level-sensitive manner.
While prior work (e.g., [10]) has hinted at reduction-level-sensitive
precision variation, it has never been achieved automatically and in
a rigorous manner. Being able to fine-tune these choices allows us
to achieve that, and illustrates the versatility of our approach.

We detail our performance case studies in §6.2. We measure per-
formance on a single Intel Xeon E5-2450 2.10GHz core with 1GB

procedure BALANCEDREDUCTION (Typedata data[512])
for L from 1 to 9 do

for i from 0 to 29−L − 1 do
data[i] = (TypeL)data[i]+(TypeL)data[i+29−L]

end for
end for

end procedure

Figure 5: Balanced reduction benchmark.

of RAM. For the Rosa benchmarks, we select the same input ranges
as the authors of Rosa; for others, we manually select realistic input
ranges on our own. (The FPTUNER repository contains source code
and input ranges of all our benchmarks.) Note that quad-precision
is implemented in software, while double-precision is implemented
in hardware.

We detail our energy consumption case studies for selected
benchmarks in §6.3, where we measure the net energy savings
due to FPTUNER pushing double-precision operations to single-
precision. Such an energy study is equitable, given that both these
precisions are supported in hardware. The use of built-in perfor-
mance counters is often not reliable [9], especially at the scale of
our examples. Thus, for experimental convenience, we employ an
Nvidia Jetson TK1 board with 64-bit ARM quad-core Cortex-A15
CPU at 2.32GHz and 2GB DDR3L RAM at 933MHz, as we were
provided with a convenient current/voltage measurement set-up, in-
cluding scripts to obtain wattage reliably. We took many additional
precautions to achieve reliable measurements: (1) we switched the
cooling fan to an independent power source, (2) we disabled fre-
quency/voltage scaling, (3) we calibrated our set-up before each
experiment with a known resistive load, and (4) we performed FFT-
based de-noising of measured results. Finally, we also investigate
the effect that two different compilers have on mixed-precision tun-
ing suggestions generated by FPTUNER.

6.2 Performance Case Studies
In these case studies, we explore how different mixed-precision al-
locations affect performance, where the allocations are automat-
ically obtained with FPTUNER under different error thresholds.
We also assess performance benefits of using mixed-precision as
opposed to only homogeneous allocations (e.g., all-double or all-
quad), which is the regime supported by previous efforts such as
the Rosa compiler for reals [18]. Rosa benchmarks are tuned by
the Rosa tool by selecting between all-double and all-quad pre-
cision (i.e., no mixed-precision). It first rigorously computes the
worst-case round-off error for a double-precision benchmark ver-
sion; then, if the desired error threshold is lower than the worst-
case error, Rosa switches to an all-quad version. Our approach al-
lows us to explore the trade-offs in-between these two extremes.
We describe our evaluation methodology next.

Tables 2 and 3 give the detailed results of our performance
case studies. We first create an all-double implementation of each
benchmark, and measure its round-off error using FPTaylor [52], a
state-of-the-art rigorous floating-point error estimator. In Table 2,
we show these errors in column FPTaylor. Recall that FPTUNER
employs a modified version of Symbolic Taylor Expansions that
introduces independent noise variables, which in general makes it
more conservative than FPTaylor. Hence, column FPTUNER gives
errors computed by FPTUNER for comparison; while these errors
are slightly higher, they are not excessively pessimistic, and are
hence appropriate to be used for precision tuning.

We choose our default error thresholdE to be the lowest round-
off error value above the FPTUNER-computed error at which an
all-double allocation occurs. Hence, when tuning with E as the er-



Benchmark
Estimated round-off error
(for all-double allocation) E

Total
ops #

Double ops #
per fraction of E

FPTaylor FPTuner 0.2E 0.1E

verhulst 3.52e-16 3.79e-16 5e-16 5 1 0
sineOrder3 9.97e-16 1.17e-15 5e-15 6 4 2
predPrey 1.89e-16 1.99e-16 5e-16 7 3 2
coneArea 5.75e-13 5.75e-13 1e-12 9 5 2
sine 6.75e-16 8.73e-16 1e-15 11 5 4
doppler1 1.48e-13 1.82e-13 5e-13 11 8 6
doppler2 2.60e-13 3.20e-13 5e-13 11 6 4
doppler3 7.16e-14 1.02e-13 5e-13 11 10 7
rigidBody1 3.86e-13 3.86e-13 5e-13 11 5 3
sqroot 7.12e-16 7.45e-16 1e-15 12 8 5
maxBolt 1.94e-15 5.31e-15 1e-14 12 8 7
rigidBody2 5.23e-11 5.23e-11 1e-10 13 7 6
turbine2 3.13e-14 4.13e-14 5e-14 13 4 2
gaussian 4.79e-16 5.67e-16 1e-15 14 5 1
carbonGas 1.22e-08 1.51e-08 5e-08 15 11 9
turbine1 2.32e-14 3.16e-14 5e-14 16 6 4
turbine3 1.70e-14 1.73e-14 5e-14 16 9 6
jetEngine 1.49e-11 2.68e-11 5e-11 28 18 12
reduction 5.40e-13 5.40e-13 1e-12 1,023 960 768

Table 2: Tuning results preparatory to our performance case stud-
ies. Columns FPTaylor and FPTUNER present the worst-case
round-off errors computed using FPTaylor and FPTUNER, respec-
tively. Column E provides the default error threshold chosen as the
lowest round-off error value above the FPTUNER-computed error
at which an all-double allocation occurs. Columns “Double ops #
per fraction of E” give the number of double-precision operations
generated by FPTUNER for error thresholds 0.2E and 0.1E.

ror threshold, FPTUNER automatically synthesizes the all-double
benchmark version; in addition, we also synthesize all-quad ver-
sions for comparison. We chose additional error thresholds as frac-
tions 0.1E and 0.2E of the default threshold E, such that synthe-
sis of mixed-precision versions is encouraged. As columns “Dou-
ble ops # per fraction of E” show, the smaller these thresholds are,
the fewer number of double-precision operations gets synthesized;
in other words, higher numbers of quad-precision operations and
the associated precision casting operations are automatically gen-
erated. Note that FPTUNER synthesizes only one all-quad precision
allocation, which is in the case of verhulst under 0.1E error thresh-
old. On the other hand, when tuning under 0.2E and 0.1E, we
observe that Rosa would always revert to all-quad versions, which
is overly pessimistic in most cases as our results show.

Our tool flow automatically generates straight-line C implemen-
tations of mixed-precision allocations. Once we arrive at a C im-
plementation for a benchmark, we compile each performance case
study benchmark using g++ with -O0 and -lquadmath compiler
flags. We use -lquadmath to enable support for quad-precision
using the GCC Quad-Precision Math Library [40]. To assess per-
formance implications of various precision allocations, we measure
execution time of all precision versions. Each experiment consists
of executing a precision allocation instance 107 times in a loop; we
run 100 of such experiments for each precision allocation instance.
We average the measured execution times across such 100 runs of
an experiment, and we obtain our reported execution times by di-
viding this average by 107. The relative standard deviations of all
the measured execution times are less than 1.5%.

In Table 3, columns “Execution time” give execution times in
nanoseconds of all benchmarks under generated precision allo-
cations. Column all-double gives execution times for all-double-
precision allocations, while column all-quad gives execution times

Benchmark Execution time (ns)
all-double 0.2E 0.1E all-quad

verhulst 33.0 175.6 240.2 240.2
sineOrder3 19.4 81.2 144.1 143.9
predPrey 33.3 214.9 202.3 286.5
coneArea 10.4 121.5 228.9 581.7
sine 30.9 562.8 582.9 745.2
doppler1 68.6 261.2 391.3 409.3
doppler2 67.2 383.5 355.0 402.5
doppler3 66.8 202.6 362.9 400.5
rigidBody1 19.8 159.5 194.9 186.8
sqroot 50.2 168.6 383.6 395.3
maxBolt 44.9 171.1 184.1 1,605.8
rigidBody2 28.7 293.3 328.1 416.7
turbine2 37.5 286.2 308.1 326.5
gaussian 53.1 355.5 435.3 1,669.7
carbonGas 22.8 149.7 406.4 492.7
turbine1 78.8 319.3 369.4 516.6
turbine3 79.4 228.3 352.2 514.8
jetEngine 213.3 1,986.5 2,146.7 2,204.7
reduction 1,602.8 10,196.4 9,533.4 14,076.3

Table 3: Execution times of the all-double, all-quad, and mixed-
precision (0.2E and 0.1E) versions of our benchmarks, as gener-
ated by FPTUNER. Columns “Execution time” give execution times
in nanoseconds of the generated precision allocations.

for all-quad-precision allocations; columns 0.2E and 0.1E give
execution times for mixed-precision allocations. Figure 6 com-
pares mixed-precision against all-quad versions. There are only
two benchmarks experiencing a small slowdown in their 0.1E
mixed-precision versions with respect to their all-quad counter-
parts; all other benchmarks, including all 0.2E versions, expe-
rience speedups. For example, for 0.2E versions the speedups
are in the range of 1.1–9.4, with the average being 2.4. It is
clear from these results that in many situations it is beneficial
to generate mixed-precision versions. While this may not be
surprising given the 20∼ 60× performance difference between
the (hardware-supported) double-precision operations and their
(software-implemented) quad-precision counterparts, unlike FP-
TUNER, no previous work on rigorous precision allocation takes
advantage of this.

Controlling Type-Casting. There are several exceptional cases in
Table 3 that we analyzed in more detail:
• Benchmarks sineOrder3 and rigidBody1 have their 0.1E allo-

cations resulting in slightly lower performance than the all-quad
versions.

• Benchmarks predPrey and doppler2 have their 0.2E allocations
resulting in slightly lower performance than the 0.1E versions.

We diagnosed these to be due to a large number of type-casting
intrinsics introduced in the assembly code for these precision allo-
cations, which happens because in these experiments we enforce no
constraints on the number of type-casts that FPTUNER generates.
For example, the mixed-precision version of sineOrder3 under the
0.1E error threshold results in 3 type-casts, while the total number
of operations is only 6 (as indicated by column “Total ops #” in
Table 2). Upon controlling the number of type-casts as described in
§4.1, we obtain the following results:
• When we limit the number of type-casts to 2, the execution time

of the generated mixed-precision is 144.20ns, meaning that it
remains about the same.

• When we limit the number of type-casts to 1, mixed-precision
degenerates into an all-quad version.



102 103

102

103

Figure 6: Scatter plot comparing execution times of generated
precision allocations from Table 3. The y axis shows execution
time of all-quad versions, while the x axis shows execution time
of 0.2E (red ×) and 0.1E (blue ◦) mixed-precision versions. We
omitted reduction due to much higher execution times.

Hence, we conclude that an all-quad sineOrder3 version should
be used when 0.1E is the error threshold. For rigidBody1, the
mixed-precision version has 5 type-casts, while the total number
of operations is 11. In this case, limiting the number of type-casts
to 4 results in the execution time of 228.0ns, limiting to 3 results
in 178.0ns, 2 in 212.2ns, while 1 degenerates into an all-quad
version. Hence, limiting the number of type-casts to 3 results in
the best overall performance. As these experiments indicate, such
fine-grained tuning “knobs” are important for reaching optimal
performance; to the best of our knowledge, no previous rigorous
tuners exhibit such a high degree of control.

6.3 Energy Consumption Case Studies
In these case studies, we explore the effects that mixed-precision
tuning has on energy consumption of a program. Given that en-
ergy measurements require significant manual set-up effort (de-
tailed later), we identify several more challenging and interesting
benchmarks from our performance case studies (Table 2) for our
energy consumption experiments. In particular, we choose sine,
jetEngine, and reduction due to their long all-quad execution times,
and gaussian, maxBolt, and coneArea because they contain at least
one expensive operation, such as square root. We restrict ourselves
to only single-precision and double-precision because both are sup-
ported in hardware, and thus we can measure energy consumption
accurately and more directly as described next. Tables 4 and 5 give
the detailed results of our energy consumption case studies.

To make our evaluation even more thorough, we employ two
different compilers, namely g++ and clang++, to generate two bi-
naries per benchmark (i.e., each benchmark is compiled with both
compilers). We also manually check that each generated binary
(i.e., assembly code) faithfully follows the prescribed precision as-
signments. An important precaution in evaluating the benefits of
mixed-precision tuning is to measure the energy consumed by the
tuned benchmark across multiple inputs, instead of just one arbi-
trarily chosen input. Hence, for each precision allocation, we mea-
sure the average energy consumed across 100 random inputs se-
lected from the input interval, where for each input we execute the
tuned benchmark at least 107 times. Increasing the number of exe-

Benchmark
Estimated round-off error
(for all-single allocation) E

Total
ops #

Single ops #
per fraction of E

FPTaylor FPTuner 0.2E 0.1E

coneArea 3.06e-04 3.06e-04 5e-04 9 5 1
sine 3.32e-07 5.14e-07 1e-06 11 6 5
maxBolt 5.30e-06 7.11e-06 1e-05 12 9 8
gaussian 2.78e-07 3.28e-07 5e-07 14 5 1
jetEngine 9.83e-03 1.48e-02 5e-02 28 19 11
reduction 2.90e-04 2.90e-04 5e-04 1,023 896 512

Table 4: Tuning results preparatory to our energy consumption
case studies. Columns FPTaylor and FPTUNER present the worst-
case round-off errors computed using FPTaylor and FPTUNER,
respectively. ColumnE provides the default error threshold chosen
as the lowest round-off error value above the FPTUNER-computed
error at which an all-single allocation occurs. Columns “Single ops
# per fraction of E” give the number of single-precision operations
generated by FPTUNER for error thresholds 0.2E and 0.1E.

cutions when needed reduces the relative standard deviations of the
measured energy consumptions. More specifically, we execute re-
duction 107 times, gaussian and maxBolt 108 times, and coneArea,
sine, and jetEngine 109 times. For all the results shown in Table 5,
the relative standard deviations of the energy consumptions are less
than 5%.

Our energy consumption evaluation methodology is similar to
what we employed for our performance measurements. First, Ta-
ble 4 gives the estimated round-off errors, chosen error thresholds,
and numbers of single-precision operations as allocated by FP-
TUNER under the chosen thresholds. Then, Table 5 shows the mea-
sured performance and energy consumption results, while Figure 7
plots them. As before, we generate two mixed-precision versions
for each benchmark with error thresholds 0.2E and 0.1E. While
performing our measurements, we observed that the power usage
(energy per unit time) is nearly the same for most precision allo-
cations; however, computations with better allocations have overall
reduced execution time, and hence consume less energy, as illus-
trated by bars “following” lines in the plots. We also note that the
binaries generated by different compilers result in similar energy
measurements, which is reassuring with respect to portability and
the absence of experimental errors. In this respect, coneArea is the
only outlier, and we provide an explanation for this in the end of
this section.

Our results in Table 5 (visualized in Figure 7) show that the
mixed-precision versions of benchmarks sine, gaussian, maxBolt,
and coneArea have moderate performance and energy consump-
tion benefits as we transition from the all-single (column all-32)
towards all-double (column all-64) allocations. For example, when
transitioning from the all-double to 0.2E mixed-precision versions
of these benchmarks, we save on average 23.2% of energy when
compiling with g++ and 31.5% when compiling with clang++. This
indicates that leveraging mixed-precision is often beneficial even in
the context of energy consumption. On the other hand, the mixed-
precision versions of jetEngine and reduction consume more en-
ergy than their all-double versions. Explaining this phenomenon
required probing into the assembly code, as we describe in what
follows.

Compilation Details. In addition to manually deriving C imple-
mentations, for the purpose of the energy usage case studies we
also have to manually select adequate compiler flags and check for
faithful compilation. The compilers we employ are g++4.8 (Linaro
4.8.4 for Ubuntu) and clang++3.5. In our experiments, we ap-
ply the following compiler flags: -std=c++0x, -Os, -mfpu=neon,
-march=native, and -fno-inline. Finally, we manually inspect



Benchmark
Execution time (ns) Energy (nJ)

all-32 0.2E 0.1E all-64 all-32 0.2E 0.1E all-64
coneArea 6.5 10.2 10.4 13.0 0.3 0.4 0.4 0.5
sine 20.7 20.7 20.7 38.9 0.5 0.5 0.6 0.8
maxBolt 159.6 159.6 159.6 202.0 5.8 5.8 5.8 7.1
gaussian 159.6 164.8 173.0 203.7 5.8 5.9 5.9 7.1
jetEngine 22.5 33.3 34.6 28.5 0.6 0.9 0.9 0.8
reduction 1,064.7 1,101.9 1,205.7 1,072.9 45.4 47.9 52.0 48.5

(a) Benchmarks compiled with g++

Benchmark
Execution time (ns) Energy (nJ)

all-32 0.2E 0.1E all-64 all-32 0.2E 0.1E all-64
coneArea 83.8 86.9 86.9 182.8 3.2 3.3 3.3 5.9
sine 20.7 20.7 20.7 38.9 0.5 0.5 0.6 0.9
maxBolt 159.1 159.1 159.6 202.0 5.8 5.8 5.9 7.2
gaussian 159.6 163.5 171.7 204.1 5.8 5.9 5.9 7.2
jetEngine 25.9 37.6 35.9 32.9 0.7 1.0 1.0 0.9
reduction 333.9 646.2 837.6 782.4 17.1 31.8 37.8 39.4

(b) Benchmarks compiled with clang++

Table 5: Execution times and energy consumption of all-single, all-double, and mixed-precision (0.2E and 0.1E) versions of our bench-
marks, as generated by FPTUNER. Columns “Execution time” (resp. “Energy”) report energy consumption in nanojoules (resp. execution
times in nanoseconds) of the generated precision allocations. For a billion invocations over a second, each nJ saved is a Watt saved.

4

6

E 0.2 E 0.1 E all-64
0

0.5

1

100

150

200

0

5

10

15

(a) coneArea

E 0.2 E 0.1 E all-64
0

0.2

0.4

0.6

0.8

1

0

10

20

30

40

(b) sine

E 0.2 E 0.1 E all-64
0

2

4

6

8

0

50

100

150

200

(c) maxBolt

E 0.2 E 0.1 E all-64
0

2

4

6

8

0

50

100

150

200

(d) gaussian

E 0.2 E 0.1 E all-64
0

0.2

0.4

0.6

0.8

1

1.2

0

10

20

30

40

(e) jetEngine

E 0.2 E 0.1 E all-64
0

20

40

60

0

200

400

600

800

1,000

1,200

(f) reduction

Figure 7: Comparison of energy consumptions and execution times of the generated precision allocations from Table 4. White (resp., black)
vertical bars give energy consumption of four generated precision allocations compiled with g++ (resp., clang++); the left x axis shows
energy in nanojoules. Blue solid (resp., red dashed) lines give execution times of four generated precision allocations compiled with g++
(resp., clang++); the right x axis shows execution times in nanoseconds.

the generated assembly code to ensure that the prescribed mixed-
precision allocations are indeed enforced. In the process, we be-
came aware of many compilation issues stemming from the use of
mixed-precision, such as unexpected interactions with other com-
piler optimizations (e.g., redundant memory accesses when using
-O0 flag, omitted fused multiply-add (FMA) instructions). Exten-
sive and detailed exploration of these issues is a research project in
its own right and beyond the scope of this work; nonetheless, we do
describe next in more detail two such issues that caused unexpected
execution times and energy usage.

Benchmark jetEngine contains floating-point constants that
must be loaded into registers during execution. The 0.1E mixed-

precision version of this benchmark ends up using the same con-
stant as both a single- and double-precision floating-point num-
ber. If enough floating-point registers were available, this constant
could have been kept in a register and converted as needed. How-
ever, register pressure due to the extra registers used causes this
register value to be overwritten and reloaded later; this in turn
causes an add instruction to be repeated. We illustrate this situation
in Figure 8, where these extra assembly instructions are underlined.

Benchmark coneArea surprisingly runs ten times faster when
compiled with g++ than with clang++. Our exploration reveals
that this is the result of g++ using the fast ARM vector instruc-
tion vsqrt to compute the square root, and only if the result is



vmul.f64 d18, d0, d0 vmul.f64 d17, d0, d0
vmov.f64 d19, #8 vmov.f64 d19, #8
vmul.f64 d17, d18, d19 vmul.f64 d20, d17, d19
vadd.f64 d1, d1, d1 vadd.f32 s7, s7, s7

vcvt.f64.f32 d18, s7
vmov.f64 d21, #112 vmov.f64 d16, #112
vadd.f64 d16, d17, d1 vadd.f64 d18, d20, d18
vadd.f64 d21, d18, d21 vadd.f64 d16, d17, d16
vsub.f64 d16, d16, d0 vsub.f64 d18, d18, d0
vdiv.f64 d16, d16, d21 vdiv.f64 d18, d18, d16
vmov.f64 d24, #16 vmov.f32 s10, #16
vmov.f64 d20, #24 vmov.f32 s15, #24

vcvt.f32.f64 s14, d18
nmls.f64 d20, d16, d24 vnmls.f32 s15, s14, s10
vadd.f64 d23, d0, d0 vadd.f64 d16, d0, d0

vmov.f32 s12, #8
vcvt.f32.f64 s13, d17
vcvt.f32.f64 s11, d16

vmul.f64 d20, d18, d20 vmul.f32 s15, s13, s15
vmul.f64 d23, d23, d16 vmul.f32 s11, s11, s14
vsub.f64 d22, d16, d19 vsub.f32 s12, s14, s12
vmla.f64 d20, d23, d22 vmla.f32 s15, s11, s12

vmov.f32 s14, #112
vadd.f32 s13, s13, s14

vmul.f64 d17, d17, d16 vmul.f32 s15, s15, s13
vcvt.f64.f32 d16, s15

vmla.f64 d17, d20, d21 vmla.f64 d16, d20, d18
vmla.f64 d17, d18, d0 vmla.f64 d16, d17, d0
vadd.f64 d17, d17, d0 vadd.f64 d16, d16, d0
vmla.f64 d17, d16, d19 vmla.f64 d16, d18, d19
vadd.f64 d0, d0, d17 vadd.f64 d0, d0, d16
vadd.f64 d0, d0, d16 vadd.f64 d0, d0, d16

Figure 8: Code excerpts in ARM assembly from all-double (left)
and 0.1E (right) versions of jetEngine. They illustrate a compi-
lation issue we observed where mixed-precision increases register
pressure and causes constants to be spilled to memory (red under-
lined instructions).

NaN the computation is repeated in software to appropriately set
the errno flag as prescribed by the C standard. On the other hand,
clang++ only uses a software implementation of square root, which
is much slower than its hardware counterpart. Note that the us-
age of hardware-implemented square root can be forced using the
-ffast-math compiler flag, but this also enables undesirable op-
timizations.

7. Discussion
In this section, we discuss the performance of FPTUNER, handling
of conditionals and loops, scaling our methodology to large pro-
grams, and tuning for more than two candidate precisions.

7.1 Performance of FPTUNER

Figure 9 shows the runtimes of FPTUNER, including the propor-
tions of its three main parts: parsing the given expression, invok-
ing Gelpia for calculating the bounds of the first derivatives, and
solving the QCQP problem. We can observe that the runtime of
FPTUNER is dominated by the runtime of its global optimizer,
namely Gelpia. Note that we do not show the runtimes for tuning
carbonGas (1200s), jetEngine (38s), and reduction (90s) since they
are much higher. However, we summarize that carbonGas takes
a larger proportion of its time in Gelpia, while reduction takes a
larger proportion in parsing.6

As noted in §5, we also need to verify that the allocation ob-
tained by setting the higher-order error to 0 still passes the given

6 Our parser is a quick prototype and can be substantially improved.

0 1 2 3 4 5 6 7 8 9

turbine3

turbine1

gaussian
turbine2

rigidBody2
maxBolt

sqroot
rigidBody1

doppler3

doppler2

doppler1
sine

coneArea

predPrey
sineOrder3

verhulst

Figure 9: FPTUNER runtimes for tuning our benchmarks with
an error threshold of 0.2E, with each bar (x axis) showing the
elapsed time (seconds). The white bands denotes parsing time and
gray denotes Gelpia runtime to calculate the bounds of all the first
derivatives. The short black band at the tip denotes the time taken
by Gurobi to solve the QCQP instances.

error threshold. However, as noted in the same section, this step
has passed the first time on all our benchmarks. Hence, verifying
the allocation is just a one-of activity, taking as much time as one
invocation of FPTaylor.

7.2 Conditionals and Loops
One of the limitations of our precision tuning work is that con-
ditional expressions and loops are not handled. While these may
sound quite limiting, rigorous error estimation in the presence of
conditionals and loops is known to be a difficult problem even
without precision tuning. For example, consider a simple real-
valued expression f(x) = if c(x) < 0 then f1(x) else f2(x). The
corresponding floating-point expression is then

f̃(x) = if c̃(x) < 0 then f̃1(x) else f̃2(x),

where c̃(x) = c(x)+ ec(x), f̃1(x) = f1(x)+ e1(x), and f̃2(x) =
f2(x) + e2(x); here, ec(x), e1(x) and e2(x) represent round-off
errors. Suppose the error ec(x) is bounded by a constant Ec, i.e.,∣∣ec(x)∣∣ < Ec. Now we need to consider four cases, two when both
f(x) and f̃(x) take the same path and two when they take different
paths (this phenomenon is known as “divergence”):
1. Find E1 s.t. c(x) < 0 =⇒

∣∣∣f̃1(x)− f1(x)∣∣∣ ≤ E1.

2. Find E2 s.t. c(x) ≥ 0 =⇒
∣∣∣f̃2(x)− f2(x)∣∣∣ ≤ E2.

3. Find E3 s.t. −Ec < c(x) < 0 =⇒
∣∣∣f̃2(x)− f1(x)∣∣∣ ≤ E3.

4. Find E4 s.t. 0 ≤ c(x) < Ec =⇒
∣∣∣f̃1(x)− f2(x)∣∣∣ ≤ E4.

Finally, we compute the final error as E = max{E1, E2, E3, E4}.
Unfortunately, obtaining tight bounds for the error in cases 3 and
4 is known to be difficult. Worse still, when conditionals nest, an
exponential number of path combinations need to be considered.
The added difficulty of conditionals nested within loops is clear;
recent related work [19] discusses preliminary steps in this area
based on over-approximations.

Precision allocation adds another dimension to divergence. For
example, it is very easy to find an input x such that under single-
precision, the ‘then’ part is executed in f(x) while under double-
precision the ‘else’ part is executed (Chiang et al. [15] have pro-



/

- a11

b1 +

0.0 *

a01 /

- a10

b0 +

0.0 *

a10 /

- a11

b1 +

0.0 *

a01 /

- a10

b0 +

0.0 *

a10 1.0

Figure 10: Tuning results for the Jacobi benchmark using three
candidate precisions. The computation is represented as an expres-
sion tree, where ovals denote variables and constants, and squares
denote operators. Dark (resp., light+dotted, white) ovals/rectangles
denote single-precision (resp., double-, quad-) variables/operators.
Note that we do not show the casting operators explicitly.

posed such a method for divergence detection). This issue raises
a fundamental question: can precision allocation be allowed to
change the branching behavior of a program? Our future work will
study this issue more deeply by restricting tuning to cases where
the exact branchings do not affect the higher level correctness as-
sertions (e.g., iteration schemes where an extra iteration being taken
is acceptable).

7.3 Improving Scalability
Floating-point round-off error is often much higher for specific in-
put combinations [14, 55]. A generated mixed-precision allocation
may be influenced by such rare input combinations. This suggests
that having a separate code variant for processing the more fre-
quently encountered inputs may be profitable. The adaptive geo-
metric computation method proposed by Shewchuk [51] is an ex-
ample of such input-aware code variant selection method.

We have explored the use of machine learning to synthesize an
adaptive code variant selector (i.e., precision allocation selector)
that is driven by inputs. We have, in fact, extensively evaluated the
use of a decision-tree input decoder to pick the “optimal” code vari-
ant for a given input range. Our preliminary results are encouraging
and we plan to pursue this direction further. An interesting feature
of this hybrid approach is that FPTUNER is used to rigorously gen-
erate labels for feature vectors, and machine learning takes over to
provide added scalability. We believe that achieving scalability and
rigor will require such combinations.

7.4 Tuning with Three Candidate Precisions
So far in this paper, we have discussed only two-precision alloca-
tion situations (quad/double or double/single). In this section, we

demonstrate that FPTUNER can quite naturally tune across three
precision regimes (single, double, and quad). For this demonstra-
tion, we created a synthetic benchmark that implements the Jacobi
iterative method for solving linear systems. The benchmark takes
a 2 × 2 matrix and a vector of size 2 as inputs, and unrolls two
iterations of the Jacobi method to compute the output vector. When
we set the round-off error of the first element of the output vector
to be less than 1e-14, FPTUNER automatically obtained the three-
precision allocation shown in Figure 10. Curiously, FPTUNER allo-
cates single-precision closer to the root and higher precision closer
to the leaves. This is presumably to control the error at the lower
levels of the tree so that it does not get amplified going up the tree.

We suspect that programmers are more likely to exploit FP-
TUNER’s three-precision tuning capabilities to choose between
three hardware-supported precisions — say double-, single-, and
half-precision, all supported in hardware, or perhaps FPGA imple-
mentations that may provide quad-, double-, and single-precision
also all in hardware.

8. Related Work
Following pioneering work by Kahan in the mid-eighties lead-
ing to the IEEE 754 standard, the properties of floating-point are
now widely documented [24, 25]. Yet, with the inherent difficul-
ties of comprehending floating-point behavior, its growing usage
in all walks of life, and the herculean task of educating program-
mers [3, 35], informal approaches are inherently dangerous, as they
are highly likely to leave a sprinkle of bugs in programs. Bold ap-
proaches to “end all errors” [29] are not currently practical. We now
survey related work in correctness and optimization of floating-
point computations.

8.1 Correctness and Error Analysis
Floating-point arithmetic had been formalized in many proof as-
sistants, such as Coq [4, 16] and HOL Light [31, 34]. Harrison
pioneered the verification of floating-point algorithms through me-
chanical theorem proving [30], evolving many algorithms that
found their way into Intel products. Boldo et al. [5] have used
Coq for certifying the implementation of numerical algorithms. An
SMT-LIB theory of floating-point numbers was first proposed by
Rümmer and Wahl [49] and recently refined by Brain et al. [7].
There have been several attempts to devise an efficient decision
procedure for such a theory [6, 8, 39], but currently most SMT
solvers still do not support it.

Recent efforts in rigorous floating-point error estimation are
based on combinations of abstract interpretation and conserva-
tive range calculations. Melquiond et al. offer Gappa [21], a tool
based on interval arithmetic. Darulova and Kuncak [17, 18] com-
bine affine arithmetic and SMT-solving. Their method also drives
a rigorous program-wise precision tuning tool called Rosa. The
tool FLUCTUAT [26] combines the error estimates obtained from
input-domain subdivisions to improve the overall accuracy of error
analysis. Magron et al. [41] proposed a tool called Real2Float that
models errors using semidefinite programming. Recently, Solovyev
et al. proposed a tool called FPTaylor that models round-off errors
using the Symbolic Taylor Expansions approach [52], and obtains
rigorous error bounds using global optimization. FPTaylor also pro-
duces HOL-light proof certificates for each such error estimate. FP-
TUNER was inspired by FPTaylor, and employs a modified version
of the Symbolic Taylor Expansions to capture round-off error under
a generic precision allocation.

As already noted in §7.2, rigorous estimation of round-off er-
rors in programs containing loops and branches is hard. Some ap-
proaches include loop unrolling [26] and constructing summary
functions [19]. Even so, they require non-nested conditionals and
constant loop bounds.



8.2 Code Improvement and Precision Tuning
Rubio-Gonzàlez et al. [47] proposed a delta-debugging approach
implemented in a tool called Precimonious. Unlike FPTUNER,
Precimonious assigns bit-widths to program variables and leaves
the bit-widths of operations to be automatically inferred; FPTUNER
allows individual bit-width assignments to operators. Precimonious
can be accelerated by a pre-processing blame analysis process [48]
that empirically identifies variables that do not significantly affect
program behavior, and thus are safe to be assigned lower bit-widths.
Lam et al. [37] proposed a breadth-first-search based method (im-
plemented in a tool called CRAFT) that aggressively assigns lower
bit-widths to a block of instructions. If the precision requirement
is not met, the allocation method gradually converts some portions
of instructions in the block to higher bit-widths until a specified
precision requirement is satisfied. Graillat et al. [27] propose a tun-
ing approach similar to Precimonious but use discrete stochastic
arithmetic (DSA) for confirming the precision requirement. These
coarse-grained dynamic tuning approaches do not come with rig-
orous guarantees, except on the given set of inputs. For example,
for the jet benchmark with an error threshold of 1e-4, we have ob-
served Precimonious generating a precision assignment that actu-
ally results in an error of 3e-3 in the interval spanned by the train-
ing points (30 times the set error threshold). FPTUNER is currently
unable to handle the larger Precimonious benchmarks, especially
those that contain loops and conditionals. A combined tool is at-
tractive: use Precimonious to identify promising code segments to
tune, and employ FPTUNER as a helper to tune these segments.

Some recent efforts have focused on improving accuracy through
program rewriting. Tang et al. [53] propose a method that automat-
ically searches for possible expression rewrites from a database of
templates. Each template is a specification of two mathematically
equivalent expressions. The objective of this method is to improve
the numerical stability of programs. A similar rewrite technique
was also applied to tuning fixed-point programs [20]. Panchekha et
al. [45] propose a method to rewrite expressions similar to Tang’s
approach. However, Panchekha’s method can synthesize simple
conditionals that can adaptively select different rewrites accord-
ing to runtime inputs. Also, the objective of Panchekha’s method
is to reduce overall round-off errors on program outputs. Martel
proposed an operational semantics governing the rewriting of pro-
gram statements [42] for improving floating-point precision. This
technique also takes into consideration standard compile-time tech-
niques such as loop unrolling.

Several rewriting-based methods are geared toward effecting
precision-efficiency trade-offs. Ansel et al. [12] proposed a pro-
gramming language and compiler that automatically search and
compose a program from algorithmic variants. Schkufza et al. [50]
offer a Markov Chain Monte Carlo (MCMC) based method that
searches for improved-efficiency compositions of instructions. In
Schkufza’s work, an instruction composition is considered a valid
rewrite if it improves performance while meeting round-off er-
ror thresholds. All of the above rewriting-based methods check
floating-point precision through input sampling. Therefore, their
guarantees are only as good as the sample-size, which is typically a
minuscule fraction of the total input space. Recently, Lee et al. [38]
proposed a verification method that combines instruction rewrit-
ing and rigorous precision measurement. This approach can, for
instance, be used to prove the correctness of the rewrites generated
by Schkufza’s method.

There have been some recent efforts aimed at discovering pro-
gram inputs that cause high round-off errors. The presence of such
high-error-causing inputs can also serve as an empirical witness to
needing higher floating-point precision (for those inputs). Chiang
et al. [14] have proposed search heuristics, and Zou et al. [55] a
genetic-algorithm-based method.

Round-off errors can affect floating-point conditionals by mak-
ing a program take inconsistent branches in sequence. Chaudhuri et
al. [13] proposed a method that conservatively detects inconsisten-
cies by (pessimistically) considering every conditional to be essen-
tially a non-deterministic choice. Under this over-approximation,
they proved the violation of axioms to be preserved by a collection
of geometric primitives. Result deviation (also called divergence)
has also been studied by Chiang et al. [15] who proposed search
heuristics that can detect when a program can change its branching
behavior when precision is reallocated. Machine learning has been
employed in the field of code variant selection for performance op-
timization [36, 44, 54].

9. Conclusions and Future Work
Precision/energy trade-off is the central thrust in the design of fu-
ture computing systems at all scales. In this paper, we provide a rig-
orous approach to tune the precision of the operators and operands
in a conditional-free expression for a user-specified set of input
intervals and error threshold. We offer the first rigorous solution
in this space through formal error analysis based on global opti-
mization using Symbolic Taylor Forms, and a versatile quadrat-
ically constrained quadratic programming formulation. Our tool
FPTUNER embodying these ideas uses a constraint-based approach
to search for precision allocations that meet practically important
optimization goals such as limiting the number of operators at a
given precision, grouping operators to share the same precision, and
limiting the number of type-casts. We provide, for the first time,
true insights on which of the low precision choices actually im-
prove performance and reduce energy consumption. We also offer
plenty of insights on how precision choices and compiler optimiza-
tions collide. These results are ripe for exploitation in at least two
domains: (1) the design of rigorously characterized and optimized
arithmetic libraries; (2) the development of precision-oriented com-
piler peephole optimization passes.

The two previously published coarse-grained precision tuning
efforts can process much larger programs that include conditionals,
loops, and procedures. These tools tune the code through direct
execution on a few dozen inputs, and have shown performance
improvements on many benchmarks. Unlike our effort, they do not
provide rigorous guarantees across user-given input intervals. They
also do not address the issue of divergent conditionals nor offer a
constraint-based approach to search for precision allocations.

There appear to be two promising directions to achieve scale.
First, the existing coarse-grained tools can identify promising code
segments that FPTUNER can then fine-tune. Second, one can apply
FPTUNER to help develop multiple code versions through machine
learning from which, at runtime, one can select the right code
version for the right input ranges. In addition to adding a few more
tightening steps into our framework (e.g., equating noise variables)
and automating our work flow, some of our other future work plans
are: (1) allow different error models (e.g., L2 norm), (2) handle
conditionals and loops, (3) improve scalability, and (4) actually
integrate FPTUNER inside a compiler.

Acknowledgments
We thank Hari Sundar for helping out with the energy measure-
ments, Cindy Rubio-González for providing support with Precimo-
nious, Eva Darulova for distributing Rosa and its valuable bench-
marks, and the anonymous reviewers for their numerous comments
and suggestions. This work was supported in part by NSF awards
CCF 1531140, CCF 1643056, and CCF 1552975.



References
[1] J.-M. Alliot, N. Durand, D. Gianazza, and J.-B. Gotteland. Finding

and proving the optimum: Cooperative stochastic and deterministic
search. In Proceedings of the 20th European Conference on Artificial
Intelligence (ECAI), pages 55–60, 2012.

[2] ARM NEON. ARM NEON general-purpose SIMD engine,
2016. URL https://www.arm.com/products/processors/
technologies/neon.php.

[3] D. Bailey and J. Borwein. High-precision arithmetic: Progress
and challenges, 2013. URL http://www.davidhbailey.com/
dhbpapers/hp-arith.pdf.

[4] S. Boldo. Deductive Formal Verification: How To Make Your Floating-
Point Programs Behave. Thèse d’habilitation, Université Paris-Sud,
2014.

[5] S. Boldo, J.-H. Jourdan, X. Leroy, and G. Melquiond. Verified compi-
lation of floating-point computations. Journal of Automated Reason-
ing, 54(2):135–163, 2015.

[6] M. Brain, V. D’Silva, A. Griggio, L. Haller, and D. Kroening. Decid-
ing floating-point logic with abstract conflict driven clause learning.
Formal Methods in System Design (FMSD), 45(2):213–245, 2014.

[7] M. Brain, C. Tinelli, P. Rümmer, and T. Wahl. An automatable formal
semantics for IEEE-754 floating-point arithmetic. In Proceedings of
the 22nd IEEE Symposium on Computer Arithmetic (ARITH), pages
160–167, 2015.

[8] A. Brillout, D. Kroening, and T. Wahl. Mixed abstractions for floating-
point arithmetic. In Proceedings of 9th International Conference on
Formal Methods in Computer-Aided Design (FMCAD), pages 69–76,
2009.

[9] M. Burtscher, I. Zecena, and Z. Zong. Measuring GPU power with the
K20 built-in sensor. In Proceedings of the 7th Workshop on General
Purpose Processing Using GPUs (GPGPU), pages 28–36, 2014.

[10] A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek,
and S. Tomov. Exploiting mixed precision floating point hardware in
scientific computations. In High Performance Computing and Grids
in Action. IOS Press, 2008.

[11] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek, and S. Tomov. Us-
ing mixed precision for sparse matrix computations to enhance the
performance while achieving 64-bit accuracy. ACM Transactions on
Mathematical Software (TOMS), 34(4):17:1–17:22, 2008.

[12] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edelman. Au-
totuning multigrid with PetaBricks. In Proceedings of the 21th Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–12, 2009.

[13] S. Chaudhuri, A. Farzan, and Z. Kincaid. Consistency analysis
of decision-making programs. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), pages 555–567, 2014.

[14] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamarić, and A. Solovyev. Ef-
ficient search for inputs causing high floating-point errors. In Pro-
ceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), pages 43–52, 2014.

[15] W.-F. Chiang, G. Gopalakrishnan, and Z. Rakamarić. Practical
floating-point divergence detection. In Proceedings of the 29th In-
ternational Workshop on Languages and Compilers for Parallel Com-
puting (LCPC), pages 271–286, 2016.

[16] Coq. The Coq proof assistant, 2016. URL https://coq.inria.fr.

[17] E. Darulova and V. Kuncak. Trustworthy numerical computation in
Scala. In Proceedings of the ACM SIGPLAN International Conference
on Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA), pages 325–344, 2011.

[18] E. Darulova and V. Kuncak. Sound compilation of reals. In Proceed-
ings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 235–248, 2014.

[19] E. Darulova and V. Kuncak. Towards a compiler for reals. CoRR,
abs/1410.0198, 2016.

[20] E. Darulova, V. Kuncak, R. Majumdar, and I. Saha. Synthesis of
fixed-point programs. In Proceedings of the 11th ACM International
Conference on Embedded Software (EMSOFT), pages 22:1–22:10,
2013.

[21] F. De Dinechin, C. Q. Lauter, and G. Melquiond. Assisted verification
of elementary functions using Gappa. In Proceedings of the 21st ACM
Symposium on Applied Computing (SAC), pages 1318–1322, 2006.

[22] S. Gao, S. Kong, and E. M. Clarke. dReal: An SMT solver for non-
linear theories over the reals. In Proceedings of the 24th International
Conference on Automated Deduction (CADE), pages 208–214, 2013.

[23] Gaol. Gaol, not just another interval library., 2016. URL https:
//sourceforge.net/projects/gaol.

[24] D. Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[25] F. Goualard. How do you compute the midpoint of an interval? ACM
Transactions on Mathematical Software (TOMS), 40(2):11:1–11:25,
2014.

[26] E. Goubault and S. Putot. Static analysis of numerical algorithms.
In Proceedings of the 13th International Static Analysis Symposium
(SAS), pages 18–34, 2006.

[27] S. Graillat, F. Jézéquel, R. Picot, F. Févotte, and B. Lathuiliére.
PROMISE : floating-point precision tuning with stochastic arithmetic.
In 17th International Symposium on Scientific Computing, Computer
Arithmetics and Verified Numerics (SCAN), 2016.

[28] Gurobi. Gurobi optimizer, 2016. URL http://www.gurobi.com.

[29] J. L. Gustafson. The End of Error: Unum Computing. Chapman and
Hall/CRC, 2015.

[30] J. Harrison. Floating-point verification using theorem proving. In
Proceedings of the 6th International Conference on Formal Methods
for the Design of Computer, Communication, and Software Systems
(SFM), pages 211–242, 2006.

[31] HOL Light. The HOL Light theorem prover, 2016. URL http:
//www.cl.cam.ac.uk/~jrh13/hol-light.

[32] IEEE 754. IEEE standard for floating-point arithmetic, 2008.

[33] Intel Intrinsics for Type Casting. Intel intrinsics guide, 2016.
URL https://software.intel.com/sites/landingpage/
IntrinsicsGuide/#cats=Cast.

[34] C. Jacobsen, A. Solovyev, and G. Gopalakrishnan. A parameterized
floating-point formalizaton in HOL Light. In Proceedings of the 8th
International Workshop on Numerical Software Verification (NSV),
pages 101–107, 2015.

[35] W. Kahan. How futile are mindless assessments of roundoff in
floating-point computation?, 2006. URL https://people.eecs.
berkeley.edu/~wkahan/Mindless.pdf.

[36] M. Lagoudakis and M. Littman. Algorithm selection using reinforce-
ment learning. In Proceedings of the 17th International Conference
on Machine Learning (ICML), pages 511–518, 2000.

[37] M. Lam, J. Hollingsworth, B. de Supinski, and M. Legendre. Auto-
matically adapting programs for mixed-precision floating-point com-
putation. In Proceedings of the 27th International Conference on Su-
percomputing (ICS), pages 369–378, 2013.

[38] W. Lee, R. Sharma, and A. Aiken. Verifying bit-manipulations of
floating-point. In Proceedings of the 37th annual ACM SIGPLAN
conference on Programming Language Design and Implementation
(PLDI), pages 70–84, 2016.

[39] M. Leeser, S. Mukherjee, J. Ramachandran, and T. Wahl. Make it real:
Effective floating-point reasoning via exact arithmetic. In Proceedings
of the Conference on Design, Automation & Test in Europe (DATE),
pages 117:1–117:4, 2014.

[40] lquadmath. The GCC quad-precision math library, 2016. URL
https://gcc.gnu.org/onlinedocs/libquadmath.pdf.

[41] V. Magron, G. A. Constantinides, and A. F. Donaldson. Certi-
fied roundoff error bounds using semidefinite programming. CoRR,
abs/1507.03331, 2015.

https://www.arm.com/products/processors/technologies/neon.php
https://www.arm.com/products/processors/technologies/neon.php
http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
https://coq.inria.fr
https://sourceforge.net/projects/gaol
https://sourceforge.net/projects/gaol
http://www.gurobi.com
http://www.cl.cam.ac.uk/~jrh13/hol-light
http://www.cl.cam.ac.uk/~jrh13/hol-light
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#cats=Cast
https://software.intel.com/sites/landingpage/IntrinsicsGuide/#cats=Cast
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
https://gcc.gnu.org/onlinedocs/libquadmath.pdf


[42] M. Martel. Program transformation for numerical precision. In ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipula-
tion (PEPM), pages 101–110, 2009.

[43] T. P. Morgan. Nvidia tweaks Pascal GPU for deep learning
push, 2015. URL http://www.nextplatform.com/2015/03/18/
nvidia-tweaks-pascal-gpus-for-deep-learning-push.

[44] S. Muralidharan, M. Shantharam, M. Hall, M. Garland, and B. Catan-
zaro. Nitro: A framework for adaptive code variant tuning. In Proceed-
ings of the 28th IEEE International Parallel & Distributed Processing
Symposium (IPDPS), pages 501–512, 2014.

[45] P. Panchekha, A. Sanchez-Stern, J. R. Wilcox, and Z. Tatlock. Au-
tomatically improving accuracy for floating point expressions. In
Proceedings of the 36th annual ACM SIGPLAN conference on Pro-
gramming Language Design and Implementation (PLDI), pages 1–11,
2015.

[46] QCQP. Quadratically constrained quadratic program, 2016.
URL https://en.wikipedia.org/wiki/Quadratically_
constrained_quadratic_program.

[47] C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan,
K. Sen, D. H. Bailey, C. Iancu, and D. Hough. Precimonious: Tuning
assistant for floating-point precision. In Proceedings of the 25th Inter-
national Conference on High Performance Computing, Networking,
Storage and Analysis (SC), pages 1–12, 2013.

[48] C. Rubio-González, C. Nguyen, B. Mehne, K. Sen, J. Demmel, W. Ka-
han, C. Iancu, W. Lavrijsen, D. H. Bailey, and D. Hough. Floating-
point precision tuning using blame analysis. In Proceedings of the
38th International Conference on Software Engineering (ICSE), pages

1074–1085, 2016.
[49] P. Rümmer and T. Wahl. An SMT-LIB theory of binary floating-point

arithmetic. In Informal Proceedings of 8th International Workshop on
Satisfiability Modulo Theories (SMT), 2010.

[50] E. Schkufza, R. Sharma, and A. Aiken. Stochastic optimization of
floating-point programs with tunable precision. In Proceedings of the
35th annual ACM SIGPLAN conference on Programming Language
Design and Implementation (PLDI), pages 53–64, 2014.

[51] J. Shewchuk. Adaptive precision floating-point arithmetic and fast
robust geometric predicates. Discrete and Computational Geometry,
18(3):305–363, 1997.

[52] A. Solovyev, C. Jacobsen, Z. Rakamarić, and G. Gopalakrishnan. Rig-
orous estimation of floating-point round-off errors with Symbolic Tay-
lor Expansions. In Proceedings of the 20th International Symposium
on Formal Methods Formal (FM), pages 532–550, 2015.

[53] E. Tang, E. Barr, X. Li, and Z. Su. Perturbing numerical calculations
for statistical analysis of floating-point program (in)stability. In Pro-
ceedings of the 8th International Symposium on Software Testing and
Analysis (ISSTA), pages 131–142, 2010.

[54] R. Vuduc, J. Demmel, and J. Bilmes. Statistical models for empiri-
cal search-based performance tuning. International Journal of High
Performance Computing Applications, 18(1):65–94, 2004.

[55] D. Zou, R. Wang, Y. Xiong, L. Zhang, Z. Su, and H. Mei. A genetic
algorithm for detecting significant floating-point inaccuracies. In Pro-
ceedings of the 37th International Conference on Software Engineer-
ing (ICSE), pages 529–539, 2015.

http://www.nextplatform.com/2015/03/18/nvidia-tweaks-pascal-gpus-for-deep-learning-push
http://www.nextplatform.com/2015/03/18/nvidia-tweaks-pascal-gpus-for-deep-learning-push
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program
https://en.wikipedia.org/wiki/Quadratically_constrained_quadratic_program

	Introduction
	Preliminaries
	Motivating Example
	Methodology
	Additional Constraints for Fine-Grained Control

	Implementation
	Empirical Evaluation
	Benchmarks and Experimental Setup
	Performance Case Studies
	Energy Consumption Case Studies

	Discussion
	Performance of FPTuner
	Conditionals and Loops
	Improving Scalability
	Tuning with Three Candidate Precisions

	Related Work
	Correctness and Error Analysis
	Code Improvement and Precision Tuning

	Conclusions and Future Work

