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Abstract. We present OL1V3R, a solver for the SMT floating-point the-
ory that is based on stochastic local search (SLS). We adapt for OL1V3R
the key ingredients of related work on leveraging SLS to solve the SMT
fixed-sized bit-vector theory, and confirm its effectiveness by comparing
it with mature solvers. Finally, we discuss the limitations of OL1V3R
and propose solutions to make it more powerful.

1 Introduction

Numeric computations realized by floating-point arithmetic have become ubiqui-
tous. For example, machine learning applications, often implemented in floating-
point arithmetic, are used everywhere. However, unlike its exact real arithmetic
counterpart, floating-point arithmetic exhibits unintuitive properties that com-
plicate developers’ reasoning about programs. For example, rounding of floating-
point arithmetic breaks properties that would otherwise hold for exact real arith-
metic (e.g., associativity), resulting in unexpected bugs.

Software verifiers based on satisfiability modulo theories (SMT) solvers have
been successfully used to help developers (semi-)automatically check correctness
of programs. However, the current successful use cases are limited to integer
programs. The SMT floating-point theory (QF FP) [2,14] is relatively new com-
pared to the theories used to model integer programs. Moreover, state-of-the-art
decision procedures for QF FP are based on bit-blasting, which converts SMT
formulas into Boolean circuits solved using highly-efficient SAT solvers. While
bit-blasting can often effectively solve even large formulas in the theory of bit-
vectors (QF BV), it typically scales poorly in the presence of more complicated
operations such as multiplication. Moreover, Boolean circuits derived from bit-
blasting the QF FP operations are typically much larger than those produced
for the QF BV ones, which makes bit-blasting for QF FP even more brittle.

As a result, search-based incomplete solvers, such as XSat [6], goSAT [9], and
JFS [10, 11], emerged as solutions for the scalability issues of bit-blasting. The
basic idea of such solvers is to cast the problem of solving QF FP constraints to
an optimization problem, which is then solved using off-the-shelf optimizers. Such
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solvers, although demonstrating large speed-ups on certain benchmarks over
using bit-blasting, suffer from stability and scalability issues due to relying on
external optimization engines not tailored for the particular types of optimization
problems they generate. For example, XSat often returns incorrect answers on
SMT-LIB [16] benchmarks [11]. Moreover, to the best of our knowledge, none
of the existing search-based solvers support arbitrary precision floating-point
numbers as allowed by the theory specification.

In this paper, we present our attempt to build a stable search-based QF FP
solver. Our solver, OL1V3R,1 is based on stochastic local search (SLS) [8], which
was previously implemented in the qfbv-sls tactic of Z3 [4] to solve QF BV con-
straints [5]. OL1V3R supports common operations specified in the QF FP the-
ory, including custom-sized floating-points.2 We evaluate it on a set of SMT-LIB
benchmarks and our preliminary results are encouraging: despite using software-
emulated arithmetic, OL1V3R achieves performance comparable to mature SMT
solvers such as Z3 and MathSAT [3]. Finally, we discuss the lessons we learned
and propose directions for improvements.

2 Approach

2.1 Input Grammar

The SMT floating-point theory [2, 14] mimics the IEEE standard 754-2008 and
also defines conversions between the floating-point and other sorts such as reals.
Similar to the qfbv-sls tactic of Z3, we first convert an input formula into its
negation normal form with the following grammar:

〈formula〉 ::= (∧〈lexpr〉∗)

〈lexpr〉 ::= (∧〈lexpr〉∗) | (∨〈lexpr〉∗) | 〈atom〉 | ¬〈atom〉
〈atom〉 ::= > | ⊥ | 〈id〉 | (〈pred〉〈nlexpr〉∗)

Here, an atom is either a logical constant, Boolean literal, or predicate over non-
logical expressions. Unlike qfbv-sls, we do not reduce predicates into a minimal
set, such as by desugaring x ≤ y into x < y ∨ x = y, because reductions like this
are not trivial for floating-point predicates due to the existence of NaNs.

2.2 Search Algorithm

We use a simple search algorithm in Fig. 1 to iteratively search for an assign-
ment to variables α that maximizes an objective function which we call the score
function. The algorithm takes as input a formula F that follows the grammar we
introduced in the previous section. During the initialization (function initialize),

1 We made OL1V3R publicly available at https://github.com/soarlab/OL1V3R.
2 The floating-point formats supported by OL1V3R depend on the capabilities of the

underlying “bigfloat” library it employs to evaluate floating-point arithmetic.

https://github.com/soarlab/OL1V3R
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function solve(F )
α← initialize()
i← 1
for i ≤ maxStep do

if satisfies(F, α) then return sat
else

A← selectAssertion(F, α)
α← selectMove(F,A, α)

end if
i← i+ 1

end for
return unknown

end function

function selectMove(F,A, α)
V ← getVars(A)
if uniform(0, 1) ≤ p then

return randomWalk(V, α)
else

α′ ← getBestMove(F, V, α)
if score(F, α′) ≤ score(F, α) then

return random(α)
else

return α′

end if
end if

end function

Fig. 1. Pseudocode of the OL1V3R’s algorithm. Function solve performs top-level
search, whereas selectMove invokes the core components (score computation, neigh-
bor selection, randomization). Constants maxStep and p are input parameters of the
algorithm.

we assign +zero to each floating-point variable and true to each Boolean vari-
able. When the number of search steps exceeds a preset limit maxStep, our al-
gorithm returns unknown and terminates. If the algorithm finds an assignment
that satisfies a formula (function satisfies), it returns sat . (We describe how we
implement satisfies in Sec. 3.) Otherwise, a move (i.e., a mutation to the current
assignment) is selected to continue the search. We adopt the heuristic from the
qfbv-sls tactic that chooses the candidate variables to mutate from the assertion
that is not satisfied and has the highest score (function selectAssertion). The
selected assertion is passed into function selectMove that generates the next
assignment.

In selectMove, we first attempt to perform a random walk with a prob-
ability p (defaults to 0.001), where a neighbor is randomly chosen (function
randomWalk). Then, the neighbor of the variables reachable from the assertion
(function getVars) that improves the score of the formula the most (function
getBestMove) is chosen to continue the search. If there does not exist an im-
proving neighbor, a randomized assignment is used for the next step. This algo-
rithm is akin to the more sophisticated one proposed in Fröhlich et al. [5], and
we discuss the potentially useful advanced heuristics in Sec 4. Our approach is
sound (provided the semantics of the SMT floating-point theory are correctly
modeled), whereas it is incomplete since it cannot prove that a formula is un-
satisfiable. In the rest of this section, we describe the key components of our
algorithm.

Score Computation Score function drives the search, and in Fig. 2 we define it
recursively for logical expressions. The score of a satisfying logical expression is
1, which is the maximum score, and otherwise it is in the range [0, 1). Currently,
we treat unary predicates, such as fp.isNaN , as Boolean variables. Although
some of these predicates (e.g., fp.isInfinite) describe qualities of floating-point
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s(∧e1 . . . en, α) =
1

n

n∑
i=1

s(ei, α)

s(∨e1 . . . en, α) = max (s(e1, α) . . . s(en, α))

s(fp.lt e1 e2, α) =


1 fp.lt e1|α e2|α
0 e1|α = NaN ∨ e2|α = NaN

c(1− |fpPos(e1|α)−fpPos(e2|α)|+1
2n

) otherwise

s(¬(fp.lt e1 e2), α) =

{
1 ¬(fp.lt e1|α e2|α)

c(1− |fpPos(e1|α)−fpPos(e2|α)|
2n

) otherwise

s(atom, α) =

{
1 atom|α
0 otherwise

s(¬atom, α) = 1− s(atom, α)

Fig. 2. Definition of the score function s. Here, e|α evaluates an expression e using an
assignment α, and c ∈ (0, 1) is a parameter that scales the score of an assignment that
is not satisfying (defaults to 0.5). In the last two equations, atom refers only to Boolean
variables and unary predicates, and not relational operators such as fp.eq , fp.lt , and
fp.gt . For relational operators, we only show the floating-point less-than predicate and
its negation; the score for other predicates is computed similarly.

numbers and thus should have designated score function definitions, we leave
those for future work.

The qfbv-sls tactic defines the score function of a relational operator b1 ./
b2 using the distance between two integers bv2nat(b1) and bv2nat(b2), where
bv2nat maps a bit-vector to its unsigned integer value. Similarly, we define our
score function of a floating-point relational operator x1 ./ x2 using the distance
between two integers fpPos(x1) and fpPos(x2), where fpPos is defined as follows:

fpPos(x) =

{
bv2nat(fp2bv(x)) fp.isPositive(x)

2bw−1 − bv2nat(fp2bv(x)) fp.isNegative(x)

Here, function fp2bv converts a non-NaN floating-point number x to its bit
representation, and bw is the bit-width of x. For example, fpPos(+zero) = 0
and fpPos(−zero) = 0. Also, fpPos maps the maximum negative floating-point
number to −1. The predicate x < 0.0 has higher score when x = 0.5 as opposed
to x = 1.0 since fpPos(0.5) is less than fpPos(1.0). Note that function fpPos
is not defined for NaNs, and the score rules in Fig. 2 ensure that a NaN cannot
be passed as an argument to it.

Our score definition of equality is different from the qfbv-sls tactic and
Niemetz et al. [13], which rely on the Hamming distance between two bit-vectors.
In the case of floating-points, using the Hamming distance typically leads to
worse performance than using our definition based on floating-point number po-
sitions as captured by fpPos. This is expected because floating-point numbers
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by definition represent numerical values, whereas bit-vectors are not necessarily
interpreted as integers.

Neighborhood Relation The neighborhood relation, which is used in func-
tions randomWalk and getBestMove in Fig. 1, maps a candidate assignment into
the set of its neighbors. The neighbors of an assignment with respect to a set
of variables are the union of all the neighbors of each variable. The core neigh-
bors of a floating-point number x that has a unique bit representation are all
floating-point numbers that differ from x by exactly one bit in their bit represen-
tations, i.e., they are obtained by flipping a bit in fp2bv(x). For NaN, we assign
a randomly generated floating-point number as its neighbor. In addition to the
core bit-flipping neighbors, we also include floating-points obtained by adding
±1 unit in the last place into the neighborhood relation.

Randomization We empirically observed that prioritizing special floating-
point numbers, such as ±infinity, during the search exhibits better performance.
Hence, the randomization of floating-point values used in OL1V3R (function
random in Fig. 1) generates special numbers with high probability (default of
0.8), and otherwise it selects a floating-point number uniformly from the set of
floating-point numbers.

3 Implementation and Experiments

We implemented OL1V3R in Racket. We use its math/bigfloat [17] module to
evaluate floating-point expressions (function satisfies in Fig. 1), which supports
any significand bit-width greater than 2, but only a fixed-size 31-bit exponent.
Hence, our implementation checks for overflows and underflows of all floating-
point operations with exponent bit-widths less than 31, and handles them as
special cases to ensure the soundness of the evaluation. The bigfloat module binds
to the GNU MPFR library [12], which emulates arbitrary precision floating-point
arithmetic in software. This means that performing arithmetic operations over
bigfloats is much slower than over common floating-point types with hardware
support. Moreover, we compute the score of a logical expression (once we evaluate
its floating-point sub-expressions) using rationals, which gives us precise scores
but also causes a slowdown. We discuss potential improvements of these design
choices in Sec 4.

The benchmarks we use for evaluation are a subset of the non-incremental
SMT-LIB QF FP benchmarks [15] obtained as follows. First, we exclude bench-
marks in folder wintersteiger as they are mostly trivial regressions used to test
correctness rather than performance. Then, we run MathSAT and Z3 on the left-
over benchmarks using a 15 minutes time limit, and select only those on which
neither tool reports unsat. Finally, all selected benchmarks are preprocessed us-
ing the jfs-opt tool shipped with JFS because OL1V3R only partially supports
the SMT-LIB2 syntax. Our benchmark selection strategy allows us to focus the
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Table 1. Comparison between OL1V3R and other solvers. Columns Sat and Unsat
show the numbers of benchmarks where a tool returns sat and unsat, respectively.
Column Unknown shows the number of benchmarks where a tool fails to provide
any results due to out-of-memory or crashes. Column Timeout shows the number of
benchmarks that time out. Column Other shows the number of benchmarks where a
tool returns sat while OL1V3R times out; column OL1V3R shows the opposite.

Tool Sat Unsat Unknown Timeout Other OL1V3R

OL1V3R 113 0 2 82 – –

MathSAT 125 1 7 64 15 5

Z3 88 0 10 99 3 30

JFS 113 0 0 84 5 7

Fig. 3. Comparison of the runtimes of OL1V3R with other solvers.

evaluation on benchmarks that are either satisfiable or possible to be satisfiable
since OL1V3R, like other search-based solvers, can only provide sound results
for satisfiable formulas. For unsatisfiable formulas, OL1V3R keeps searching for
a solution until it hits the time limit, which is also the behavior of JFS.

We evaluate OL1V3R by comparing it with two state-of-the-art SMT solvers,
MathSAT [3] (version 5.5.4) and Z3 [4] (version 4.8.4), as well as one search-
based solver that uses coverage-guided fuzzing, JFS [10] (commit 2322167). We
exclude XSat [6] and goSAT [9] because previous evaluations show that their
performance is inferior to JFS [11]. We leverage benchexec [1] to obtain repro-
ducible and rigorous benchmarking. The time and memory limits are 900s and
4GB, respectively; we allocate one CPU core per benchmark. We run the ex-
periments on a d820 node of the Utah Emulab [18] cluster with 4 Intel Xeon
E5-4620 CPUs and 128GB DDR3 RAM running Ubuntu 16.04.

Table 1 shows the results of running each tool on the selected benchmarks. We
do not observe any inconsistencies between the results returned by the solvers.
(MathSAT reports unsat for one benchmark on which it previously timed out
because the preprocessing step tends to improve its performance.) In terms of
benchmarks solved, MathSAT demonstrates the best performance and Z3 the
worst, while JFS and OL1V3R are comparable. In terms of runtimes, OL1V3R
is comparable to MathSAT, and also typically better than Z3 and slower than
JFS, as shown by the scatter plots in Fig. 3. However, the runtimes of JFS have
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an extreme distribution: it either solves a benchmark quickly or times out. Most
benchmarks that JFS solves OL1V3R also solves within a reasonable amount of
time (around 3 minutes).

A deeper analysis reveals that both JFS and OL1V3R perform better on
benchmarks that contain complex arithmetic such as division and square root.
This observation coincides with the JFS’ authors’ observation that JFS can be
complementary to Z3 or MathSAT [11]. Moreover, OL1V3R demonstrates better
performance on small benchmarks that permit few models. We believe this can be
attributed to the OL1V3R’s distance-sensitive score functions. Finally, OL1V3R
emulates floating-point arithmetic in software during the evaluation of floating-
point expressions in the score computation. On the other hand, JFS evaluates
floating-point computations using the underlying hardware. Hence, we expect
the performance gap to be easily reduced if we also leverage the floating-point
processing hardware (see Sec. 4).

4 Limitations and Proposed Solutions

Evaluation of the score functions can be more efficient. For example, most
use cases of floating-point arithmetic are restricted to single/double precision
floating-point representations, and those also have fast hardware support on al-
most all platforms. Hence, we could implement support for these representations
as a special case to leverage the underlying hardware. To overcome the poten-
tial, albeit unlikely, soundness issues related to the underlying hardware, we
can validate the models returned by OL1V3R by either switching back to the
software-emulated arithmetic or using sound solvers such as MathSAT and Z3.
Moreover, scores can be computed using double-precision floating-point arith-
metic as opposed to the expensive rational arithmetic because our experience
indicates that double-precision is almost always precise enough for this purpose.
Note that this would not compromise the soundness of the algorithm since the
computed scores are only used to guide the search. Finally, we can leverage
multi-core parallelism to evaluate the scores using a map-reduce paradigm.

Our search strategy suffers from scalability issues on certain benchmarks
and could be improved in several ways. The move selection policy is best-
improvement, which implies that the score of every neighbor must be computed.
The complexity of finding a neighbor that improves the score of the chosen as-
sertion the most is O(|V |bw), where |V | is the number of variables and bw is
the maximum bit-width of the used floating-point representations. Our exper-
imental results show that some assertions contain a large number of variables,
thus making move selection extremely slow. Hence, we propose using the first-
improvement policy, as opposed to the current best-improvement, when the num-
ber of variables is above a chosen limit. The intuition is that first-improvement
progresses faster whereas best-improvement spends most of its time in com-
puting and comparing scores. However, first-improvement is highly sensitive to
the order of neighbors. For example, flipping an exponent bit changes the score
much more dramatically than flipping a significand bit. Therefore, we argue that
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variable neighborhood search [7] could be beneficial not only for the proposed
first-improvement policy but also the default best-improvement one.

To be more specific, neighborhood relations are refined to subgroups by sign-
bit, exponent bits, and significand bits. This observation is in accordance with
the experiments described by Fröhlich et al. [5]. In essence, the chosen search
algorithm should capture the fact that the bit representations of floating-point
numbers are structured. Furthermore, the scores of assertions being weighted
equally leads to frequent violations of assertions that could be easily satisfied,
such as intervals of variables, wasting a lot of cycles that should be spent in
searching for solutions that satisfy “hard” assertions. This motivates us to adopt
in the future the heuristic in qfbv-sls that adds weights to assertions and dynam-
ically adjust them according to the frequency at which an assertion is satisfied.

Like other search-based solvers, OL1V3R has difficulties in handling bench-
marks that contain equalities, which are often produced by software verifiers.
The reason is obvious: satisfying equalities often requires many more search
steps than satisfying other comparison operators, such as fp.lt . A straightfor-
ward solution that might be effective in many situations is to eliminate equalities
whenever possible. For example, if two variables are asserted to be equal, then
all the occurrences of one variable can be replaced with the other.

Acknowledgements We thank Dan Liew for answering our questions related
to his work on JFS.
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