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Abstract

Modern geo-replicated data stores provide high availability by relaxing the underlying con-
sistency requirements. Programs layered over such data stores are called weakly consistent
programs. Due to the reduced consistency requirements, they exhibit highly nondeterminis-
tic behaviors, some of which might violate program invariants. In general, some behaviors
of such programs might violate program invariants, while others might not. Therefore, im-
plementing correct weakly consistent programs and reasoning about them is challenging.
In this paper, we present a systematic scheduling approach that is aware of the underlying
consistency model. Our approach dynamically explores all possible program behaviors al-
lowed by the used data store consistency model, and it evaluates program invariants during
the exploration. We implement the approach in a prototype model checker for Antidote,
which is a causally consistent key-value data store with convergent conflict handling. We
evaluate our tool on several benchmarks. The results show that our approach is effective in
detecting buggy behaviors in weakly consistent programs.



1 Introduction

Modern Internet-scale programs often rely on high-performance geo-replicated data stores.
In such data stores, replicas are located in geographically separate locations to avoid la-
tency in the wide area network and tolerate network partitioning. According to the Con-
sistency, Availability, and Partition tolerance (CAP) theorem [26], partitioning is unavoid-
able, and data stores have to sacrifice either strong consistency or availability. Modern data
stores provide high availability through weaker consistency models called eventual consis-
tency [40], which curbs costly synchronization requirements. We refer to an atomic step
that updates some data in such data stores as an event. In general, eventual consistency
guarantees that events occurred at each replica will eventually be propagated and become
visible on all remote replicas.

Programs using such geo-replicated data stores maintain a copy of their data on different
replicas, which can be concurrently updated by connected clients. However, due to the
often limited synchronization guarantees, it is possible to have conflicting concurrent events
on different replicas. In order to provide eventual consistency, many replicated data types
are equipped with conflict resolution mechanisms [11, 12, 36, 17]. Such store types are
called conflict-free replicated data types (CRDTs) [37, 8], and they guarantee that every
replica that receives the same set of events reaches the same state. Hence, all replicas
eventually converge to the same state if the system becomes quiescent. In order to provide
high availability, such systems never reach the quiescent state, as they continuously receive
events from clients. However, we consider only a finite set of events when checking such
programs, which ensures the system eventually becomes quiescent.

Due to the relaxed consistency guarantees of the systems using CRDTs, a wider set of
program behaviors is possible when compared to a strongly consistent system, some of
which are unintuitive. This makes it harder for developers to reason about expected execu-
tions of their programs and specify the intended program behavior correctly. For example,
on a replica, receiving an event either from a client or from a remote replica are all non-
deterministic. In addition, an event might not observe the effect of all previous events from
other replicas, and hence can easily inadvertently access stale data. Such subtle schedules
(i.e., execution orders) can violate the intended invariants of programs written with CRDTs.
Hence, developers have to reason about complex schedules of concurrent events that can
happen in a CRDT to be able to implement their programs correctly. Alternatively, they can
manually specify the consistency rules they deem are needed for the correct execution of
their program, which are in turn enforced by the underlying CRDT. This is again a complex
and error-prone task requiring deep understanding of the provided consistency guarantees,
allowed schedules, and their interplay with the program.



In order to assist the developers in overcoming the challenges of writing correct CRDT
programs, we introduce a systematic scheduling approach that is aware of the underlying
consistency model. Our approach enables the developers to automatically and systemat-
ically explore different scheduling scenarios for their program allowed by the specified
consistency model, thereby helping them to detect subtle consistency bugs. Our approach
is parameterized both in terms of the used schedule exploration strategy and instantiated
consistency model. Moreover, it works in the local development environment, and it does
not require the program to be run in a distributed system.

Our approach parameterizes the exploration space by the consistency guarantee of the sys-
tem, i.e., it is consistency-aware. Different levels of weak consistency enforce different
synchronization constraints on the system. Since consistency-aware scheduling takes the
consistency guarantee into consideration while generating new schedules, it is precise in
the sense that the generated schedules satisfy the consistency requirements. Hence, it nei-
ther misses bugs due to exploring only strongly consistent schedules nor reports false bugs
by exploring overly relaxed weakly consistent schedules.

Within our approach, we propose two schedule exploration strategies (random and ex-
tended delay-bounded [19]) to detect violations of the supplied program invariants. We
implement our approach in a tool for the Antidote platform [4, 3], which is a highly avail-
able geo-replicated CRDT key-value data store. Our tool helps the developer to properly
specify the consistency level needed for their program by providing counterexamples that
break the invariants if the chosen consistency is too weak. Finally, we apply our tool on
several use cases from the SyncFree project [39], and we successfully detect bug-inducing
schedules. Our contributions are summarized as follows:

• We introduce and formalize a consistency-aware schedule exploration approach for
weakly consistent systems that is parameterized by the scheduler and consistency
model.
• We implement our approach in a prototype tool within the Antidote CRDT platform

and include two schedule exploration strategies.
• We evaluate our tool on several benchmarks and and show that it can efficiently find

real bugs.

2 Motivating Example

We provide a virtual wallet example to explicate how an interleaving of a weakly consis-
tent program, introduced by time nondeterminism, can result in an invariant violation by
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Figure 1: Two scheduling scenarios in the virtual wallet example.

acting on stale data. Our virtual wallet has a balance data field, a CRDT counter, with
an accompanying invariant of having a non-negative value at each replica. The balance
can be updated using credit and debit events, where debit decrements the balance
value by the specified amount only if the current balance is sufficient. The virtual wallet
data is replicated over multiple replicas where clients can connect and apply events con-
currently. We implemented the program using a causally consistent [2, 33] geo-replicated
data store that guarantees the eventual delivery of each event and convergence of the state
in all replicas. Given the initial balance of 500 at every replica, Figure 1 gives two possible
scheduling scenarios: one that satisfies and another that violates our invariant.

Figure 1a shows a bug-free scheduling scenario. Suppose two clients C1 and C2 are con-
nected to two different replicas r1 and r2, respectively; the clients are issuing events to the
same virtual wallet concurrently. First, C1 debits 300 from r1, thereby making the balance
200 (e1). Then, C2 debits 400 from r2 (e2) and credits 300, thereby making the balance 400
(e3). Afterwards, C1 credits 400 on r1, and the balance becomes 600 (e4). Now, r1 prop-
agates the C1’s first event to r2, making the balance 100 (e5); r2 propagates both events
issued by C2 to r1, which makes the balance 500 (e6, e7). Finally, the second event issued
by C1 is propagated to r2, and the ending balance is 500 (e8). In this scheduling scenario,
the value of balance is always non-negative, and the state of both replicas converged in the
end. Hence, a developer might think that the invariant always holds, while that is in fact
not the case, as our next scheduling scenario shows.

Figure 1b shows a buggy scheduling scenario, which starts the same as the bug-free one.
First, C1 debits 300 from r1, making the balance 200 (e1), and C2 debits 400 from r2,
making the balance 100 (e2). Then, C1 credits 400, making the balance 600 on r1 (e4).
Differently than in the bug-free scenario, but still allowed by weak consistency, r1 now
propagates C1’s first event to r2, thereby making the balance value -200 (e5). This vio-



lates our balance>=0 invariant. Note that the two debit events e1 and e2 are concurrent.
Due to the nondeterminism in weakly consistent systems, event e5 can be received either
before or after e3; in fact, it can be received even before e2! As shown in this schedule,
if e5 is scheduled right after e2 and right before e3, the program invariant is violated, al-
though the schedule still guarantees causal consistency. Note that a scheduler guaranteeing
a stronger consistency model (e.g., serializability) would fail to detect this bug. To catch
such invariant violations, a developer has to take into consideration and be able to explore
different orderings that are allowed under the given consistency model of the system; this
is hard to accomplish by relying on typical ad-hoc testing techniques. We address this need
by providing a consistency-aware schedule exploration approach and a prototype imple-
mentation that helps developers discover scheduling scenarios leading to such deep-seated
bugs. In this example, the invariant would be preserved if the balance is defined as a CRDT
bounded-counter, which enforces strong consistency [35] on decrement operations.

3 Weakly Consistent Programs

We formalize our approach based on the transactional consistency framework proposed
by Cerone et al. [13]. Let Rs = {r1, r2, ..., rn} be the set of all replicas in the system and
n = |Rs| the total number of replicas. We define Txns as the set of messages (transactions)
initiated by clients on replicas. We define Logs as the set of messages (transaction logs)
transmitting between replicas in the system. Then, Msgs = (Txns ∪ Logs)× Rs is the set
of all messages transmitting between clients and replicas or between different replicas. For
a message msg = 〈t , r〉, r denotes the originating replica of the transaction t . We formally
define events (i.e., atomic steps in a program) as a set of tuples Events = Msgs×Rs×Zn

≥0.
Each event consists of a message, a replica to which the message is being delivered, and a
vector clock [22] denoting a snapshot of the system that captures message dependencies.

Let history H ⊆ ℘(Events) be the set of events {〈msg , r, vc〉 | vc ≺ now()n} that
occurred in the system so far, where nown denotes the current snapshot replica r has.
So, the history at the initial state, denoted by H0, is an empty set. We define a function
ct : Events → Zn

≥0, such that for every event e = 〈〈t, r′〉, r, vc〉, ct(e) = vc
[
r′ 7→

vc[r′] + 1
]

shows the visibility vector clock of e. Let Obj be the set of data store objects,
and obj : Events → ℘(Obj ) be a function mapping each event to a subset of objects
that the event reads or updates. Then, we define function relEvents : Events × Rs →
℘(Events) mapping every event e to a subset of events that act on at least one shared object
as e does on the specified replica. For e = 〈msg , r, vc〉, relEvents is formally defined as
relEvents(e, r′′) =

{
〈msg ′, r′, vc ′〉 | r′′ = r′ ∧ obj (e) ∩ obj (e′) 6= ∅

}
.
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Figure 2: Examples of schedules allowed by different consistency models.

3.1 Consistency Models

In this section, we introduce three well-known consistency models and formalize the de-
pendency restrictions of each model. The three models are Serializability Consistency
(SR), Eventual Consistency (EC ), and Causal Consistency (CC ), and we informally spec-
ify them as follows:

Serializability Consistency (SR) guarantees that every transaction observes the effect of
all other transactions updating shared objects before executing, and no such transac-
tions are allowed to execute concurrently [35]. Figure 2a gives an example schedule
allowed by strong consistency.

Eventual Consistency (EC ) guarantees that the effect of a transaction is eventually trans-
mitted and delivered to all other replicas [40]. Figure 2b gives an example schedule
allowed by eventual consistency.

Causal Consistency (CC ) guarantees that the effect of a transaction is transmitted and
delivered to every other replica after all of its dependencies (i.e., other transactions it
depends on) have been delivered to that replica [2, 33]. Figure 2c gives an example
schedule allowed by causal consistency.

To formalize these models, we first define a dependency function updDep : CM×Events×
H → Events , where CM = {SR,EC ,CC} is the set of consistency models. Func-
tion updDep determines the dependency of an event by updating its vector clock based
on the given system consistency model and history on which it is operating. Note that
updDep is parameterized by the system consistency model. We also define a helper pred-
icate isAllowed : CM × Events × H → B that determines if a given event is allowed
to execute on its target replica under the specified consistency model, i.e., if all of events
it depends on have already been executed. We leverage these definitions to formalize the
three consistency models by specifying function updDep for each model.



To execute a transaction t, the Serializability Consistency model requires the synchroniza-
tion of every other transaction that updates objects shared with t. Thus, transaction t de-
pends on all other transactions in the system that update its objects. We define function
isAllowed for event e = 〈msg , r, vc〉 where msg = 〈t, r ′〉 under this consistency model as
follows. Suppose

depClock = max
e′∈relEvents(e,r′′)

∀r′′∈Rs

ct(e′), obsClock = max
e′∈relEvents(e,r)

ct(e′),

where depClock denotes the maximum visibility time of the related events and obsClock
denotes the time when the related events are observable. Then,

isAllowed(SR, e,H) =


true (t ∈ Txns ∧ obsClock = depClock)∨

(t ∈ Logs ∧ vc = obsClock)
false otherwise.

Finally, the updDep function for Serializability Consistency is defined as follows:

updDep(SR, 〈msg , r , vc〉,H) =
{
〈msg , r , depClock〉 isAllowed(SR, 〈msg , r , vc〉, s)
〈msg , r , vc〉 otherwise.

In other words, a transaction should have seen all other transactions’ effects that update
shared objects in the system before starting.

In the Eventual Consistency model, there is no dependency between transactions, and mes-
sages can be delivered to a replica in any order. Thus, function isAllowed returns true for
any event in the system

isAllowed(EC , 〈msg , r , vc〉,H) = true,

and function updDep is then defined as follows:

updDep(EC , 〈msg , r , vc〉,H) = 〈msg , r , {0}n〉.

In the Causal Consistency model, a transaction t depends on all transactions that update
shared objects whose effects have been seen by t. We define function isAllowed for event
e = 〈msg , r, vc〉 where msg = 〈t, r ′〉 under this consistency model as follows. Suppose
obsClock = maxe′∈relEvents(e,r) ct(e

′), denotes the time when the related events are observ-
able. Then,

isAllowed(CC , e,H) =
{

true vc � obsClock
false otherwise.



Finally, the updDep function for Causal Consistency is defined as follows:

updDep(CC , 〈msg , r , vc〉,H) =
{
〈msg , r , obsClock〉 isAllowed(CC , 〈msg , r , vc〉,H)
〈msg , r , vc〉 otherwise.

According to these definitions of isAllowed and updDep for all three consistency mod-
els, an event e is always allowed to operate on a replica r under Eventual Consistency, is
allowed under Causal Consistency if all its dependent transactions have already been de-
livered to r , and finally is allowed under Serializability Consistency if all transactions on
its shared objects in the whole system have already been delivered to r .

3.2 Scheduler

In this section, we give a basic scheduler definition parameterized by a consistency model.
A scheduler M = 〈CM , D, empty, give, take〉 is a tuple consisting of a consistency
model CM , a datatype D = 〈DS ×H〉 of scheduler objects (where DS is a datatype
for maintaining scheduling events and set H is history as defined in the previous section),
a scheduler constructor empty ∈ D, the function give : D × Events → D that receives
posted events, and the function take : CM ×D → ℘(D×Events) that determines which
event at which replica operates next.

For the given consistency model cm, the scheduler M is deterministic if for all m ∈ DS ,
take(cm, 〈m,H〉) has at most one element. It is non-blocking if all scheduled events are
allowed, more formally if for all e ∈ Events and m,m′ ∈ DS :

〈〈m′,H ∪ e〉, e〉 ∈ take(cm, 〈m,H〉) =⇒ isAllowed(cm, e,H).

That is, if an event is taken to operate on a replica, it must be allowed to do so.

Definition 1 (Bag Scheduler) The multiset-based scheduler bag is defined on the multiset
domain Dbag of events as

emptybag := ∅
givebag(〈m,H〉, e) := 〈m ∪ {e},H〉

takebag(cm, 〈m,H〉) := {〈〈m\{e},H ∪ {e}〉, e〉 | e ∈ m}.

According to this definition, takebag returns a set of allowed events and thus the bag sched-
uler is nondeterministic. Based on this basic scheduler definition, in the next section we
propose two different scheduling strategies, namely random and delay-bounded [19].



4 Scheduling Strategies

In this section, we propose two scheduling strategies for weakly consistent programs. Later
in Section 6 we empirically evaluate and compare the two strategies.

4.1 Random Scheduling

We define a random scheduler, which randomly exercises possible program schedules.
When an event is posted, it is added to a bag of events. Then, the random scheduler ran-
domly selects and dispatches one of the legal events in the bag. We formally define such
a random scheduler as a tuple M =

〈
CM,Dbag, emptybag, givebag, takebag

〉
, and we call

it the Consistency-Aware Random (CAR) scheduler. The scheduler proceeds if the current
event either (1) completes its operation or (2) is not allowed.

Definition 2 (Bag-based CAR Scheduler) Let BCAR be a bag-based scheduler defined
as a tuple:

BCAR =
〈
CM , ({Events} × ℘(Events)),〈ε,H0〉, givebag, takebag

〉
.

where functions givebag and takebag are defined as shown in Algorithm 1.

Let m, m′ be two bags, where m maintains all events to be scheduled, and m′ maintains all
legal events with respect to the current historyH and under the specified consistency model.
Suppose output is a subset of D×Events , and e = 〈msg , r, vc〉 where msg = 〈t, r′〉, such
that t is in either Txns or Logs . Function givebag takes a scheduler object 〈m,H〉 and an
event e as the input, and then it updates the scheduler to 〈m ∪ {e},H〉. Function takebag
takes the underlying consistency model cm and a scheduler object 〈m,H〉 as the input. If
either m is an empty bag or there is no legal event e in m for the specified history H, no
event is scheduled, i.e., takebag returns an empty set. Otherwise, all legal events in m with
respect to cm and H are maintained in m′. Thereby, for every event e = 〈〈t, r′〉, r , vc〉 in
m′, takebag does the following: (1) updates the dependency of e if t ∈ Txns, according to
updDep(cm, e,H) as defined in Section 3; (2) adds e to the history H; (3) adds the tuple
〈〈m\{e},H〉, e〉 to the output set; and (4) returns the set output.



Algorithm 1 Functions for Bag-based CAR scheduler
1: H,m,m′: bags of events
2: output ⊆ D × Events
3: msg = 〈t, r′〉 . Where t ∈ Txns ∪ Logs and r′ ∈ Rs
4: e = 〈msg , r , vc〉 . Where r ∈ Rs and vc ∈ Zn

≥0
5:

6: function givebag(〈m,H〉, e)
7: m← m ∪ {e}
8: return 〈m,H〉
9: end function

10:

11: function takebag(cm , 〈m,H〉)
12: if m = ∅ or ∀e ∈ m : ¬isAllowed(cm, e,H) then
13: return ∅
14: end if
15: for all Event e ∈ m do
16: if isAllowed(cm, e,H) then
17: m′ ← m′ ∪ {e}
18: end if
19: end for
20: for all Event e ∈ m′ do
21: if t ∈ Txns then
22: e := 〈msg , r , vc′〉 ← updDep(cm, e,H)
23: end if
24: H ← H∪ {e}
25: output ← output ∪ {〈〈m\{e},H〉, e〉}
26: end for
27: return output
28: end function

4.2 Delay-bounded Scheduling

Delay-bounded scheduling as introduced by Emmi et al. [19] parameterizes a program
search space by a deterministic scheduler and delay bound k. A k-delay bounded scheduler
generates different schedules by delaying the execution of up to k events in the determinis-
tic scheduler.

In this paper we propose a delay-bounded scheduler that is aware of the consistency model
of the underlying data store. In so doing, to limit the nondeterminism in the default
scheduler, we employ a deterministic scheduler, and explore a limited number of de-
viations from that deterministic schedule. We define such delaying scheduler as M =



〈
CM , D, empty, give, take, delay

〉
. The function delay : D × Events → D allows the

scheduler to postpone the execution of an event. When an event is posted, it is enqueued,
and its execution could be postponed at the dispatch time. We call such a scheduler, aug-
mented with delay function, the Consistency-Aware Delay-bounded scheduler (CAD). The
scheduler advances to the next event when the current event either (1) completes its oper-
ation, (2) is not allowed, or (3) is delayed. An execution is k-CAD when the number of
delay operations in that execution is at most k.

Definition 3 (List-based CAD Scheduler) Let LCAD be the list-based delaying scheduler
defined as a tuple:

LCAD =
〈
CM ,Events∗ × Events∗ × Z≥0 × ℘(Events),〈ε, ε, 0,H0〉, give, take, delay

〉
.

where functions delay, give, and take are defined as shown in Algorithm 2.

Let H be a set of events, denoting the history of the system, and mr and md be two lists,
where mr maintains the events to be scheduled and md delayed events. Also, let event e =
〈msg , r , vc〉, where msg = 〈t, r′〉. Function delay takes a scheduler object 〈mr,md, i,H〉
and an event e as the input. Then, it delays the execution of e by appending it to md

and returns the scheduler object 〈mr,md⊕l, i,H〉, where l is the length of md, and ⊕l

operator inserts e to md at the position l (i.e., at the end of md). Function give takes a
scheduler object 〈mr,md, i,H〉 and an event e = 〈〈t, r′〉, r , vc〉 as the input. If t ∈ Txns,
it inserts t in mr at the position i and increments i; otherwise, if t ∈ Logs, it appends t
to mr. In the end, it returns the scheduler with the updated mr,md, and i. Function take

accepts the underlying consistency model and a scheduler object as the input. If either both
mr and md are empty lists or there is no legal event in mr with respect to the specified
consistency model and the current history H of the system, then no event is scheduled
and an empty set is returned. Otherwise, if all events in mr have been either scheduled or
delayed, the scheduler substitutes mr with md and md with an empty list and also sets i
to 1. Then, while mr[i] is not a legal event, it delays mr[i] and increments i. Considering
mr[i] = 〈〈t, r′〉, r , vc〉 as a legal event, this function first updates the dependency of mr[i]
using updDep(cm,mr[i],H), if t ∈ Txns. Then, it adds mr[i] to the historyH and returns
a set consisting of a single tuple of the updated scheduler object and mr[i].

5 Implementation

We implement the proposed schedule exploration strategies in a prototype stateless model
checker for weakly consistent programs named COMMANDER [16]. COMMANDER allows



Algorithm 2 Functions for List-based CAD scheduler
1: H: set of events
2: mr: list of events
3: md: list of delayed events
4: msg = 〈t, r′〉 . Where t ∈ Txns ∪ Logs and r′ ∈ Rs
5: e = mr[i] = 〈msg , r , vc〉 . Where r ∈ Rs and vc ∈ Zn

≥0
6:

7: function delay(〈mr,md, i,H〉, e)
8: l := length(md); md ← md ⊕l e . operator ⊕l inserts e into md at position l
9: return 〈mr,md, i,H〉

10: end function
11:

12: function give(〈mr,md, i,H〉, e)
13: if t ∈ Txns then
14: mr ← mr ⊕i e; i← i+ 1
15: else if t ∈ Logs then
16: l := length(mr); mr ← mr ⊕l e
17: end if
18: return 〈mr,md, i,H〉
19: end function
20:

21: function take(cm , 〈mr,md, i,H〉)
22: if i > |mr| then
23: mr := md; md := ε; i := 1
24: end if
25: if mr = ε or ∀e ∈ mr ⊕md : ¬isAllowed(cm, e,H) then
26: return ∅
27: end if
28: while ¬isAllowed(cm,mr[i],H) do
29: 〈mr,md, i,H〉 ← delay(〈mr,md, i,H〉,mr[i]); i← i+ 1
30: end while
31: if t ∈ Txns then
32: e := 〈msg , r, vc′〉 ← updDep(cm, 〈msg , r , vc〉,H)
33: end if
34: H ← H∪ {e}; i← i+ 1
35: return (〈mr,md, i,H〉, e)
36: end function
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developers to systematically check if different weakly consistent schedules can result in
failures of the provided program-specific invariants. We have implemented COMMAN-
DER using Erlang [20], which is a commonly used programming language for distributed
systems development. At the high level, COMMANDER first records an ordering of trans-
actions applied on each replica, and their subsequent delivery to every remote replica in the
system. Then, it systematically enumerates and replays different orderings of the recorded
events using one of our consistency-aware schedule exploration strategies. As shown in
Figure 3, COMMANDER consists of four components.

Recorder This module is responsible for recording the events that occur during the ex-
ecution of the test scenario written by the developer. In order to record each event, we
instrumented the Antidote data store where a transaction is committed or its corresponding
transaction log is transmitted to another data center. The recorded sequence of events is
then ordered in CanonicalSchedule, which is a deterministic canonical schedule where all
transactions coming from clients are ordered based on their data center identifiers, while
transaction logs are ordered based on their receiving data center identifiers.

Scheduler This module reorders the events in CanonicalSchedule, using the selected consistency-
aware scheduling strategy, which is currently either CAR or CAD. As described in Sec-
tion 4, Scheduler preserves the required dependencies during schedule generation. For
every event e in CanonicalSchedule, if e is a delaying event, transaction log of an already
delayed event, or an event whose causal dependency is not satisfied, the CAD scheduler
delays e and picks the next event in CanonicalSchedule. Otherwise, it schedules e and
updates the dependency relation in the generated schedule, which is then used in schedul-
ing subsequent events. Finally, CAD schedules all previouly delayed events. On the other
hand, CAR checks only for the causal dependency of e. If it is not satisfied, CAR skips e
and picks another event randomly, and so forth until all events are scheduled.

Replayer This module exercises the events in the ordering that Scheduler provides. An



event can either be a client transaction or transaction log transmission and delivery. For
executing a transaction at a data center, Replayer behaves like a client and executes the
corresponding transaction at the specified data center. For transmitting and delivering a
transaction log, we instrumented Antidote to be able to hijack the corresponding commu-
nication between data centers.

Verifier This module checks for program-specific invariant violations after each scheduled
event is replayed. If they are not violated, Replayer replays the next scheduled event, and
so on. Otherwise, Verifier provides the current uncompleted schedule as a counterexam-
ple to the developer. An invariant is specified by implementing the provided interface by
COMMANDER.

We target programs layered over the Antidote data store [3]. Note that in this particular
data store, replicas are referred to as data centers. Antidote guarantees causal consistency.
That is, depending on the timing of the concurrent events occurring at data centers, different
causal dependencies can be formed between those events in an execution. Our consistency-
aware scheduling can cover all possible causal dependencies that can be introduced by dif-
ferent executions of a program. Given a recorded schedule, our scheduling strategies gener-
ate different possible schedules either having the same causality dependency as the initially
recorded schedule or producing new causality dependencies. For each generated schedule,
we preserve the formed dependencies at all replicas and hence we do not introduce any
spurious schedules not satisfying the required consistency requirements. We describe the
implementation details behind each of these modules next. For more information about
how to use COMMANDER see Appendix A.

We use Common Test framework [1], which supports automated testing of Erlang nodes,
to launch Antidote data centers communicating through TCP/IP connection and an Erlang
node as a testing node in COMMANDER. The testing node is connected to all data centers
in the system, and we set it up to communicate with them to record and replay events in the
order defined by the Scheduler module (refer to Figure 4).

6 Empirical Evaluation

We empirically evaluate our approach using three synthetic benchmarks and one realistic
benchmark. Since Antidote is a new data store, there are no real world benchmark written
for it to date, called FMK Medical Application. FMK Medical Application shares a medical
profile among different health institutions. The invariant we check for this benchmark
is that every prescription must be present in the corresponding patient’s prescription list.
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Figure 4: Testing environment for empirical evaluation.

In addition, we develop three benchmarks after the realistic use cases from the SyncFree
project [39].

FMK Medical Application shares a medical profile among different health institutions.
The invariant we check for this benchmark is that every prescription must be present
in the corresponding patient’s prescription list.

Virtual Wallet manages virtual economies of distributed computer game clients. Each vir-
tual wallet has a balance that stores the available amount of money (see Section 2).
Each client maintains a local state and issues credits and debits to it. Given the often
very large number of clients in distributed games, virtual wallet has to be extremely
scalable and ensure low latency; hence, the underlying consistency constraints typ-
ically have to be relaxed. This makes CRDTs appropriate data types to be used in
such a program. The invariant we check for this benchmark is that the balance must
not become negative.

Ad Counter implements a distributed counter. Advertising platforms keep track of im-
pressions and clicks for ads in order to analyze advertising data. They use distributed
counters to store the total number of ad views. Typically, there is an upper bound
for an ad after which it should not be displayed anymore. Dynamic and fault-prone
environments of such systems make CRDT counters a promising solution in scaling
them to a large number of clients. The invariant we check for this benchmark is that
the number of ad views must not exceed the upper bound.

Business to Business (B2B) Order plays the role of a traveling salesman for large man-
ufacturers. Client store employees can see a catalogue of products and place orders
from a mobile device using a B2B order program, concurrently. An employee might
see an item is in stock and create an order, but the item goes out of stock while the
device is synchronizing. Every store has a budget, and when the data is replicated
over multiple data centers, two employees from the same store placing orders simul-
taneously may exceed the store budget. The invariants we check for this benchmark
are that the store budget and number of items in stock must not become negative.



Table 1: Experimental results for the CAR scheduler with CC consistency model. Column
Txns is the number of transactions in a benchmark; Events is the number of events; Time
is runtime in min:sec; #s is the number of schedules explored by COMMANDER before it
discovers a bug.

min max median mean
Benchmark Txns Events #s Time #s Time #s Time #s Time

Virtual Wallet 30 90 1 1 37 42:06 8 9:10 11 12:31
Ad Counter 6 18 1 0:21 10 3:32 5 1:46 5 1:45
B2B Order 18 54 1 0:42 22 16:23 4 2:55 6 4:29

FMK 70 210 1 0:21 11 27:07 4 8:07 4 8:07

Table 2: Experimental results for the for-CAD and back-CAD variations of the CAD sched-
uler with CC consistency model. Column Txns is the number of transactions in a bench-
mark; Events is the number of events; Time is runtime in min:sec; #s is the number of
schedules explored by COMMANDER before it discovers a bug. With k we denote the de-
lay bound, and with * we denote runs where COMMANDER misses a bug because of an
insufficient delay bound.

for-CAD Scheduler back-CAD Scheduler
k=0 k=1 k=2 k=0 k=1 k=2

Benchmark Txns Events #s Time #s Time #s Time #s Time #s Time #s Time
Virtual Wallet 30 90 1∗ 1:14 5 5:30 182 208:45 1∗ 1:15 54 61:32 53 60:04
Ad Counter 6 18 1∗ 0:26 8 2:48 10 3:27 1∗ 0:25 7 2:22 7 2:21
B2B Order 18 54 1∗ 0:50 7 5:07 173 128:52 1∗ 0:51 31 23:07 30 22:21

FMK 70 210 1∗ 2:41 5 13:22 1 2:39 1∗ 2:39 >127 >328:00 >127 >328:00

We perform our experiments in a testing environment with a topology consisting of three
data centers (DCs) as shown in Figure 4. The connections between data centers denote data
replication, which is handled by Antidote. In addition, we create the testing node that hosts
COMMANDER and communicates with every DC and client to record and replay events
as described in Section 5. We set up multiple DCs connected using TCP/IP protocol on a
single 4.00 GHz Intel Core i7 machine with 62 GB of memory. Our experiments could be
run on a real distributed system as well. However to avoid the latency in communication
between the testing node and every DC we opt to set up the testing environment locally.

To evaluate the effectiveness of our approach in detecting invariant violations and to em-
pirically compare the different scheduling strategies, we seed a bug in each of our three
synthetic benchmarks. Then, we use COMMANDER to discover the seeded bugs using the
proposed CAR and CAD schedulers. These bugs are hidden in the canonical schedule and
could be revealed through some causally consistent schedule, where an update delivery
violates the invariant (refer to Figure 1 in Section 2). However, schedules with SR consis-
tency miss those bugs. In addition, in our realistic benchmark, FMK, we find a real bug



Table 3: Experimental results for the for-CAD variation of the CAD scheduler with SR
consistency model. Column Txns is the number of transactions in a benchmark; Events is
the number of events; Time is runtime in min:sec; #s is the number of schedules explored
by COMMANDER before it discovers a bug. With k we denote the delay bound, and with *
we denote runs where COMMANDER misses a bug because of stringent consistency model.

for-CAD Scheduler
k=0 k=1 k=2

Benchmark Txns Events #s Time #s Time #s Time
Virtual Wallet 30 90 1∗ 1:14 5382∗ 6183:53 >1880∗ >2160:00
Ad Counter 6 18 1∗ 0:26 246∗ 90:03 >6188∗ >2160:00
B2B Order 18 54 1∗ 0:50 2055∗ 1594:59 >2895∗ >2160:00

FMK 70 210 1∗ 2:41 >836∗ >2160:00 >835∗ >2160:00
FMK 6 18 1∗ 0:23 2 0:43 1 0:18

which CAD scheduler with delay bound of 0 misses it. The FMK system allows updating
an entity, e.g., patient information, using its ID, even if that patient does not exist in a DC.
Therefore, creating that patient later in a remote DC, after the update has been delivered,
fails. The developers of the FMK system fixed this bug after we reported it.

Table 1 shows our experimental result for CAR scheduler. Given the inherent randomness
of CAR scheduler, we run it 15 times with different random seeds on every benchmark, and
we report min, max, median, and mean values for the numbers of explored schedules and
runtimes. As the results show, CAR can generate buggy schedules almost immediately, but
there is also a great variation in its effectiveness, which makes it brittle.

We implement two variations of our CAD scheduler. The first one is called for-CAD, and
it delays events starting from the beginning of the canonical schedule. The second one
is called back-CAD, and it delays events starting from the end of the canonical schedule.
Table 2 shows our experimental for two CAD scheduler variations. As the results show, the
for-CAD variation finds bugs faster than the back-CAD variation. Since the events com-
ing from clients are being executed first according to our canonical schedule and events’
dependencies are assigned only when they are coming from clients, for-CAD quickly al-
ters the dependencies between events, which makes buggy schedules more likely to be
caught. On the contrary, back-CAD starts delaying events from the end of our canonical
schedule. Thus, it first delays events coming from other replicas, which do not allow their
dependencies to be altered in order to preserve the underlying consistency model. Thereby,
back-CAD first explores schedules with the same dependencies, which are less likely to be
a buggy schedule. If we compare the for-CAD variation against the CAR scheduler, we
notice that their effectiveness is comparable, while for-CAD had the advantage of being
predictable.



To demonstrate that being aware of the underlying consistency model is important when
trying to find bugs in weakly consistent systems, we evaluate our for-CAD delay sched-
uler with SR consistency model. As shown in Table 3, delay scheduler with SR consis-
tency model misses the bugs in all synthetic benchmarks due to exercising limited and safe
schedules. However, we expect our scheduler with SR consistency to find the existing real
bug in FMK application, as it is not caused by an inappropriate choose of consistency for
an entity, and it could be easily fixed by checking the existence of the corresponding en-
tity before it is being updated. We set a timer to terminate COMMANDER after it runs for
36 hours. According to our experiments, our scheduler with SR consistency does not find
that real bug in FMK application after 36 hours and exploring 836 schedules. To show the
effectiveness of our scheduler with SR consistency in finding such bugs, which are not due
to wrong consistency model, we simplify the test scenario for FMK application so that it
has less number of transactions and consequently shorter schedules to exercise. Using the
simplified test scenario, our scheduler finds the same real bug in FMK application imme-
diately after exploring only a couple of schedules as shown in Table 3. That shows our
scheduler is capable of finding not only consistency-related bugs, but also other imple-
mentation bugs. To reason about every single state, we sequentialize execution of every
schedule. This sequentialization along with testing environment reset for every execution
increases the analysis runtime.

7 Related Work

The most related approach to ours proposes a form of consistency called explicit consis-
tency [7, 27]. Similarly to our work, users can specify the required consistency model, and
unsafe operations are identified under concurrent executions using program-specific invari-
ants. However, the consistency rules must be manually specified using additional program-
specific invariants. Hence, the correctness of the approach relies on the correctness of the
provided consistency rules. On the other hand, we guarantee the selected consistency model
of the underlying data store and require users to specify only program-specific invariants.
The approach based on explicit consistency has been implemented in CISE [34], which is
a tool for statically reasoning about the correctness of weakly consistent programs.

When it comes to checking of weakly consistent programs, ECRacer [10] is a dynamic
analysis tool that checks serializability of weakly consistent programs. It first records an
execution of such a program and then performs an offline analysis to check for serializabil-
ity. It does not take the dependency between user-initiated transactions into consideration,
and therefore it can report false positives. Bouajjani et al. [9] propose a set of bad patterns
to check causal consistency, causal memory, and causal convergence of an execution. If



an execution contains a bad pattern with respect to a replicated data type, it is not consis-
tent. They prove that checking those three consistency criteria of a single execution is an
NP-hard problem, while it is undecidable for all executions.

In a recent effort, Zeller et al. propose a verification framework called Repliss [44], which
includes a property-based testing engine [43] to check program specific invariants of pro-
grams built on top of weakly consistent data stores. The testing engine is based on the
definition of the underlying data store schema, and it randomly exercises different execu-
tions of a given program. Finally, this technique provides a simple counter example by
shrinking executions.

Lesani et al. propose Chapar [32], which includes a model checker targeting weakly con-
sistent programs. Their work addresses an abstract model of programs in contrast to our
work that performs execution-based model checking.

Kim et al. [30] propose a consistency oracle that simulates a distributed data store. Their
consistency oracle could be integrated with any testing framework to verify storage system
servers or client programs. The proposed consistency oracle requires total ordering that is
determined by the oracle users. Consequently, it supports neither nor transactions which
are being widely used in different data stores.

As a systematic concurrency testing approach, Walker and Runciman [41] propose a tech-
nique for distributed systems communicating through the messagepassing style, with no
shared memory. Their approach considers a variety of network failures in the system while
generating different schedules. That is, during a test execution, a message might be lost,
reordered or duplicated. As opposed to our approach, this technique is applied to only
strongly consistent system.

Deligiannis et al. [18] present a framework including P#, a language for programming
highly reliable asynchronous such as distributed systems, and systematic concurrency test-
ing techniques using DFS scheduling and randomized scheduling. They show that ran-
domized scheduling is more effective than DFS scheduling. However, their work does not
address weakly consistent programs, while our technique does.

In a recent work, Konnov et al. [31] extend the Byzantine Model Checker (ByMC) toolset [29]
by adding the short counterexample property to it. ByMC takes as input a model of a dis-
tributed algorithm specified in an extended version of Promela, which is the modeling lan-
guage of the SPIN [28, 38] model checker, and it checks the provided safety and liveness
properties. Unlike our approach, ByMC allows for only strongly consistent systems to be
analyzed.



There are also several projects that are focused on testing and model checking of Erlang
programs within single node. QuickCheck [6] is a property-based testing tool with support
for model-based exploration. It focuses on the input data nondeterminism by generating
random inputs, whereas we address the problem of exploring concurrent nondeterministic
interleavings. Its extension called PULSE [15] enables the exploration of interleavings, but
it can only detect race conditions and supports just Erlang-level concurrency. The state-
less model checker Concuerror [14] also explores interleaving nondeterminism to detect
deadlocks, assertion violations, and abnormal termination. It explores possible executions
systematically, and uses partial order reduction techniques to reduce the state space. How-
ever, it only explores interleavings between processes on a single Erlang node. The McEr-
lang [24] model checker has similar capabilities since it only explores interleavings on a
single node. Etomcrl [5] translates Erlang programs to mcrl (a process algebraic language)
models, which are then checked by the CADP toolbox [25]. Hence, verification is done on
the generated models, which can diverge from the original programs. None of these tools
make assumptions of the consistency model of the underlying data store.

Verdi [42] is a framework for implementing verified distributed systems. Users first have
to implement their system in Verdi, and the select the appropriate network semantics and
fault model. Then, Verdi generates a verified system and compiles it to an executable to
be deployed across the network. It is unclear how weak consistency would be supported
within Verdi.

8 Conclusions and Future Work

In this paper, we adapt a model-checking-based verification approach to weakly consis-
tent programs. Our proposed method is the first consistency-aware schedule exploration
approach for geo-replicated distributed systems. We formalize two different scheduling
strategies and implement them in our prototype model checker called COMMANDER. We
employ COMMANDER to check and find bugs in programs layered over the Antidote data
store, which uses CRDTs on causal consistency model. Our experiments show promising
results of using COMMANDER for finding bugs on weakly consistent programs and pro-
vide an empirical comparison of the various schedule exploration strategies. Finally, the
architecture of COMMANDER is modular, such that any scheduling strategy can be easily
plugged into the tool.

As future work, we will add support for CRDTs with more stringent consistency guaran-
tees than causal consistency, such as a bounded counter. In collaboration with the Antidote
developers, we plan to apply COMMANDER on large real world programs to assess its scal-



ability. We will explore partial order reduction methods to eliminate repetitious schedules
resulting from delaying events that depend on other delayed events. Finally, we will explore
extending COMMANDER so that it can check properties specified using Linear Temporal
Logic (LTL).
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[31] Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for
safety and liveness verification of fault-tolerant distributed algorithms. In: POPL

[32] Lesani, M., Bell, C.J., Chlipala, A.: Chapar: Certified causally consistent distributed
key-value stores. In: POPL (2016)

[33] Lloyd, W., Freedman, M.J., Kaminsky, M., Andersen, D.G.: Don’t settle for eventual:
Scalable causal consistency for wide-area storage with cops. In: SOSP (2011)

[34] Najafzadeh, M., Gotsman, A., Yang, H., Ferreira, C., Shapiro, M.: The cise tool:
Proving weakly-consistent applications correct. In: PaPoC (2016)

[35] Papadimitriou, C.H.: The serializability of concurrent database updates. JACM (1979)

[36] Riak - A Key-Value Store, http://basho.com/products/riak-overview

[37] Shapiro, M., Preguia, N.M., Baquero, C., Zawirski, M.: Conflict-free replicated data
types. In: SSS (2011)

[38] SPIN - A Model Checker, http://spinroot.com/spin/whatispin.html

[39] SyncFree Project, https://syncfree.lip6.fr

[40] Terry, D.B., Theimer, M.M., Petersen, K., Demers, A.J., Spreitzer, M.J., Hauser, C.H.:
Managing update conflicts in bayou, a weakly connected replicated storage system.
In: SOSP (1995)

[41] Walker, M., Runciman, C.: Systematic testing for distributed systems. In: YDS
(2016)

[42] Wilcox, J.R., Woos, D., Panchekha, P., Tatlock, Z., Wang, X., Ernst, M.D., Anderson,
T.: Verdi: A framework for implementing and formally verifying distributed systems.
In: PLDI (2015)

http://basho.com/products/riak-overview
http://spinroot.com/spin/whatispin.html
https://syncfree.lip6.fr


[43] Zeller, P.: Testing properties of weakly consistent programs with repliss. In: PaPoC
(2017)

[44] Zeller, P., Poetzsch-Heffter, A.: Towards a Proof Framework for Information Systems
with Weak Consistency (2016)

A COMMANDER Usage

A typical COMMANDER usage flow is as follow (refer to Figure 3):

1. A developer writes a test scenario in Erlang for a program under test by specifying
the transactions executed at each data center.

2. The developer provides program invariants to be checked using the interface provided
by COMMANDER and Erlang Unit Testing Framework (EUnit) [21]. In addition, the
developer selects a consistency model (currently we support only causal consistency)
and scheduling strategy; when CAD is selected, a delay bound has to be provided as
well.

3. COMMANDER executes the test case while the Recorder module records the executed
schedule of events and generates a canonical schedule we refer to as CanonicalSched-
ule.

4. The Scheduler module generates the set of all possible schedules for the recorded
CanonicalSchedule, based on the chosen scheduling strategy and consistency model.

5. The Replayer module executes each generated schedule.

6. The Verifier module checks for invariant violations during the execution of each
schedule.

A COMMANDER test case is an Erlang module, which implements comm test behav-
ior. This behavior defines the following three common functionalities, defined as callback
functions, which every test case is compelled to implement:

check is the callback function, which implements the main body of the test case and
always returns the Erlang atom pass.



handle event provides a callback function, where every call to the SUT is performed
inside it. To call an API of the SUT, developers are constrained to first call event
function from comm test behavior, which consequently will call the handle event
function in the test case.

handle object invariant provides developers with a callback function to spec-
ify the object invariant. Through this function, the developers are allowed to use
any arbitrary Erlang code and EUnit assertions to verify the object invariant. The
objects function from the comm test behavior, is called inside the check func-
tion, and it takes a list of objects as an argument. Then, it calls handle object invariant
function, which enables COMMANDER to check the invariant for the specified objects
at each state.

Figure 5 shows how essential parts of a COMMANDER test case are implemented.

More detailed information about the comm test behavior and how to use COMMANDER

is available on the COMMANDER website [16]. In addition, all synthetic benchmarks [16]
and the real world benchmark FMK [23] are publicly available on GitHub.



-module(wallet_comm).

-behavior(comm_test).

-include_lib("eunit/include/eunit.hrl").

%% Callbacks
-export([check/1, handle_event/1, handle_object_invariant/2]).

-define(INIT_VAL, 26500).

check(Config) ->
ct:print("Entered check!"),
[Node1, Node2, Node3] = proplists:get_value(sut_nodes, Config),

Wallet = {wallet_key, riak_dt_pncounter, bucket},
%% Specify invariant arguments
comm_test:objects(?MODULE, [Wallet]),

{_Re, CT} = comm_test:event(?MODULE, [2, Node1, ignore,
[Wallet, ?INIT_VAL]]),

[?assertEqual(rpc:call(Node, wallet, get_val, [Wallet, CT]),
?INIT_VAL) || Node <- [Node1, Node2, Node3]],

pass.

handle_event([1, Node, ST, AppArgs]) ->
[Wallet, N] = AppArgs,
{R1, {_, CT1}} = rpc:call(Node, wallet, debit, [Wallet, N, ST]),
{R1, CT1};

handle_event([2, Node, ST, AppArgs]) ->
[Wallet, N] = AppArgs,
{R2, {_, CT2}} = rpc:call(Node, wallet, credit, [Wallet, N, ST]),
{R2, CT2};

handle_object_invariant(Node, [Wallet]) ->
WalletVal = rpc:call(Node, wallet, get_val, [Wallet, ignore]),
?assert(WalletVal >= 0),
true.

Figure 5: A minimum COMMANDER test case for the virtual wallet program.
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