
50

FailAmp: Relativization Transformation for Soft Error

Detection in Structured Address Generation

IAN BRIGGS, ARNAB DAS, and MARK BARANOWSKI, University of Utah

VISHAL SHARMA, Microsoft

SRIRAM KRISHNAMOORTHY, Pacific Northwest National Laboratory

ZVONIMIR RAKAMARIĆ and GANESH GOPALAKRISHNAN, University of Utah

We present FailAmp, a novel LLVM program transformation algorithm that makes programs employing struc-
tured index calculations more robust against soft errors. Without FailAmp, an offset error can go undetected;
with FailAmp, all subsequent offsets are relativized, building on the faulty one. FailAmp can exploit ISAs
such as ARM to further reduce overheads. We verify correctness properties of FailAMP using an SMT solver,
and present a thorough evaluation using many high-performance computing benchmarks under a fault injec-
tion campaign. FailAmp provides full soft-error detection for address calculation while incurring an average
overhead of around 5%.

CCS Concepts: • Hardware → Error detection and error correction; • Computer systems organization

→ Reliability; • Software and its engineering → Software verification;

Additional Key Words and Phrases: Soft error detection, failure amplification, structured address generation,
LLVM transformation

ACM Reference format:

Ian Briggs, Arnab Das, Mark Baranowski, Vishal Sharma, Sriram Krishnamoorthy, Zvonimir Rakamarić, and
Ganesh Gopalakrishnan. 2019. FailAmp: Relativization Transformation for Soft Error Detection in Structured
Address Generation. ACM Trans. Archit. Code Optim. 16, 4, Article 50 (December 2019), 21 pages.
https://doi.org/10.1145/3369381

1 INTRODUCTION

High-performance computing (HPC) is central to science and engineering, from critical scientific
calculations such as climate simulation to advanced manufacturing methods for airframes and
cars. While software bugs continue to be a weak link in the trustworthiness of HPC software [10],
another weak link associated with the end of Moore’s law is the propensity of simulations to be

This research was supported in part by NSF Awards 1817073 and 1704715, and DOE Contract DE-SC0014096. This material

is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Comput-

ing Research under Award Number 66905. Pacific Northwest National Laboratory is operated by Battelle for DOE under

Contract DE-AC05-76RL01830.

Authors’ addresses: I. Briggs, A. Das, M. Baranowski, Z. Rakamarić, and G. Gopalakrishnan, 50 Central Campus Dr, Salt Lake

City, UT 84112; emails: ianbriggs@utah.edu, {arnabd, baranows, zvonimir, ganesh}@cs.utah.edu; V. Sharma, 3164/Studio

G, 3800 148th Ave NE, Redmond, WA 98052; email: vishalcsharma.cse@gmail.com; S. Krishnamoorthy, P.O. Box 999, MSIN

J4-30, Richland, WA 99352; email: sriram@pnnl.gov.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1544-3566/2019/12-ART50

https://doi.org/10.1145/3369381

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

https://doi.org/10.1145/3369381
mailto:permissions@acm.org
https://doi.org/10.1145/3369381

50:2 I. Briggs et al.

affected by soft errors—transient faults occurring within the silicon that cause erroneous values
in the application state. In addition to high-energy particles causing these faults, manufacturing
variability, heat, and aging coupled with internal noise and lower-voltage margins also contribute
to these silent data corruptions, affecting the integrity of long-running simulations [12, 20, 32].

Many types of software-based soft-error detectors have been proposed: those that check for
aberrations in the time series of the computational data [8], those that check that the loaded data
matches what was stored [35], and detectors that fit a machine learning model around the “normal
profile” of the computational data [30]. Unfortunately, all of these detection schemes introduce
unacceptable computational overheads—30% for some and much more for others. A 30% overhead
in sequential performance clearly sets us back a few generations in terms of Moore’s law. The
detailed study of resilience solutions and their overheads provided in [5] emphasizes some of these
points. Another significant drawback of these detection schemes is that they have false-positive
rates that are much higher than the rates at which faults themselves occur, potentially causing
unnecessary recomputations. Last, but not least, inserting error detectors into an application’s code
base can have non-trivial software engineering challenges that are not often explicitly addressed.

One reason for this high detection overhead is that the detector is invoked very frequently—
almost every time that key data values are generated. The second reason is that the computed
data itself, or some key aspect thereof, gets checked. The FailAmp approach presented in this
article makes some key departures: (1) FailAmp is focused on a narrow but important aspect of the
overall computation, namely, address generation. Consequently, FailAmp has very low overhead (an
average of 5%). (2) FailAmp does the error checking quite infrequently, and in the interim keeps
“amplifying” (propagating forward) each fault.1 (3) FailAmp is 100% precise—no false positives or
negatives for the covered aspect of the fault. (4) The process of inserting detectors is completely
automated, as FailAmp is nothing but an LLVM transformation of the given code into a new code
that integrates detector deployment within it.

Accessing individual elements in values of aggregate types such as arrays and structures require
structured address generation. These are compute-intensive parts of an HPC code’s execution,
which are known to be important vulnerability windows that must be preferentially protected.
In fact, virtually all modern microprocessors and DSP units employ a dedicated hardware unit
called the Address Generation Unit (AGU) to offload address generation from the main execution
unit [21]. Thus, our work is relevant to practice and can actually be viewed as a well-targeted
resilience solution, guarding bit-flips in the AGU.

A simple example that illustrates our approach is in Figure 1. Let us consider the well-accepted
error model (e.g., [1, 4]) of a single bit-flip that affects the computation of index i occurring
somewhere within the entire computation, causing one summand to come from an alternate lo-
cation A[i’] (left-hand code block). If i’ strays outside the legal address space, the computation
will very likely crash, thus obtaining a “free” detection, in effect. However, in today’s large address
spaces, this is becoming less likely, and the final sum will carry the difference between A[i’] and
A[i]. In a sense, the address generated, A_at_i, is computed with respect to the fixed base address
of A and a moving offset i that suffers one corruption (middle column code block). The rightmost
column of Figure 1 expresses the high-level idea behind relativization (our implementation is ac-
tually much more general, as we shall explain momentarily). Notice that we set relative_A to A,
and set relative_i to 0. In the loop, we generate relative_A in terms of its own previous value
augmented by a delta_i value. Thus, once a relative_A is corrupted by a bit-flip at any point, all

subsequent address calculations based off it are also corrupted, and the assert will fail.

1We could also refer to FailAmp as “Break-fast,” i.e., “fails faster and fails visibly.”

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:3

Fig. 1. Summation code with the argument pointer transformed according to FailAmp.

The FailAmp approach generalizes what we described in the following ways:

• It handles objects of type T that are arbitrary nests of arrays and structs, i.e.,
• T ::= primitive | T* | { f_i : T_i }.
• FailAmp handles addressing changes caused by vectorization.
• We have conducted extensive empirical validation of FailAmp on many examples, demon-

strating the performance of the FailAmp-transformed code.
• Using an LLVM-level fault injector targeting address calculations, we empirically demon-

strate that FailAmp obtains 100% coverage of all address generation faults.
• We also applied a symbolic formal verification tool to FailAmp’s LLVM transformation and

caught a bug that resulted in a revision of our translation scheme. This bug was a rare corner
case that arose only when we applied a compiler vectorization flag, the compiler chose to
vectorize, and the runtime pointer was not aligned.

• FailAmp allows users to effect a trade-off between detection latency and detector overhead.
By delaying the assert checks to the point just before a relativized pointer is lost, we can
obtain the least overhead. In the absence of bit-flips, FailAmp guarantees that all gener-
ated addresses (and, hence, the data that are fetched) are equal in a bit-exact sense—thus
preserving the intended program semantics.

• We demonstrate that the error detection efficacy of FailAmp is not reduced by source-to-
source loop optimizations such as polyhedral transformations and tiling, which are very
important for programs in this class.

• When used with an x86 code generator, FailAmp introduces an average overhead of approx-
imately 5% for realistically sized examples (smaller examples often have higher overheads,
as the relativization costs are not adequately amortized).

• We have developed a relativization approach that can exploit the ARM ISA to significantly
reduce the overhead in many cases.

2 BACKGROUND

We focus on soft errors—transient bit-flips—that affect instruction execution. These errors can
impact combinational or sequential logic and can affect one or more bits. A bit-flip in the microar-
chitecture can either be masked (if the state affected is not required for architecturally correct
execution [19]) or propagate to the architectural state. An error that reaches the architectural

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:4 I. Briggs et al.

state might be benign (masked by the application), lead to a program crash, be detected by the ap-
plication, or escape detection altogether and lead to silent data corruption. The goal of our work
presented in this article is to eliminate silent data corruptions caused by address-generation fault
errors.

Beam-injection studies [26] have shown that there are many don’t-cares at the circuit, logic,
and architectural levels that mask a majority of the faults. It was reported in this article that only
a negligible percentage (about 0.03%) of the injected faults actually turned into silent data corrup-

tions. In a follow-up study [25], however, it was pointed out that due to technology scaling trends,
this number is bound to rise significantly. In addition to particle strikes, one now has to worry
about the relatively higher variability in transistor switching characteristics, increasing levels of
system noise, and component aging. Now, with the “end of Moore’s law” resulting in sub 10-nm
feature sizes and the immense pressure to reduce energy consumption, there is a general level of
consensus that some degree of adoption of system resilience solutions [3] is inevitable in all sci-
entific computing platforms of the future. Even given all this, there is still widespread reluctance
in adopting system resilience solutions in HPC. Our work shows that if resilience solutions are
focused to narrow, but critical, aspects of a computation, and if more failure-amplifying methods
are developed, the overall detection costs can be brought down significantly.

When it comes to practical system resilience solutions, software-based solutions are, under-
standably, far more popular now than hardware-based solutions. The main reason is that the extra
hardware involved can prove to be a constant speed impediment while sitting idle and not firing
most of the time. Virtually all software-based solutions depend on redundant computations [3].
Also, a recovery method is often invoked following fault detection.

2.1 Closely Related Work

The idea of introducing relativization in structured address generation for detecting soft errors was
first introduced by Sharma et al. as part of their PRESAGE algorithm [28]. While the PRESAGE
algorithm successfully demonstrated the feasibility of relativization scheme, the algorithm could
handle only one-dimensional arrays. Our FailAmp work is a significant improvement over the
PRESAGE algorithm, as FailAmp can handle values of aggregate types of any arbitrary shape
and size such as multi-dimensional arrays. Also, unlike FailAmp, the PRESAGE algorithm was
not subjected to any formal analysis to verify its correctness, which we believe is of paramount
importance for any compiler pass that performs code transformation. Finally, in addition to these
differences, our work introduces a new approach for exploiting ISAs such as ARM to further reduce
error detection overheads.

3 THE TRANSFORMATION ALGORITHM

The FailAmp transformation algorithm takes in a stream of LLVM instructions and an effective
address chain beginning at an object of the allowed type (arrays of structs) to be transformed. The
power of FailAmp stems from the fact that compilers that generate the LLVM intermediate form
(e.g., the Clang compiler) exploit the versatility of a single powerful instruction called the “get
element pointer,” or getelementptr (GEP) for structured address computation. FailAmp emits
a transformed stream of LLVM instructions where the incoming GEP instructions acting on the
effective address chain are replaced by relativized counterparts. Non-GEP instructions are simply
copied unchanged into the output stream.

3.1 LLVM Background

We now introduce the requisite background on LLVM. The versatility of GEP is illustrated by an
example from [18]. Consider the C declaration struct ST ∗ s; where ST is of type.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:5

Fig. 2. FailAmp Illustration.

struct ST {int X; double Y; int Z;} ;

Given this, &s[1].z turns into a single GEP instruction

%arrayidx = getelementptr inbounds %struct.ST, %struct.ST∗ %s, i64 1, i32 2

A GEP instruction indexes by item, not by byte. The instruction takes the address %s and indexes
the array to get item 1, then takes that address and indexes the struct to get item 2, which is field Z.
Note that multi-argument GEPs (such as in our illustration) can be broken down into a sequence of
single-argument GEPs that successively consumes each argument. GEPs are also employed when
handling vectorization where the data layout is interpreted modulo the indexing steps needed by
the vector instruction. Essentially, another GEP instruction for the vectorized output is generated.

3.2 An Example

We now present the FailAmp transformation on a simple example involving four GEPs in sequence:

e2 = д(e1, i1); e3 = д(e2, i2); e4 = д(e2, i3); e5 = д(A, i4).

We present a GEP as д(e, i), where e is an incoming effective address and i is an index (offset)
with respect to e . This illustration covers all of the corner cases of our formal transformation
presented in Section 3.3. Figure 2 details this example. We consider an array A that is the target of
relativization. Each GEP instruction carries as an argument an effective address and a displacement
with respect to it and computes a new effective address. For example, e2 is obtained by adding e1

and i1, and so on. The effective addresses generated in this example are e2, e3, e4, and e5.
Consider the translation of e2 = д(e1, i1). For this, we obtain the displacement (from the array

base) of e1, via pm[e1], and add i1 to it, thus obtaining di2 . Δ2 is now the difference between the
displacements, i.e., di2 − di1 . We now generate a GEP — namely, re2 = д(re1 ,Δ2) —generating the
same address as e2, albeit via the relativized chain. We finally update the pointer map at location ei2

with the displacement di2 . The rest of the transformations may be understood in the same manner.

Role of a Pointer Map: To turn the current relativized address to the next relativized address, all
we need is to add an “address delta.” Address deltas are easily calculated if we know the displace-
ment of each new effective address from the base of the array. These displacements are denoted by
dix

. To compute these displacements, we employ a hashmap called the pointer map (pm) to keep
an association between effective addresses and their displacement from the array base. We initial-
ize pm[A] = 0; also, for our example, we already have a pm initialization coming in, pm[e1] = di1 ,
corresponding to the incoming effective address e1. As will be clear in Section 3.3, pm is held by

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:6 I. Briggs et al.

our LLVM transformation system (not the runtime). Overall, we show how each GEP instruction
is turned into three replacement instructions and a pm update.

Each GEP in the source program will correspond to exactly one GEP in the transformed program
that will compute the same address under fault-free executions. The crucial observation here is that
the relativized chain of addresses rpx propagates bit-flips forward along the address calculation
chain when faults are considered. At every juncture, in the absence of bit-flips, each effective
address ex matches the corresponding relativized address rpx . However, under a bit-flip, they will
not match.

We now study the various cases involved, without and with shortcuts that exploit special cases.

No shortcut: The standard approach for relativization involves an addition and subtraction. This
case is involved in handling the instruction e2 = д(e1, i1). Since we are inserting new instructions
into the computation to detect bit-flips, we need to be sure that our inserted instructions them-
selves do not incur a bit-flip that goes undetected. Corruption to the add instruction will corrupt
%d ′, which will flow through %Δ and %r ′. This will leave the relative pointer and relative index in
a self-consistent state, which will go unnoticed by our system. A possible mitigation for this would
be to repeat the add and compare the results. This unoptimized case is very infrequent (see detailed
evaluations in Section 5.2). We have not yet implemented this protection for the add instruction;
even if we were to do so, the overhead would be quite negligible.

On the other hand, if the subtraction is corrupted, then the gep will also be corrupted, but the
relative index, %d ′, will not be. This will be caught by our system.

Shortcut (R1): An example of this shortcut can be seen when handling the instruction e3 =

д(e2).Here, i2 builds off the just calculated e2. This allows us to directly determine that Δ3 = i2,
eliminating a runtime subtraction. Thus, under this shortcut, we are inserting just an addition.
Corrupting this addition will change only the relative index while the relative pointer will be un-
corrupted; hence, the corruption will be caught.

Shortcut (R2): This shortcut can be exploited when handling the instruction e5 = д(A, i4). In
this example, A’s effective address directly forms the first argument of the GEP. This allows us to
determine that di 5 = i4 given that pm[A] = 0, helping avoid a runtime addition. Thus, under this
shortcut, only a runtime subtraction is involved. This subtraction will flow to the gep and yield a
corrupt relative pointer but will not corrupt the relative index. The inconsistent state left by this
will be caught by our system.

Shortcut (R3): If the subtraction is a constant value for all paths to the basic block, then we
can also avoid a runtime subtraction. Thus, under this shortcut, there is no added computation
whatsoever. We refer to this case as “stride” in Section 5.2. Section 5 provides a detailed evaluation
of these cases.

3.3 Formal Translation Algorithm

We will now express the formal LLVM transformation as a process of code generation, focusing
on an intra basic-block perspective. We insert assert statements into the translated output, serving
as the error detectors. In the actual FailAmp implementation, we push these asserts outside of the
basic blocks as far as possible. The basic idea is to push the asserts to the point just before the
relativized pointers are lost. More specifically:

• For pointers that are live throughout a function —namely, argument pointers —the assert
can be pushed to the exit block. When a dependent pointer is transformed, these asserts are
pushed along to two points:

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:7

Fig. 3. Formal transformation in FailAmp.

—just before the pointer is about to be overwritten and
—when the pointer goes dead.
The first case occurs when the block that created the dependent pointer is revisited. In
our implementation, an assert is placed before this information is lost (since the relativized
pointer will otherwise be overwritten).

• For the second case, a simple liveness check is used, and all edges leading to blocks where
the pointer becomes dead will carry an assert.

We also sketch how we stitch together the basic blocks, flowing the relative pointer around,
introducing Phi nodes as needed — again, techniques considered standard. We do, however, check
through extensive testing plus formal analysis described in Section 4 that these steps (beyond a
single basic block) are (best-effort) correct. The correctness of the transformation at the basic block
level has also been covered by our testing and formal analysis.

We express the translation through one state transition (structural operational semantics-style)
rule in Figure 3. We use variable names of the form “%v ,” mimicking LLVM SSA variable names.
Unique internal names (corresponding to %r ′, %d ′, etc.) are automatically generated during the
LLVM pass. The state contains five components:

• The pointer map pm, which is updated via pm+ = (a,b), adding the key-value pair (a,b).
• An input program with one instruction highlighted, %e ′ = д(%e,%i), and the remainder of

the program P coming after the semi-colon.
• A relative pointer %r coming into the basic block or already available in the basic block.
• A displacement %d coming into the basic block or already available in the basic block.
• The generated relativized program so far, R.

We generate a new five-tuple of next state:

• The pointer map pm is updated with (%r ′,%d ′).
• The input program shrinks down to P (the rest of the program).
• The name of the new relative pointer %r ′ being passed along is generated.
• The name of the new displacement variable %d ′ being passed along is generated. Note that

%d ′ is being assigned in the NewCode generated as
%d ′ = add (pm[%e],%i);

• The generated relativized code is R followed by NewCode , which consists of the code to
compute Δ, the code to compute %r ′ using a new GEP that works off the relativized address
%r coming in.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:8 I. Briggs et al.

• The generated code also carries an assert that checks for bit-flips (as said earlier, these
asserts can be delayed till the “exit points,” as illustrated in Figure 1.

It is assumed that all other instruction types are ignored by the rule in Figure 3. Also, note howpm is
updated during code generation. The three shortcuts mentioned in Section 3.2 can be incorporated
into the above generalized transition rule.

4 SEMI-FORMAL CHECKING OF FAILAMP

We check the correctness of the relativized pointers generated by FailAmp using the SMACK ver-
ifier [24]. SMACK works by translating LLVM code into an intermediate verification language
called Boogie, which is then used for assertion checking using an SMT solver. SMACK is a bounded

verifier, meaning that it verifies programs with loops by unrolling them a statically bounded num-
ber of times. To apply SMACK on our benchmarks, we instrumented them as follows:

• We make all inputs to the kernel nondeterministic (i.e., unconstrained), meaning that they
can take any value. This differentiates verification from testing, where concrete values have
to be provided.

• After every address computation from a relativized pointer, we insert an assertion that the
computed value is the same as the non-relativized pointer.

This instrumentation allows us to verify the correctness of a transformed kernel pointer relativiza-
tion.

4.1 Finding a Correctness Bug in FailAmp

When we first ran SMACK on the benchmark suite, we discovered an error in the way Fail-
Amp handled GEP chains. This issue was encountered in vectorized-loop entry code, which was
never executed in concrete test runs since the input arrays were aligned by malloc. Hence, testing
failed to catch this error, which was revealed only during our verification step. After correcting
it, we uncovered an issue with SMACK’s translation of variables modified in loops generated at
higher optimization levels. Specifically, SMACK translated loop blocks that branch directly to a
loop header and to another loop block to Boogie with updates happening before the branch. This
caused SMACK to erroneously report errors related to address computation since indexing incre-
ments were performed before address calculation. The SMACK developers addressed this issue,
permitting a more complete verification with SMACK.

We have verified all FailAmp transformed kernels with SMACK with a loop bound between 7
and 14, and for various optimization and vectorization levels. Some benchmarks take up to a day
for SMACK to verify, but most complete in under 10 minutes.

Assertion Coverage: We also checked whether SMACK is able to reach each assertion generated
by FailAmp. We accomplished this by negating a single assertion in the transformed kernel and
running SMACK to find an assertion violation, thereby showing that SMACK is able to reach the
assertion. We found that 90% of all assertions generated by FailAmp are reachable and, hence, also
verified by SMACK. Our inspection of the unreached assertions shows that they occur in blocks
that may, in fact, not be reachable. Specifically, we found that such blocks are reachable only after
an unsigned 64-bit indexing variable has overflowed. This insight proved valuable to us during the
sanity-checking of the FailAmp algorithm.

In summary, our SMACK experiments have greatly enhanced our confidence in our FailAmp
transformations. To gain additional confidence in FailAmp, we exhaustively checked within a small
scope that all the injected faults are detected. This is discussed in Section 5.4.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:9

Fig. 4. GEP shortcut counts.

5 EVALUATION

5.1 Benchmark Suite

To assess the performance of our transformation and test its correctness, we started with the full
set of benchmarks in the PolyBench benchmark suite [23]. These were modified to allow two
different representations of multi-dimensional arrays, named single- and multi-data layout. We use
the term single-data layout to refer to a multi-dimensional array laid out as a contiguous chunk: a
two-dimensional matrix in this form is indexed as [x * width + y]. We use the term multi-data

layout to refer to structures similar to argv (represented as a pointer array of arrays). This layout
is indexed as [x][y].

PolyBench contains benchmarks in four main categories; data mining, linear algebra, stencil
computation, and medley. The linear algebra category is further broken down into BLAS opera-
tions, solvers, and kernels. There are 30 benchmarks in PolyBench; we run each with the two data
layouts, which leads to 60 benchmarks in total. All were used in our experimentation.

Two machine types were used for evaluation. Most experiments were run on the x86-64 in-
struction set. Specifically, the machines were equipped with dual Intel Xeon E5-2680 v4 CPUs and
128 GB of memory. Some benchmarks were run on ARM-based machines; these were ARMv8 APM
X-GENE CPUs with 64 GB of memory.

5.2 GEPs Transformed

In Figure 4, we conduct a detailed study of the GEP instructions transformed. Recall that the R3
shortcut relies on being able to determine that a GEP has a stride that is statically known. In
such cases, the original GEP can be replaced with a GEP that uses a constant index. For example,

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:10 I. Briggs et al.

consider the case where we are accessing every even index position. In this case, each access is
displaced by 2 items from the last accessed location.

There are a total of 2,048 static instances of the GEP instruction across our benchmarks. When
transforming these, the first shortcut R1 was matched 253 times, the second shortcut R2 1,781
times, and R3 12 times. Two GEPs did not fit any shortcut method. These GEPs are part of a vector
alignment code section that is run only when argument arrays are not aligned in the benchmark
called durbin. This study shows that shortcuts are the norm and not the exception, and protecting
the introduced add instructions (occurs only 12 out of the 2,048 cases), justifying the claim in
Section 3.2 that runtime protection of the introduced instructions can incur fairly low overheads.

Overall Success in Detecting Strided Accesses: The application of the optimization to detect
strided accesses is often limited by the ability to statically determine whether a calculation is
strided. Unfortunately, depending on how a compiler generates code, this can often be obfuscated
at the LLVM level. For example, if a loop is unrolled and the indexing variable is known to be
aligned to a multiple of the unroll, LLVM will often or the index with 1 instead of adding 1. Such
logical operations can limit our ability to statically detect strided accesses.

5.3 Error Model

All resilience schemes work under a specific error model and help detect instances of such errors
during runtime. Our error model is that any of the GEP instructions employed can return a cor-
rupted result different from the actual effective address to be returned by the same GEP. We assume
that faults that corrupt the outcomes of other LLVM-level instructions are either not present or
are handled separately. These include arithmetic instructions, including the arithmetic instructions
newly inserted by FailAmp to support its own activities.

Given our focus on the protection of structured address generation, we focus on error impact-
ing instructions that contribute to address generation. Precise analysis of the propagation of soft
errors from microarchitectural state to the application can require expensive particle-beam ex-
periments (e.g., [7, 27]) or time-consuming microarchitectural simulations. One study [6] points
to the inadequacies in the space of fault injection at higher levels of abstraction. A later study [4]
shows that random single-bit-flips at lower levels of abstraction produced ensemble outcomes that
are statistically similar to RTL-level error injection. To enable rigorous analysis of our strategy, we
focus on LLVM-level fault injection studies. Given our specific target of coverage — namely, the
results of GEP calculations — we believe that this model is reliable for use in our studies.

5.4 Fault Injection–Based Validation of Relativization

To test that the detectors inserted by FailAmp were performing properly, we injected faults into
running benchmarks using the LLVM-based fault injector Vulfi [29]. Vulfi injects errors into com-
putations at a controllable random rate, and it can target specific types of LLVM instructions as
candidates for injection. We modified the runtime of Vulfi so that, instead of a random rate, a spe-
cific instruction can be fault injected. Faults were modelled as a single bit-flip to any part of the
resultant pointer of a memory address computation.

Results of a fault run fall into three categories: system error (“free” detections), FailAmp caught,
and FailAmp uncaught. System errors include segmentation violations and aborts caused by cor-
ruption of memory structures used by malloc. We performed three experiment types using this
ability: (1) one where the benchmarks were run without FailAmp and a random triple was selected
for each run; (2) another where the benchmarks were run with FailAmp and a random triple was
selected for each run; and (3) another run where the data sizes used were smaller, with FailAmp,
but every possible triple was enumerated. This was done to gain further confidence in FailAmp.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:11

Fig. 5. Error rates of untransformed code for x86.

For the random injection experiment type, the distribution of triples was chosen such that each
runtime GEP invocation is equally likely. We performed 10,000 runs of each benchmark for both
of the data layout types. Figure 5 shows the results of the injections on the unmodified code with
both single- and multi-data layout. Both data layouts lead to the same distribution of result types
for a given benchmark. When relativization is used, these distributions shift to the results seen in
Figure 6.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:12 I. Briggs et al.

Fig. 6. Error rates of FailAmp transformed code for x86.

Even for these sizes of input (PolyBench’s medium size equates to a few megabytes of data) the
system lets through about 30% of the injected errors. When detectors are used, either the fault is
caught by the detector or a system facility catches the fault before a detector is run. In all cases
when FailAmp is used, the fault is detected.

In our exhaustive enumeration of triples experiments, we further confirmed that all of the GEPs
were being protected. In all cases, either a crash occurred from a system error or one of our de-
tectors triggered. Note that FailAmp might end up protecting even in those cases where a system

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:13

failure might be triggered. This is important for many reasons, including the impossibility of know-
ing whether a system failure will trigger and supporting solutions such as microcheckpointing and
compiler directed checkpointing [17]. In our studies, we found that in many cases, system failures
were triggered only when “free” was called—and, in the interim, user data might be corrupted
and rendered useless, preventing the possibility of any checkpoint/recovery method. Removing
this lag time from fault to detection could allow application of more tightly coupled temporal and
spatial checkpointing [13, 14, 36].

5.5 Analysis of Overheads

The overhead of FailAmp stems from two sources: (1) the extra integer operations before address
calculations and (2) the detector code. The detector overhead becomes proportionally smaller as
the size of the data increases; this was also observed in our experiments. As the data size increases,
more data will be processed before exiting the scope of a pointer and, thus, more items will be
processed per detector. The extra integer operations will cause a constant overhead since they are
used for every memory computation. The combined effect is that at small input sizes, there will
be higher overhead, which drops asymptotically as the size increases to just the overhead of the
extra integer operations.

From a machine-level view, the indexing of arrays is done with three operations. First, the index
is multiplied with the size of the array type. Then, the pointer value is added to this product.
Finally, the resulting sum is used as the address for a load. Since this is such a common operation,
it has been wrapped up as a single instruction in x86, namely, the complex mov instruction. This
instruction performs all three steps at once, but does not allow access to the intermediates of the

calculation. For our relativization, we need access to the sum value used for the load so that we
can use it for our next address computation. Luckily, the first two steps have also been packaged
in x86 as the Load Effective Address, lea, instruction. Thus, it seems we should be able to perform
this relativization while adding only one to two integer instructions for the delta calculation to
each memory operation.

A problem arises when looking at restrictions on the lea instruction. If an lea uses a pointer
located in %ebp, %RBP, or %R13, it will incur an additional three-cycle latency. If an lea uses all
three source operands, it will incur the same latency. If all source operands are used, it must be
dispatched on port one. If a source operand is coming from an execution unit a three-cycle delay
will occur [15]. All these restrictions mean that we will often be meeting one or more of the criteria
and have the address calculation delayed. This can be an imperceptible difference for code, which
is computation heavy but is a big downside for memory-intensive code.

Figure 7 shows histograms of the overhead of using the FailAmp transformation. Nine bench-
marks in the single layout actually speed up when using FailAmp. Overall, there is a tight grouping
at the low end of the overhead plot, with a few outliers. Reassuringly, the outliers were benchmarks
which had subsecond runtimes, where a 50% overhead is obtained for runs that take a second of
compute time. In particular, these outliers include the kernels jacobi_1d, durbin, and mvt, which
took 5 ms, 40 ms, and 500 ms to execute. This further reassures us that for realistic sizes, the
overhead of FailAmp can be acceptably small.

5.6 Exploiting the ARM ISA to Reduce FailAmp Overhead

The ARM instruction set also has instructions that help combine the steps of indexing and load-
ing. The standard model of computing the address to load and then performing the load is present
in ARM and is called offset addressing. There are also two modes, called pre-indexing and post-
indexing modes, which modify the pointer upon indexing. These modes essentially update the

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:14 I. Briggs et al.

Fig. 7. Overhead histograms for x86.

register holding the pointer to the base plus offset value while also performing the load. They are
different only with respect to when the load occurs: pre-indexing loads the pointer and then cal-
culates the base plus offset, whereas post-indexing calculates the base plus offset prior to the load.
The post-indexed addressing mode does exactly what we want. Relativizing accesses has been baked
into the ISA; thus, we should see lower overheads for ARM since the only cost is the additional
integer instructions.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:15

Fig. 8. Overhead histograms for ARM.

Assessment of Overall Success of ARM-specific Optimizations: A smaller number of tests
show a speedup when using ARM than was seen for x86, with an outlier showing a 25% to 35%
speedup, as seen in Figure 8. This speedup was achieved on the seidel_2d benchmark with both
single- and multi-data layouts, and dropped the runtime from 26 min normally to 18 min with
FailAmp. While these fast outliers are nice, the overall grouping is not quite what we predicted. A
probable reason for this relates to the exact hardware being used. The AppliedMicro X-Gene pro-
cessor [11] was used to run the benchmarks, which contains only two ports for integer operations.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:16 I. Briggs et al.

The overhead of our additional integer instructions is being amplified when these ports are full.
In an ARM CPU with a wider execution path, this problem would perhaps be alleviated.

5.7 Case study: LULESH

LULESH is the Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics miniapp, which
is representative of numerical algorithms, data motion, and programming style typical in scientific
C or C++-based applications [16]. We used the FailAmp transformation on LULESH, targeting the
computation functions that it employs, and tested the resulting miniapp for both error detection
and overhead.

We performed 10,000 random error injections to both the transformed and untransformed appli-
cations. When injecting errors into the untransformed application, the rate of “system detection”
is similar to what we obtained with PolyBench. That is, without FailAmp, 71% of the faults will
result in “system detection” but 29% will slip by uncaught. When FailAmp is used, all errors are
detected and we observed that the system detection rate lowers to 67%, with 33% being picked up
by FailAmp.

Next, we ran both applications (with and without FailAmp) 100 times to determine FailAmp’s
overhead. The default size of simulation for LULESH is a cube with side length of 32. Even at this
small data size, there is only a 13% overhead for FailAmp, with a 3% standard deviation. Moving
to a side length of 64 yields a drop to 11% overhead. Increasing the size again to 96 brings the
overhead to 6%. This study is the final acid test that FailAmp deserves strong consideration for
HPC code given its 100% address error detection rate and around 5% overhead.

5.8 Analysis of Robustness

5.8.1 Effect of Polyhedral and Tiling Optimizations. Given that polyhedral optimizations are im-
portant code optimizations to improve locality and are widely applied to our class of programs, our
first goal is to ensure that FailAmp’s advantages are retained in the presence of these optimiza-
tions. Polyhedral optimizations are algebraic transformations applicable whenever nested loops
contain statically predictable control flows. Such loop nests are called static control parts, charac-
terized by a collection of statements where the loop bounds and conditional expressions are affine
functions of the loop iterators as well as compile-time constants. We employ Pluto [2], an auto-
matic parallelizer and locality optimizer for affine loop nests, to generate a polyhedrally optimized
version of our primary benchmark suite. Pluto discovers and applies affine transformations, lead-
ing to efficient tiling and, thus, accruing the advantages of coarse-grained parallelism and data
locality.

5.8.2 Pluto Results Discussion. It is a known fact that Pluto-optimized code suffers not only
code bloat but also a significant increase in the number of basic blocks constituting the main
kernel. For the single-data layout, it requires a single detector per argument pointer to be invoked.
Hence, FailAmp transformation and detector invocation do not incur significant overheads with
respect to the Pluto-unoptimized version. In the case of multi-dimensional layouts of arrays, a
detector invocation is exercised for each trip through the innermost loop (pointer goes out of
scope). Correspondingly, the Pluto-optimized version tends to increase the invocation frequency
of the detectors for this case (due to dependent pointers). Hence, we see a general increase in the
overhead cost with the multi-layout in Figure 9. Even then, polyhedral codes with large tile sizes
(1,024) tend to plateau out with respect to overheads.

We did verify that our guarantees of error detection hold even for FailAmp transformations
applied to Pluto-optimized code. Pluto did not change FailAmp’s ability to detect faults.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:17

Fig. 9. Overhead histograms for x86 while using Pluto.

6 RELATED WORK

System resilience research is gaining momentum; space does not permit an exhaustive survey.
In this section, we briefly discuss efforts closely related to ours and point out key challenges
we overcame to make relativization work correctly and efficiently, spanning multiple application
classes.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

50:18 I. Briggs et al.

Error detection strategies through value tracking have gained some attention. Precisely detect-
ing silent data corruptions presents a challenging problem. The work in [8] presents an impact-
driven model for SDC detection with an objective to reduce false alarms trading off with acceptable
SDC rates. The work in [33] explores the usage of support vector machine techniques for SDC de-
tection with low memory overhead costs for HPC applications. However, these methods target the
data part of computation by through value tracking and do not target address generation.

Error detection through redundant execution has also been pursued in many works. The work
in [22] attempts to minimize the number of dynamic instructions executed for protection. Instead
of executing an expensive redundant computation, the recomputation output is approximated to
validate the computed results. While these approaches are often quite effective, they require ad-
ditional hardware or incur higher costs. The work in [31] proposes an algorithmic approach to
correct faulty application outputs through partial recomputation. The work in [34] proposes an
algorithm-based fault tolerance (ABFT) scheme for soft error detection and recovery methods for
iterative solvers.

The work in [38] performs soft-error detection in microprocessors based on symptoms that hint
at the presence of soft errors, including recovering from an earlier checkpoint. Symptom-based
recovery might detect errors in terms of anomalies but does not guarantee detection.

The work closest to ours is that reported in [28], where the authors propose a basic relativization
transformation for indexing error detection. Our work differs in the following respects:

• The work in [28] handles only single-dimension arrays. It cannot handle the full generality
of types that we handle.

• The error detection approach in [28] is based on loop exit conditions obtained through
Hoare axioms. The authors’ work cannot accommodate loops with unknown iteration
ranges. Our work can handle any LLVM-based flow graph (even non-single-entry/exit
graphs), as we flow enough information for each index to check whether its relativized
and absolute indices agree.

In contrast, FailAmp (1) generalizes the data types handled to arbitrary nests of arrays and records
(see Figure 1’s grammar), (2) handles optimizations such as vectorization that chains GEPs, and
(3) exploits pointer comparison (not Hoare axioms) for error detection. We additionally provide
extensive benchmarking, robustness analysis, formal analysis, and insights on how to exploit ar-
chitectural features (x86 versus ARM).2

Relativization transformations within a local scope are often done by compilers to improve code
quality. However, compilers typically only relativize when there is a known stride and when there
is an estimated performance improvement (thanks to the known stride). This allows compilers
employing this optimization to omit runtime delta index calculations, since each delta is the same
and a compile-time constant. This relativization is not performed when the access pattern is not
known at compile time.

The area of LLVM transformations is quite active, with transformations developed for one pur-
pose often playing a useful role for another. In this vein, our work can be viewed as a formally

validated LLVM translation of interest in its own right. We do not yet know where else such rel-
ativization that spans basic blocks and loops will find a role. However, putting FailAmp out can
only help add to the repertoire of LLVM transformations out there (especially because, as Section 5
shows, after relativization, the performance may even improve).

2We made a concerted effort to resurrect the PRESAGE code and benchmark FailAmp against it. This effort failed due to

“bit rot” in the PRESAGE code base.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

FailAmp: Relativization Transformation for Soft Error Detection 50:19

7 DISCUSSIONS, CONCLUDING REMARKS

Soft errors threaten the integrity of scientific results produced by long-running simulations—
especially for new explorations where there are often very few (if any) cost-effective alternative
checks (e.g., the simulation of binary black holes [9]). Any method that enhances system resilience
with low overheads is well suited for such application domains. Solutions tailored toward struc-
tured address generation address a crucial vulnerability window where a series of address com-
putations occur in long-running loops. Our experiments demonstrate that faults in these address
calculations often do not stray outside of legal address ranges — and, hence, in effect turn into silent

data corruptions of a fairly egregious kind, where the data fetched under the corrupted address
may be far removed from the data fetched under the absence of faults. In contrast, data corruptions
suffered by ALU calculations — the traditional mainstay of system resilience research — often tend
to resemble exaggerated rounding results. Our focus on complex address generation was directly
responsible for our point solution being efficient and precise. We leave the task of protection
against other error types (e.g., memory read/write errors) to other complementary research efforts.

Our approach of amplifying errors is unusual, in contrast with other efforts where the attempt is
often to automatically repair errors and move on. Such repair is known to be extremely difficult to
achieve. In contrast, the FailAmp approach allows computations to revert to earlier checkpoints,
repair, and move on. This approach actually fits well within microcheckpointing and recovery
methods that are central to exascale computing [37].

In this article, we extensively validated the algorithm implemented in FailAmp both empirically
and formally. We also demonstrated FailAmp’s acceptable overheads on a number of benchmarks
and showed that these benefits are unaffected by polyhedral transformations.

Our work also involved interesting challenges in the architecture and operating system spaces
in a compilation setting. We showed promise of exploiting special features of ISAs such as ARM
to reduce the overhead of relativization. During our experiments, we had to turn off address-
space randomization (ASLR) to provide repeatable measurements with respect to crashes (“system
caught errors” in our studies). Thus, the pursuit of relativization offers many intellectual challenges
cutting through the system stack.

There are many interesting research questions to be pursued further. Questions such as the
design of modern AGUs and whether they provide value forwarding (thus helping hide the over-
head of relativization) are important to consider further. It appears that relativization does not
sequentialize the AGU operation itself, as AGUs can be busy fetching across different address
streams. It also appears that relativization does not limit the ability of the compute core to exploit
instruction-level parallelism. Memory allocation-wise, it is known that the “array of array” lay-
out for multi-dimensional arrays is not as efficient as single linearly allocated multi-dimensional
arrays. This picture does not appear to change with relativization. These questions are worth an-
swering backed with actual measurements. The code of FailAmp is in a stable form and will be
released along with the final version of this article.

REFERENCES

[1] Rizwan Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F. DeMara, Chen-Yong Cher, and Pradip Bose. 2015. Un-

derstanding the propagation of transient errors in HPC applications. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis (SC’15), Austin, TX, November 15–20, 2015, Jackie

Kern and Jeffrey S. Vetter (Eds.). ACM, 72:1–72:12. DOI:https://doi.org/10.1145/2807591.2807670

[2] Uday Bondhugula, Muthu Baskaran, Sriram Krishnamoorthy, J. Ramanujam, A. Rountev, and P. Sadayappan. 2008.

Automatic transformations for communication-minimized parallelization and locality optimization in the polyhedral

model. In International Conference on Compiler Construction (ETAPS CC’08). 132–146.

[3] Franck Cappello, Geist Al, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir. 2014. Toward exascale resilience:

2014 update. Supercomputing Frontiers and Innovations 1, 1, 5–28. DOI:https://doi.org/10.14529/jsfi140101

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

https://doi.org/10.1145/2807591.2807670
https://doi.org/10.14529/jsfi140101

50:20 I. Briggs et al.

[4] Chun-Kai Chang, Sangkug Lym, Nicholas Kelly, Michael B. Sullivan, and Mattan Erez. 2018. Evaluating and accel-

erating high-fidelity error injection for HPC. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage, and Analysis (SC’18), Dallas, TX, November 11–16, 2018. IEEE / ACM, 45:1–45:13.

http://dl.acm.org/citation.cfm?id=3291716.

[5] S. Chen, L. Peng, and G. Bronevetsky. 2015. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms

In Numerical Programs. Technical Report LLNL-SR-666073 2963-2984.

[6] Hyungmin Cho, Shahrzad Mirkhani, Chen-Yong Cher, Jacob A. Abraham, and Subhasish Mitra. 2013. Quantitative

evaluation of soft error injection techniques for robust system design. In Proceedings of the 50th Annual Design

Automation Conference (DAC’13). ACM, New York, NY, Article 101, 10 pages. DOI:https://doi.org/10.1145/2463209.

2488859

[7] Daniel A. G. de Oliveira, Laércio Lima Pilla, Nathan DeBardeleben, Sean Blanchard, Heather Quinn, Israel Koren,

Philippe O. A. Navaux, and Paolo Rech. 2017. Experimental and analytical study of Xeon Phi reliability. In Proceedings

of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC’17), Denver,

CO, November 12–17, 2017, Bernd Mohr and Padma Raghavan (Eds.). ACM, 28:1–28:12. DOI:https://doi.org/10.1145/

3126908.3126960

[8] Sheng Di and Franck Cappello. 2016. Adaptive impact-driven detection of silent data corruption for HPC applications.

IEEE Transactions on Parallel Distributed Systems 27, 10, 2809–2823. DOI:https://doi.org/10.1109/TPDS.2016.2517639

[9] Milinda Fernando, David Neilsen, Hyun Lim, Eric Hirschmann, and Hari Sundar. 2019. Massively parallel simulations

of binary black hole intermediate-mass-ratio inspirals. SIAM Journal on Scientific Computing 41, 2, C97-C138. Also

https://arxiv.org/abs/1807.06128.

[10] Ganesh Gopalakrishnan, Paul D. Hovland, Costin Iancu, Sriram Krishnamoorthy, Ignacio Laguna, Richard A. Lethin,

Koushik Sen, Stephen F. Siegel, and Armando Solar-Lezama. 2017. Report of the HPC correctness summit, January

25-26, 2017, Washington, DC. CoRR abs/1705.07478 (2017). arxiv:1705.07478 http://arxiv.org/abs/1705.07478

[11] P. Gopi, G. Singh, and G. Favor. 2012. X-GeneTM: 64-bit ARM CPU and SoC. In IEEE Hot Chips 24 Symposium (HCS’12).

1–19. DOI:https://doi.org/10.1109/HOTCHIPS.2012.7476502

[12] Saurabh Gupta, Tirthak Patel, Christian Engelmann, and Devesh Tiwari. 2017. Failures in large scale systems: Long-

term measurement, analysis, and implications. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’17). ACM, New York, NY, Article 44, 12 pages. DOI:https://doi.org/

10.1145/3126908.3126937

[13] Saurabh Gupta, Devesh Tiwari, Christopher Jantzi, James Rogers, and Don Maxwell. 2015. Understanding and exploit-

ing spatial properties of system failures on extreme-scale HPC systems. In Proceedings of the 45th Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN’15). IEEE Computer Society, Washington, DC,

37–44. DOI:https://doi.org/10.1109/DSN.2015.52

[14] Zaeem Hussain, Taieb Znati, and Rami Melhem. 2018. Partial redundancy in HPC systems with non-uniform node

reliabilities. In Proceedings of the International Conference for High Performance Computing, Networking, Storage, and

Analysis (SC’18). IEEE Press, Piscataway, NJ, Article 44, 11 pages. DOI:https://doi.org/10.1109/SC.2018.00047

[15] Intel. 2016. Intel 64 and IA-32 architectures optimization reference manual. Order Number: 248966-033 25 21-22.

[16] Ian Karlin, Jeff Keasler, and Rob Neely. 2013. LULESH 2.0 Updates and Changes. Technical Report LLNL-TR-641973.

https://computation.llnl.gov/projects/co-design/lulesh.

[17] Qingrui Liu, Changhee Jung, Dongyoon Lee, and Devesh Tiwari. 2016. Compiler-directed lightweight checkpointing

for fine-grained guaranteed soft error recovery. In Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis (SC’16). IEEE Press, Piscataway, NJ, Article 20, 12 pages. http://dl.acm.

org/citation.cfm?id=3014904.3014931

[18] LLVM. [n.d.]. LLVM Language Reference Manual. Retrieved November 7, 2019 from http://llvm.org/docs/LangRef.

html#getelementptr-instruction.

[19] Shubhendu S. Mukherjee, Christopher Weaver, Joel Emer, Steven K. Reinhardt, and Todd Austin. 2003. A systematic

methodology to compute the architectural vulnerability factors for a high-performance microprocessor. In Proceed-

ings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’03). IEEE, 29–40.

[20] B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. 2016. A large-scale study of soft-errors on GPUs in the

field. In IEEE International Symposium on High Performance Computer Architecture (HPCA’16). 519–530. DOI:https://

doi.org/10.1109/HPCA.2016.7446091

[21] Vojin G. Oklobdzija. 2001. The Computer Engineering Handbook: Electrical Engineering Handbook. CRC Press, Inc.,

Boca Raton, FL.

[22] Sunghyun Park, Shikai Li, and Scott A. Mahlke. 2018. Low cost transient fault protection using loop output prediction.

In 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN Workshops’18),

Luxembourg, June 25–28, 2018. 109–113. DOI:https://doi.org/10.1109/DSN-W.2018.00047

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

http://dl.acm.org/citation.cfm?id=3291716
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1145/2463209.2488859
https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1145/3126908.3126960
https://doi.org/10.1109/TPDS.2016.2517639
https://arxiv.org/abs/1807.06128
http://arxiv.org/abs/1705.07478
https://doi.org/10.1109/HOTCHIPS.2012.7476502
https://doi.org/10.1145/3126908.3126937
https://doi.org/10.1145/3126908.3126937
https://doi.org/10.1109/DSN.2015.52
https://doi.org/10.1109/SC.2018.00047
https://computation.llnl.gov/projects/co-design/lulesh
http://dl.acm.org/citation.cfm?id=3014904.3014931
http://dl.acm.org/citation.cfm?id=3014904.3014931
http://llvm.org/docs/LangRef.html#getelementptr-instruction
http://llvm.org/docs/LangRef.html#getelementptr-instruction
https://doi.org/10.1109/HPCA.2016.7446091
https://doi.org/10.1109/HPCA.2016.7446091
https://doi.org/10.1109/DSN-W.2018.00047

FailAmp: Relativization Transformation for Soft Error Detection 50:21

[23] PolyBench. [n.d.]. PolyBench/C: The Polyhedral Benchmark suite. Retrieved November 7, 2019 from http://web.cse.

ohio-state.edu/∼pouchet.2/software/polybench/.

[24] Zvonimir Rakamarić and Michael Emmi. 2014. SMACK: Decoupling source language details from verifier implemen-

tations. In Proceedings of the 26th International Conference on Computer Aided Verification (CAV’14), Lecture Notes in

Computer Science, Vol. 8559. Springer, Berlin, 106–113.

[25] Jude A. Rivers, Meeta S. Gupta, Jeonghee Shin, Prabhakar N. Kudva, and Pradip Bose. 2011. Error tolerance in server

class processors. in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (CADICS) 30, 7,

945–959.

[26] Pia N. Sanda, Jeffrey W. Kellington, Prabhakar Kudva, Ronald N. Kalla, Ryan B. McBeth, Jerry Ackaret, Ryan

Lockwood, John Schumann, and Christopher R. Jones. 2008. Soft-error resilience of the IBM POWER6 processor.

IBM Journal of Research and Development 52, 3, 275–284. DOI:https://doi.org/10.1147/rd.523.0275

[27] Norbert Seifert, Vinod Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia, S. Mukherjee, N. Nassif, J. Krause, J. Pickholtz,

et al. 2010. On the radiation-induced soft error performance of hardened sequential elements in advanced bulk CMOS

technologies. In IEEE International Reliability Physics Symposium (IRPS’10). IEEE, 188–197.

[28] Vishal Chandra Sharma, Ganesh Gopalakrishnan, and Sriram Krishnamoorthy. 2016. PRESAGE: Protecting struc-

tured address generation against soft errors. In 23rd IEEE International Conference on High Performance Computing

(HiPC’16), Hyderabad, India, December 19–22, 2016. IEEE, 252–261. DOI:https://doi.org/10.1109/HiPC.2016.037

[29] Vishal Chandra Sharma, Ganesh Gopalakrishnan, and Sriram Krishnamoorthy. 2016. Towards resiliency evaluation

of vector programs. In IEEE International Parallel and Distributed Processing Symposium Workshops, (IPDPS Work-

shops’16), Chicago, IL, May 23–27, 2016. IEEE Computer Society, 1319–1328. DOI:https://doi.org/10.1109/IPDPSW.

2016.187

[30] Vishal C. Sharma, Ganesh Gopalkrishnan, and Greg Bronevetsky. 2015. Detecting soft errors in stencil based com-

putations. In Workshop on Silicon Errors in Logic —System Effects (SELSE’15). Austin, TX. Retrieved November 7, 2019

from http://formalverification.cs.utah.edu/fmr/.

[31] Joseph Sloan, Rakesh Kumar, and Greg Bronevetsky. 2013. An algorithmic approach to error localization and partial

recomputation for low-overhead fault tolerance. In 43rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’13), Budapest, Hungary, June 24–27, 2013. 1–12. DOI:https://doi.org/10.1109/DSN.2013.

6575309

[32] Marc Snir, Robert W. Wisniewski, Jacob A. Abraham, Sarita V. Adve, Saurabh Bagchi, et al. 2014. Addressing failures

in exascale computing. International Journal of High Performance Computing Applications 28, 2, 129–173.

[33] Omer Subasi, Sheng Di, Leonardo Bautista-Gomez, Prasanna Balaprakash, Osman S. Ünsal, Jesús Labarta, Adrián

Cristal, and Franck Cappello. 2016. Spatial support vector regression to detect silent errors in the exascale era. In

IEEE/ACM 16th International Symposium on Cluster, Cloud and Grid Computing (CCGrid’16), Cartagena, Colombia,

May 16–19, 2016. 413–424. DOI:https://doi.org/10.1109/CCGrid.2016.33

[34] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin Liang, Eddy Z. Zhang, Darren

Kerbyson, and Zizhong Chen. 2016. New-Sum: A novel online ABFT scheme for general iterative methods. In In-

ternational Symposium on High-Performance Parallel and Distributed Computing (HPDC’16). 43–55.

[35] Sanket Tavarageri, Sriram Krishnamoorthy, and P. Sadayappan. 2014. Compiler-assisted detection of transient mem-

ory errors. In ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’14), Edinburgh,

UK, June 09–11, 2014. 204–215. DOI:https://doi.org/10.1145/2594291.2594298

[36] D. Tiwari, S. Gupta, and S. S. Vazhkudai. 2014. Lazy checkpointing: Exploiting temporal locality in failures to mitigate

checkpointing overheads on extreme-scale systems. In 44th Annual IEEE/IFIP International Conference on Dependable

Systems and Networks. IEEE, 25–36. DOI:https://doi.org/10.1109/DSN.2014.101

[37] Augusto Vega, Pradip Bose, and Alper Buyuktosunoglu. 2016. Rugged Embedded Systems: Computing in Harsh Envi-

ronments. Morgan Kaufmann Publishers Inc., San Francisco, CA.

[38] Nicholas J. Wang and Sanjay J. Patel. 2006. ReStore: Symptom-based soft error detection in microprocessors. IEEE

Transactions on Dependable and Secure. Computing 3, 3, 188–201. DOI:https://doi.org/10.1109/TDSC.2006.40

Received June 2019; revised September 2019; accepted October 2019

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 4, Article 50. Publication date: December 2019.

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://doi.org/10.1147/rd.523.0275
https://doi.org/10.1109/HiPC.2016.037
https://doi.org/10.1109/IPDPSW.2016.187
https://doi.org/10.1109/IPDPSW.2016.187
http://formalverification.cs.utah.edu/fmr/
https://doi.org/10.1109/DSN.2013.6575309
https://doi.org/10.1109/DSN.2013.6575309
https://doi.org/10.1109/CCGrid.2016.33
https://doi.org/10.1145/2594291.2594298
https://doi.org/10.1109/DSN.2014.101
https://doi.org/10.1109/TDSC.2006.40

