
An SMT Theory of Fixed-Point Arithmetic?

Marek Baranowski1, Shaobo He1, Mathias Lechner2, Thanh Son Nguyen1, and
Zvonimir Rakamari¢1

1 School of Computing, University of Utah Salt Lake City, UT, USA
{baranows,shaobo,thanhson,zvonimir}@cs.utah.edu

2 IST Austria Klosterneuburg, Austria
mathias.lechner@ist.ac.at

Abstract. Fixed-point arithmetic is a popular alternative to �oating-
point arithmetic on embedded systems. Existing work on the veri�cation
of �xed-point programs relies on custom formalizations of �xed-point
arithmetic, which makes it hard to compare the described techniques
or reuse the implementations. In this paper, we address this issue by
proposing and formalizing an SMT theory of �xed-point arithmetic. We
present an intuitive yet comprehensive syntax of the �xed-point theory,
and provide formal semantics for it based on rational arithmetic. We also
describe two decision procedures for this theory: one based on the theory
of bit-vectors and the other on the theory of reals. We implement the
two decision procedures, and evaluate our implementations using exist-
ing mature SMT solvers on a benchmark suite we created. Finally, we
perform a case study of using the theory we propose to verify properties
of quantized neural networks.

Keywords: SMT · Fixed-Point Arithmetic · Decision Procedure.

1 Introduction

Algorithms based on real arithmetic have become prevalent. For example, the
mathematical models in machine learning algorithms operate on real numbers.
Similarly, signal processing algorithms often implemented on embedded systems
(e.g., fast Fourier transform) are almost always de�ned over real numbers. How-
ever, real arithmetic is not implementable on computer systems due to its un-
limited precision. Consequently, we use implementable approximations of real
arithmetic, such as �oating-point and �xed-point arithmetic, to realize these
algorithms in practice.

Floating-point arithmetic is the dominant approximation of real arithmetic
that has mature hardware support. Although it enjoys the bene�ts of being able
to represent a large spectrum of real numbers and high precision of arithmetic
operations over small numbers, �oating-point arithmetic, due to its complex-
ity, can be too expensive in terms of speed and power consumption on certain

? This work was supported in part by NSF awards CCF 1552975, CCF 1704715, and
the Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).



2 Baranowski, He, Lechner, Nguyen, Rakamari¢

platforms. These platforms are often deployed in embedded systems such as mo-
bile phones, video game consoles, and digital controllers. Recently, the machine
learning community revived the interest in �xed-point arithmetic since popular
machine learning algorithms and models can be implemented using (even very
low bit-width) �xed-points with little accuracy loss [11,27,37]. Therefore, �xed-
point arithmetic has been a popular alternative to �oating-point arithmetic on
such platforms since it can be e�ciently realized using integer arithmetic. There
are several software implementations of �xed-point arithmetic in di�erent pro-
gramming languages [34,22,28]; moreover, some programming languages, such
as Ada and GNU C, have built-in �xed-point types.

While �xed-point arithmetic is less popular in mainstream applications than
�oating-point arithmetic, the systems employing the former are often safety-
critical. For example, �xed-point arithmetic is often used in medical devices,
cars, and robots. Therefore, there is a need for formal methods that can rigor-
ously ensure the correctness of these systems. Although techniques that perform
automated veri�cation of �xed-point programs already exist [3,1,15], all of them
implement a custom dedicated decision procedure without formalizing the de-
tails of �xed-point arithmetic. As a result, it is hard to compare these techniques,
or reuse the implemented decision procedures.

On the other hand, ever since the SMT theory of �oating-point numbers was
formalized [44,8] in SMT-LIB [46], there has been a �urry of research in develop-
ing novel and faster decision procedures for the theory [29,35,7,50,14,6]. Mean-
while, the �oating-point theory has also been used by a number of approaches
that require rigorous reasoning about �oating-point arithmetic [36,39,2,41]. The
published formalization of the theory enables fair comparison between the de-
cision procedures, sharing of benchmarks, and easy integration of decision pro-
cedures within tools that need this functionality. In this paper, we propose and
formalize an SMT theory of �xed-point arithmetic, in the spirit of the SMT
theory of �oating-point arithmetic, with the hope that it will lead to similar
outcomes and advances.

Contributions We summarize our main contributions as follows:

� We present an intuitive and comprehensive syntax of �xed-point arithmetic
(Sec. 3) that captures common use cases of �xed-point operations.

� We provide formal semantics of the �xed-point theory based on rational
arithmetic (Sec. 4).

� We propose and implement two decision procedures for the �xed-point the-
ory: one that leverages the theory of �xed-size bit-vectors and the other the
theory of real numbers (Sec. 5).

� We evaluate the two decision procedures on a set of benchmarks using mature
SMT solvers (Sec. 6), and perform a case study of verifying quantized neural
networks that uses our theory of �xed-point arithmetic (Sec. 7).



An SMT Theory of Fixed-Point Arithmetic 3

2 Background

Fixed-point arithmetic, like �oating-point arithmetic, is used as an approxima-
tion for computations over the reals. Both �xed-point and �oating-point num-
bers (excluding the special values) can be represented using rational numbers.
However, unlike �oating-point numbers, �xed-point numbers in a certain format
maintain a �xed divisor, hence the name �xed-point. Consequently, �xed-point
numbers have a reduced range of values. However, this format allows for custom
precision systems to be implemented e�ciently in software � �xed-point arith-
metic operations can be implemented in a much smaller amount of integer arith-
metic operations compared to their �oating-point counterparts. For example, a
�xed-point addition operation simply amounts to an integer addition instruc-
tion provided that wrap-around is the intended behavior when over�ows occur.
This feature gives rise to the popularity of �xed-point arithmetic on embedded
systems where computing resources are fairly constrained.

A �xed-point number is typically interpreted as a fraction whose numerator
is an integer with �xed bit-width in its two's complement representation and
denominator is a power of 2. Therefore, a �xed-point format is parameterized by
two natural numbers � tb that de�nes the bit-width of the numerator and fb
that de�nes the power of the denominator. A �xed-point number in this format
can be treated as a bit-vector of length tb that is the two's complement repre-
sentation of the numerator integer and has an implicit binary point between the
fb + 1th and fbth least signi�cant bits. We focus on the binary format (as opposed
to decimal, etc.) of �xed-point arithmetic since it is widely adopted in hardware
and software implementations in practice. Moreover, depending on the intended
usage, developers leverage both signed and unsigned �xed-point formats. The
signed or unsigned format determines whether the bit pattern representing the
�xed-point number should be interpreted as a signed or unsigned integer, re-
spectively. Therefore, signed and unsigned �xed-point formats having the same

tb and fb have di�erent ranges ([−2
tb−1

2fb
, 2tb−1−1

2fb
] and [0, 2tb−1

2fb
]), respectively.

Fixed-point addition (resp. subtraction) is typically implemented by adding
(resp. subtracting) the two bit-vector operands (i.e., two's complements), amount-
ing to a single operation. Because the denominators are the same between the
two operands, we do not need to perform rounding. However, we still have to take
care of potential over�ows that occur when the result exceeds the allowed range
of the chosen �xed-point format. Fixed-point libraries typically implement two
methods to handle over�ows: saturation and wrap-around. Saturation entails �x-
ing over�owed results to either the minimal or maximal representable value. The
advantage of this method is that it ensures that the �nal �xed-point result is the
closest to the actual result not limited by �nite precision. Wrap-around allows
for the over�owing result to wrap according to two's complement arithmetic.
The advantage of this method is that it is e�cient and can be used to ensure
the sum of a set of (signed) numbers has a correct �nal value despite potential
over�ows (if it falls within the supported range). Note that addition is commu-
tative under both methods, but only addition using the wrap-around method is



4 Baranowski, He, Lechner, Nguyen, Rakamari¢

associative. The multiplication and division operations are more involved since
they have to include the rounding step as well.

3 Syntax

In this section, we describe the syntax of our proposed theory of �xed-point
arithmetic. It is inspired by the syntax of the SMT theory of �oating-points [44,8]
and the ISO/IEC TR 18037 standard [23].

Fixed-Points We introduce the indexed SMT nullary sorts (_ SFXP tb fb) to rep-
resent signed �xed-point sorts, where tb is a natural number specifying the total
bit-width of the scaled integer in its two's complement form and fb is a natural
number specifying the number of fractional bits; tb is greater than or equal to fb.
Similarly, we represent unsigned �xed-point sorts with (_ UFXP tb fb). Following
the SMT-LIB notation, we de�ne the following two functions for constructing
�xed-points literals:

((_ sfxp fb) (_ BitVec tb) (_ SFXP tb fb))

((_ ufxp fb) (_ BitVec tb) (_ UFXP tb fb))

where (_ sfxp fb) (resp. (_ ufxp fb)) produces a function that takes a bit-vector
(_ BitVec tb) and constructs a �xed-point (_ SFXP tb fb) (resp. (_ UFXP tb fb)).

Rounding Modes Similarly to the theory of �oating-point arithmetic, we also
introduce the RoundingMode sort (abbreviated as RM) to represent the rounding
mode, which controls the direction of rounding when an arithmetic result cannot
be precisely represented by the speci�ed �xed-point format. However, unlike the
�oating-point theory that speci�es �ve di�erent rounding modes, we only adopt
two rounding mode constants, namely roundUp and roundDown, as they are
common in practice.

Over�ow Modes We introduce the nullary sort OverflowMode (abbreviated as
OM) to capture the behaviors of �xed-point arithmetic when the result of an
operation is beyond the representable range of the used �xed-point format. We
adopt two constants, saturation and wrapAround, to represent the two com-
mon behaviors. The saturation mode rounds any out-of-bound results to the
maximum or minimum values of the representable range, while the wrapAround
mode wraps the results around similar to bit-vector addition.



An SMT Theory of Fixed-Point Arithmetic 5

Comparisons The following operators return a Boolean by comparing two �xed-
point numbers:

(sfxp.geq (_ SFXP tb fb) (_ SFXP tb fb) Bool)

(ufxp.geq (_ UFXP tb fb) (_ UFXP tb fb) Bool)

(sfxp.gt (_ SFXP tb fb) (_ SFXP tb fb) Bool)

(ufxp.gt (_ UFXP tb fb) (_ UFXP tb fb) Bool)

(sfxp.leq (_ SFXP tb fb) (_ SFXP tb fb) Bool)

(ufxp.leq (_ UFXP tb fb) (_ UFXP tb fb) Bool)

(sfxp.lt (_ SFXP tb fb) (_ SFXP tb fb) Bool)

(ufxp.lt (_ UFXP tb fb) (_ UFXP tb fb) Bool)

Arithmetic We support the following binary arithmetic operators over �xed-
point sorts parameterized by tb and fb:

(sfxp.add OM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))

(ufxp.add OM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))

(sfxp.sub OM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))

(ufxp.sub OM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))

(sfxp.mul OM RM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))

(ufxp.mul OM RM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))

(sfxp.div OM RM (_ SFXP tb fb) (_ SFXP tb fb) (_ SFXP tb fb))

(ufxp.div OM RM (_ UFXP tb fb) (_ UFXP tb fb) (_ UFXP tb fb))

Note that we force the sorts of operands and return values to be the same. The
addition and subtraction operations never introduce error into computation ac-
cording to our semantics in Sec. 4. Hence, these operators do not take a rounding
mode as input like multiplication and division.

Conversions We introduce two types of conversions between sorts. First, the
conversions between di�erent �xed-point sorts:

((_ to_sfxp tb fb) OM RM (_ SFXP tb′ fb′) (_ SFXP tb fb))

((_ to_ufxp tb fb) OM RM (_ UFXP tb′ fb′) (_ UFXP tb fb))

Second, the conversions between the real and �xed-point sorts:

((_ to_sfxp tb fb) OM RM Real (_ SFXP tb fb))

((_ to_ufxp tb fb) OM RM Real (_ UFXP tb fb))

(sfxp.to_real (_ SFXP tb fb) Real)

(ufxp.to_real (_ UFXP tb fb) Real)



6 Baranowski, He, Lechner, Nguyen, Rakamari¢

4 Semantics

In this section, we formalize the semantics of the �xed-point theory by treating
�xed-points as rational numbers. We �rst de�ne �xed-points as indexed subsets
of rationals. Then, we introduce two functions, rounding and over�ow, that are
crucial for the formalization of the �xed-point arithmetic operations. Finally,
we present the formal semantics of the arithmetic operations based on rational
arithmetic and the two aforementioned functions.

Let Ffb = { n
2fb
| n ∈ Z} be the in�nite set of rationals that can be repre-

sented as �xed-points using fb fractional bits. We interpret a signed �xed-point
sort (_ SFXP tb fb) as the �nite subset Stb,fb = { n

2fb
| −2tb−1 ≤ n < 2tb−1, n ∈ Z}

of Ffb . We interpret an unsigned �xed-point sort (_ UFXP tb fb) as the �nite sub-
set Utb,fb = { n

2fb
| 0 ≤ n < 2tb , n ∈ Z} of Ffb . The rational value of an unsigned

�xed-point constant constructed using (ufxp bv fb) is bv2nat(bv)
2fb

, where function
bv2nat converts a bit-vector to its unsigned integer value. The rational value of

its signed counterpart constructed using (sfxp bv fb) is bv2int(bv)
2fb

, where func-
tion bv2int converts a bit-vector to its signed value. Since we treat �xed-point
numbers as subsets of rational numbers, we interpret �xed-point comparison
operators, such as =, fxp.le, fxp.leq, as simply their corresponding rational
comparison relations, such as =, <, ≤, respectively. To be able to formalize the
semantics of arithmetic operations, we �rst introduce the round and over�ow
helper functions.

We interpret the rounding mode sort RoundingMode as the set rmode =
{ru, rd}, where JroundUpK = ru and JroundDownK = rd . Let rndFfb

: rmode×R 7→
Ffb be a family of round functions parameterized by fb that map a rounding mode
and real number to an element of Ffb . Then, we de�ne rndFfb

as

rndFfb
(ru, r) = min({x | x ≥ r, x ∈ Ffb})

rndFfb
(rd , r) = max({x | x ≤ r, x ∈ Ffb})

We interpret the over�ow mode sort OverflowMode as the set omode =
{sat ,wrap}, where JsaturationK = sat and JwrapAroundK = wrap. Let ovf F :
omode × Ffb 7→ F be a family of over�ow functions parameterized by F that
map a rounding mode and element of Ffb to an element of F; here, F is either
Stb,fb or Utb,fb depending on whether we are using signed or unsigned �xed-point
numbers, respectively. Then, we de�ne ovf F as

ovf F(sat , x) =


x if x ∈ F
max(F) if x > max(F)
min(F) if x < min(F)

ovf F(wrap, x) = y such that y · 2fb ≡ x · 2fb (mod 2tb) ∧ y ∈ F

Note that x · 2fb , y · 2fb ∈ Z according to the de�nition of F, and also there is
always exactly one y satisfying the constraint.



An SMT Theory of Fixed-Point Arithmetic 7

Now that we introduced our helper round and over�ow functions, it is easy
to de�ne the interpretation of �xed-point arithmetic operations:

Jsfxp.addK(om, x1, x2) = ovf Stb,fb (om, x1 + x2)

Jufxp.addK(om, x1, x2) = ovf Utb,fb
(om, x1 + x2)

Jsfxp.subK(om, x1, x2) = ovf Stb,fb (om, x1 − x2)

Jufxp.subK(om, x1, x2) = ovf Utb,fb
(om, x1 − x2)

Jsfxp.mulK(om, rm, x1, x2) = ovf Stb,fb (om, rndFfb
(rm, x1 · x2))

Jufxp.mulK(om, rm, x1, x2) = ovf Utb,fb
(om, rndFfb

(rm, x1 · x2))

Jsfxp.divK(om, rm, x1, x2) = ovf Stb,fb (om, rndFfb
(rm, x1/x2))

Jufxp.divK(om, rm, x1, x2) = ovf Utb,fb
(om, rndFfb

(rm, x1/x2))

Note that it trivially holds that ∀x1, x2 ∈ Ffb . x1 + x2 ∈ Ffb ∧ x1 − x2 ∈ Ffb .
Therefore, we do not need to round the results of the addition and subtrac-
tion operations. In the case of division by zero, we adopt the semantics of
other SMT theories such as reals: (= x (sfxp.div om rm y 0)) and (=
x (ufxp.div om rm y 0)) are satis�able for every x, y ∈ F, om ∈ omode,
rm ∈ rmode. Furthermore, for every x, y ∈ F, om ∈ omode, rm ∈ rmode,
if (= x y) then (= (sfxp.div om rm x 0) (sfxp.div om rm y 0)) and
(= (ufxp.div om rm x 0) (ufxp.div om rm y 0)).

Note that the order of applying the rnd and ovf functions to the results
in real arithmetic matters. We choose rnd followed by ovf since it matches
the typical real-world �xed-point semantics. Conversely, reversing the order can
lead to out-of-bound results. For example, assume that we extend the signa-
ture of the ovf function to omode × R 7→ R while preserving its semantics as
a modulo operation over 2tb−fb . Then, ovf U3,2

(wrap, 7.5) evaluates to 7.5
4 , and

applying rndF2
to it when the rounding mode is ru evaluates to 8

4 ; this is greater
than the maximum number in U3,2, namely 7

4 . On the other hand, evaluating
ovf U3,2

(wrap, rndF2(ru, 7.5)) produces 0, which is the expected result. We could
apply the ovf function again to the out-of-bound results, but the current seman-
tics achieves the same without this additional operation.

Let castF,Ffb
: omode × rmode × R 7→ F be a family of cast functions pa-

rameterized by F and Ffb that map an over�ow mode, rounding mode, and real
number to an element of F; as before, F is either Stb,fb or Utb,fb depending on
whether we are using signed or unsigned �xed-point numbers, respectively. Then,
we de�ne castF,Ffb

(om, rm, r) = ovf F(om, rndFfb
(rm, r)), and the interpretation

of the conversions between reals and �xed-points as

J(_ to_sfxp tb fb)K(om, rm, r) = castStb,fb ,Ffb
(om, rm, r)

J(_ to_ufxp tb fb)K(om, rm, r) = castUtb,fb ,Ffb
(om, rm, r)

Jsfxp.to_realK(r) = r

Jufxp.to_realK(r) = r



8 Baranowski, He, Lechner, Nguyen, Rakamari¢

5 Decision Procedures

In this section, we propose two decision procedures for the �xed-point theory by
leveraging the theory of �xed-size bit-vectors in one and the theory of reals in
the other.

Bit-Vector Encoding The decision procedure based on the theory of �xed-size bit-
vectors is akin to the existing software implementations of �xed-point arithmetic
that use machine integers. More speci�cally, a �xed-point sort parameterized by
tb is encoded as a bit-vector sort of length tb. Therefore, the encoding of the con-
structors of �xed-point values simply amounts to identity functions. Similarly,
the encoding of the comparison operators uses the corresponding bit-vector rela-
tions. For example, the comparison operator sfxp.lt is encoded as bvslt. The
essence of the encoding of the arithmetic operations is expressing the numerator
of the result, after rounding and over�ow handling, using bit-vector arithmetic.
We leverage the following two observations in our encoding. First, rounding a
real value v to the value in the set Ffb amounts to rounding v · 2fb to an integer
following the same rounding mode. This observation explains why rounding is
not necessary for the linear arithmetic operations. Second, we can encode the
wrap-around of the rounded result as simply extracting tb bits from the encoded
result thanks to the wrap-around nature of the two's complement SMT represen-
tation. We model the behavior of division-by-zero using uninterpreted functions
of the form (RoundingMode OverflowMode (_ BitVec tb) (_ BitVec tb)), with
one such function for each �xed-point sort appearing in the query. The result
of division-by-zero is then the result of applying this function to the numera-
tor, conditioned on the denominator being equal to zero. This ensures that all
divisions-by-zero with equal numerators produce equal results when the over�ow
and rounding modes are also equal.

Real Encoding The decision procedure based on the theory of reals closely mimics
the semantics de�ned in Sec. 4. We encode all �xed-point sorts as the real sort,
while we represent �xed-point values as rational numbers. Therefore, we can sim-
ply encode �xed-point comparisons as real relations. For example, both sfxp.lt
and ufxp.lt are translated into < relation. We rely on the �rst observation
above to implement the rounding function rndfb using an SMT real-to-integer
conversion. We implement the over�ow function ovftb,fb using the SMT remain-
der function. Note that the encodings of both functions involve non-linear real
functions, such as the real-to-int conversion. Finally, we model division as the
rounded, over�ow-corrected result of the real theory's division operation. Since
the real theory's semantics ensures that equivalent division operations produce
equivalent results, this su�ces to capture the �xed-point division-by-zero seman-
tics.

Implementation We implemented the two decision procedures within the pySMT
framework [25]: the two encodings are rewriting classes of pySMT. We made our



An SMT Theory of Fixed-Point Arithmetic 9

implementations publicly available.1 We also implemented a random generator
of queries in our �xed-point theory, and used it to perform thorough di�erential
testing of our decision procedures.

6 Experiments

We generated the benchmarks we use to evaluate the two encodings described in
Sec. 5 by translating the SMT-COMP non-incremental QF_FP benchmarks [45].
The translation accepts benchmarks that contain only basic arithmetic opera-
tions de�ned in both theories. Moreover, we exclude all the benchmarks in the
wintersteiger folder because they are mostly simple regressions to test the cor-
rectness of an implementation of the �oating-point theory. In the end, we manage
to translate 218 QF_FP benchmarks in total.

We translate each QF_FP benchmark into 4 benchmarks in the �xed-point
theory, which di�er in the con�gurations of rounding and over�ow modes. We
denote a con�guration as a (rounding mode, over�ow mode) tuple. Note that
changing a benchmark con�guration alters the semantics of its arithmetic opera-
tions, which might a�ect its satis�ability. Our translation replaces �oating-point
sorts with �xed-point sorts that have the same total bit-widths; the number of
fractional bits is half of the bit-width. This establishes a mapping from single-
precision �oats to Q16.16 �xed-points implemented by popular software libraries
such as lib�xmath [34]. It translates arithmetic operations into their correspond-
ing �xed-point counterparts using the chosen con�guration uniformly across a
benchmark. The translation also replaces �oating-point comparison operations
with their �xed-point counterparts. Finally, we convert �oating-point constants
by treating them as reals and performing real-to-�xed-point casts. We made our
�xed-point benchmarks publicly available.2

The SMT solvers that we use in the evaluation are Boolector [9] (version
3.1.0), CVC4 [4] (version 1.7), MathSAT [13] (version 5.5.1), Yices2 [19] (version
2.6.1), and Z3 [17] (version 4.8.4) for the decision procedure based on the theory
of bit-vectors. For the evaluation of the decision procedure based on the theory
of reals, we use CVC4, MathSAT, Yices2, and Z3. We ran the experiments on
a machine with four Intel E7-4830 sockets, for a total of 32 physical cores, and
512GB of RAM, running Ubuntu 18.04. Each benchmark was limited to 1200s
of wall time and 8GB of memory, and no run of any benchmark exceeded the
memory limit. We set processor a�nity for each solver instance in order to reduce
variability due to cache e�ects.

Table. 1 shows the results of running the SMT solvers on each con�guration
with both encodings (bit-vector and real). We do not observe any inconsistencies
in terms of satis�ability reported among all the solvers and between both encod-
ings. The performance of the solvers on the bit-vector encoding is typically better
than on the real encoding since it leads to fewer timeouts and crashes. More-
over, all the solvers demonstrate similar performance for the bit-vector encoding

1 https://github.com/soarlab/pysmt/tree/fixed-points
2 https://github.com/soarlab/QF_FXP

https://github.com/soarlab/pysmt/tree/fixed-points
https://github.com/soarlab/QF_FXP


10 Baranowski, He, Lechner, Nguyen, Rakamari¢

Table 1: The results of running SMT solvers on the four di�erent con�gurations
of the benchmarks using both encodings. Boolector and MathSAT are denoted by
Btor and MSAT, respectively. Column �All� indicates the number of benchmarks
for which any solver answered sat or unsat; benchmarks for which no solver gave
an answer are counted as unknown.

(a) (RoundUp, Saturation)

Result
Bit-Vector Encoding Real Encoding

All
Btor CVC4 MSAT Yices2 Z3 CVC4 MSAT Yices2 Z3

sat 57 52 47 65 43 15 50 52 22 65

unsat 129 127 127 125 131 125 126 126 124 132

timeout 32 39 44 28 44 75 15 40 37
unknown 0 0 0 0 0 3 0 0 35 21
error 0 0 0 0 0 0 27 0 0

(b) (RoundUp, WrapAround)

Result
Bit-Vector Encoding Real Encoding

All
Btor CVC4 MSAT Yices2 Z3 CVC4 MSAT Yices2 Z3

sat 58 51 53 67 48 14 34 52 14 72

unsat 128 128 126 128 134 123 65 124 121 134

timeout 32 39 39 23 36 79 102 42 60
unknown 0 0 0 0 0 2 0 0 23 12
error 0 0 0 0 0 0 17 0 0

(c) (RoundDown, Saturation)

Result
Bit-Vector Encoding Real Encoding

All
Btor CVC4 MSAT Yices2 Z3 CVC4 MSAT Yices2 Z3

sat 59 52 54 62 50 29 53 57 22 64

unsat 128 127 127 125 134 127 130 130 124 135

timeout 31 39 37 31 34 58 11 31 46
unknown 0 0 0 0 0 4 0 0 26 19
error 0 0 0 0 0 0 24 0 0

(d) (RoundDown, WrapAround)

Result
Bit-Vector Encoding Real Encoding

All
Btor CVC4 MSAT Yices2 Z3 CVC4 MSAT Yices2 Z3

sat 57 65 54 67 50 23 39 55 14 71

unsat 128 128 127 129 133 125 81 90 121 134

timeout 33 25 37 22 35 68 65 73 57
unknown 0 0 0 0 0 2 0 0 26 13
error 0 0 0 0 0 0 33 0 0



An SMT Theory of Fixed-Point Arithmetic 11

Table 2: Comparison of the number of benchmarks (considering all con�gura-
tions) solved by a solver but not solved by another solver. Each row shows the
number of benchmarks solved by the row's solver but not solved by the column's
solver. We mark the bit-vector (resp. real) encoding with B (resp. R).

Btor-B CVC4-B MSAT-B Yices2-B Z3-B CVC4-R MSAT-R Yices2-R Z3-R

Btor-B � 33 37 11 52 165 183 86 185

CVC4-B 19 � 46 6 57 154 160 70 170

MSAT-B 8 31 � 4 39 141 174 78 160

Yices2-B 35 44 57 � 79 194 198 95 208

Z3-B 31 50 47 34 � 151 189 103 168

CVC4-R 2 5 7 7 9 � 113 49 41

MSAT-R 17 8 37 8 44 110 � 23 118

Yices2-R 28 26 49 13 66 154 131 � 162

Z3-R 3 2 7 2 7 22 102 38 �

across all the con�gurations, whereas they generally produce more timeouts for
the real encoding when the over�ow mode is wrap-around. We believe that this
can be attributed to the usage of nonlinear operations (e.g., real to int casts) in
the handling of wrap-around behaviors. This hypothesis could also explain the
observation that the bit-vector encoding generally outperform the real encoding
when the over�ow mode is wrap-around since wrap-around comes at almost no
cost for the bit-vector encoding (see Sec. 5).

Column �All� captures the performance of the solvers when treated as one
portfolio solver. This improves the overall performance since the number of solved
benchmarks increases, indicating that each solver has di�erent strengths and
weaknesses. Table 2 further analyzes this behavior, and we identify two reasons
for it when we consider unique instances solved by each individual solver. First,
when the over�ow mode is saturation, Yices2 is the only solver to solve unique
instances for both encodings. Second, when the over�ow mode is wrap-around,
the uniquely solved instances come from solvers used on the bit-vector encoding,
except one that comes from Yices2 on the real encoding. These results provide
further evidence that the saturation con�gurations are somewhat easier to solve
with reals, and that wrap-around is easier with bit-vectors.

Fig. 1 uses quantile plots [5] to visualize our experimental results in terms of
runtimes. A quantile plot shows the minimum runtime on y-axis within which
each of the x-axis benchmarks is solved. Some characteristics of a quantile plot
are helpful in analyzing the runtimes. First, the rightmost x coordinate is the
number of benchmarks that a solver returns meaningful results for (i.e., sat or
unsat). Second, the uppermost y coordinate is the maximum runtime of all the
benchmarks. Third, the area under a line approximates the total runtime.

Although the semantics of the benchmarks vary for each con�guration, we can
observe that the shapes of the bit-vector encoding curves are similar, while those
of the real encoding di�er based on the chosen over�ow mode. More precisely,



12 Baranowski, He, Lechner, Nguyen, Rakamari¢

(a) (RoundUp, Saturation) (b) (RoundUp, WrapAround)

(c) (RoundDown, Saturation) (d) (RoundDown, WrapAround)

Fig. 1: Quantile plots of our experimental results.

solvers tend to solve benchmarks faster when their over�ow mode is saturation
as opposed to wrap-around. We observe the same behavior in Table 1, and it
is likely due to the fact that we introduce nonlinear operations to handle wrap-
around behaviors when using the real encoding.

7 Case Study: Veri�cation of Quantized Neural Networks

Neural networks have experienced a signi�cant increase in popularity in the past
decade. Such networks that are realized by a composition of non-linear layers
are able to e�ciently solve a large variety of previously unsolved learning tasks.
However, neural networks are often viewed as black-boxes, whose causal structure
cannot be interpreted easily by humans [40]. This property makes them un�t for
applications where guaranteed correctness has a high priority. Advances in formal
methods, in particular SMT solvers, leveraging the piece-wise linear structure
of neural networks [31,20,47], have made it possible to verify certain formal



An SMT Theory of Fixed-Point Arithmetic 13

Fig. 2: Satis�ability of speci�cations of our cart-pole controller.

properties of neural networks of reasonable size. While these successes provide
an essential step towards applying neural networks to safety-critical tasks, these
methods leave out one crucial aspect � neural networks are usually quantized

before being deployed to production systems [30].
Quantization converts a network that operates over 32-bit �oating-point se-

mantics into a fewer-bit �xed-point representation. This process serves two goals:
compressing the memory requirement and increasing the computational e�-
ciency of running the network. Quantization introduces additional non-linear
rounding operations to the semantics of a neural network. Recently, Giacobbe
et al. [26] have shown that, in practice, this can lead to situations where a net-
work that satis�es formal speci�cations might violate them after the quantization
step. Therefore, when checking formal properties of quantized neural networks,
we need to take their �xed-point semantics into account.

We derive a set of example �xed-point problem instances based on two ma-
chine learning tasks to demonstrate the capabilities of our �xed-point SMT the-
ory on realistic problems. For all tasks, we train multi-layer perceptron mod-
ules [43] with ReLU-7 activation function [32] using quantization-aware train-
ing [30]. This way we avoid that quantization results in a considerable loss of
accuracy. To encode a neural network into an SMT formula, we rely on the Gi-
acobbe et al.'s [26] approach for encoding the summations and activation func-
tions. We quantize all neural networks using the signed �xed-point format with
8 bits total and 4 fractional bits. We are using the bit-vector encoding decision
procedure in combination with the Boolector SMT solver.

7.1 Cart-Pole Controller

In our �rst task, we train a neural network controller using the cart-pole envi-
ronment of OpenAI's �gym� reinforcement learning suite. In this task, an agent



14 Baranowski, He, Lechner, Nguyen, Rakamari¢

has to balance a pole mounted on a movable cart in an upright position. The cart
provides four observation variables x,ẋ,ϕ,ϕ̇ to the controller, where x is the posi-
tion of the cart and ϕ the angle of the pole. The controller then steers the cart by
discrete actions (move left or right). Our neural network agent, composed of three
layers (4,8,1), solves the task by achieving an average score of the maximal 500
points. We analyze what our black-box agent has learned by using our decision
procedure. In particular, we are interested in how much our agent relies on the in-
put variable x compared to ϕ for making a decision. Moreover, we are interested
in which parts of the input space the agent's decision is constant. We assume
the dynamics of the cart is bounded, i.e., −0.3 ≤ ẋ ≤ 0.3,−0.02 ≤ ϕ̇ ≤ 0.2,
and partition the input space of the remaining two input variables into a grid
of 64 tiles. We then check for each tile whether there exists a situation when
the network would output a certain action (left, right) by invoking our decision
procedure.

Fig. 2 shows that the agent primarily relies on the input variable ϕ for mak-
ing a decision. If the angle of the pole exceeds a certain threshold, the network is
guaranteed to make the vehicle move left; on the other hand, if the angle of the
pole is below a di�erent threshold, the network moves the vehicle right. Interest-
ingly, this pattern is non-symmetric, despite the task being entirely symmetric.

7.2 Checking Fairness

Table 3: Satis�ability of speci�ca-
tions of our fairness example.

Score Di� Status Runtime

11.25 sat 10s
11.5 sat 9s
11.75 unsat 200s

12 unsat 706s

For our second task, we checked the fair-
ness speci�cation proposed by Giacobbe et
al. [26] to evaluate the maximum in�uence
of a single input variable on the decision of a
network. We train a neural network on stu-
dent data to predict the score on a math
exam. Among other personal features, the
gender of a person is fed into the network
for making a decision. As the training data
contains a bias in the form of a higher aver-
age math score for male participants, the network might learn to underestimate
the math score of female students. We employ our decision procedure to com-
pute the maximum in�uence of the gender of a person to its predicted math
score. First, we create encodings of the same network (3 layers of size 6, 16, and
1) that share all input variables except the gender as a single �xed-point the-
ory formula. We then constrain the predicted scores such that the one network
outputs a score that is c higher than the score predicted by the other network.
Finally, we perform binary search by iteratively invoking our decision procedure
to �nd out at what bias c the formula changes from satis�able to unsatis�able.

Table 3 shows that there exists a hypothetical person whose predicted math
score would drop by 11.5 points out of 100 if the person is female instead of
male. Moreover, our results also show that for no person the math score would
change by 11.75 points if the gender would be changed.



An SMT Theory of Fixed-Point Arithmetic 15

8 Related Work

Ruemmer and Wahl [44] and Brain et al. [8] propose and formalize the SMT
theory of the IEEE-754 �oating-point arithmetic. We were inspired by these
papers both in terms of the syntax and the formalization of the semantics of
our theory. There are several decision procedures for the �oating-point theory.
In particular, Brain et al. [7] present an e�cient and veri�ed reduction from the
theory of �oating-points to the theory of bit-vectors, while Leeser et al. [33] solve
the �oating-point theory by reducing it to the theory of reals. These two decision
procedures are much more complicated than the ones we describe in Sec. 5 due
to the more complex nature of �oating-point arithmetic.

In the rest of this section, we introduce related approaches that perform ver-
i�cation or synthesis of programs that use �xed-point arithmetic. Many of these
approaches, and in particular the SMT-based ones, could bene�t from our uni�ed
formalization of the theory of �xed-point arithmetic. For example, they could
leverage our decision procedures instead of developing their own from scratch.
Moreover, having the same format allows for easier sharing of benchmarks and
comparison of results among di�erent decision procedures.

Eldib et al. [21] present an SMT-based method for synthesizing optimized
�xed-point computations that satisfy certain acceptance criteria, which they
rigorously verify using an SMT solver. Similarly to our paper, their approach
encodes �xed-point arithmetic operations using the theory of bit-vectors. Anta
et al. [3] tackle the veri�cation problem of the stability of �xed-point controller
implementations. They provide a formalization of �xed-point arithmetic seman-
tics using bit-vectors, but unlike our paper they do not formalize rounding and
over�ows. Furthermore, they encode the �xed-point arithmetic using unbounded
integer arithmetic, arguing that unbounded integer arithmetic is a better �t for
their symbolic analysis. We could also reduce our bit-vector encoding to un-
bounded integers following a similar scheme as Anta et al.

Bounded model checker ESMBC [15,24] supports �xed-point arithmetic and
has been used to verify safety properties of �xed-point digital controllers [1].
Like us, it also employs a bit-vector encoding. However, it is unclear exactly
which �xed-point operations are supported. UppSAT [50] is an approximating
SMT solver that leverages �xed-point arithmetic as an approximation theory
to �oating-point arithmetic. Like the aforementioned work, UppSAT also en-
codes �xed-point arithmetic using the theory of bit-vectors. Its encoding ignores
rounding modes, but adds special values such as in�nities.

In addition to SMT-based veri�cation, another important aspect of reason-
ing about �xed-point computations is error bound analysis, which is often used
for the synthesis of �xed-point implementations. Majumdar et al. [38] synthesize
Pareto optimal �xed-point implementations of control software in regard to per-
formance criteria and error bounds. They reduce error bound computation to an
optimization problem solved by mixed-integer linear programming. Darulova et
al. [16] compile real-valued expressions to �xed-point expressions, and rigorously
show that the generated expressions satisfy given error bounds. The error bound
analysis is static and based on a�ne arithmetic. Volkova et al. [48,49] propose



16 Baranowski, He, Lechner, Nguyen, Rakamari¢

an approach to determine the �xed-point format that ensures the absence of
over�ows and minimizes errors; their error analysis is based on Worst-Case Peak
Gain measure. TAFFO [12] is an LLVM plugin that performs precision tuning by
replacing �oating-point computations with their �xed-point counterparts. The
quality of precision tuning is determined by a static error propagation analysis.

9 Conclusions and Future Work

In this paper, we propose an SMT theory of �xed-point arithmetic to facili-
tate SMT-based software veri�cation of �xed-point programs and systems by
promoting the development of decision procedures for the proposed theory. We
introduce the syntax of �xed-point sorts and operations in the SMT-LIB for-
mat similar to that of the SMT �oating-point theory. Then, we formalize the
semantics of the �xed-point theory, including rounding and over�ow, based on
the exact rational arithmetic. We develop two decision procedures for the �xed-
point theory that encode it into the theory of bit-vectors and reals. Finally, we
study the performance of our prototype decision procedures on a set of bench-
marks, and perform a realistic case study by proving properties of quantized
neural networks.

As future work, we plan to add more complex operations to the �xed-point
theory, such as conversions to/from �oating-points and the remainder operation.
Moreover, we would like to apply the �xed-point theory to verify existing software
implementations of �xed-point arithmetic in di�erent programming languages.
We plan to do this by integrating it into the Boogie intermediate veri�cation
language [18] and the SMACK veri�cation toolchain [42,10].

References

1. Abreu, R.B., Gadelha, M.Y., Cordeiro, L.C., de Lima Filho, E.B., da Silva, W.S.:
Bounded model checking for �xed-point digital �lters. Journal of the Brazilian
Comp. Society 22(1), 1:1�1:20 (2016). https://doi.org/10.1186/s13173-016-0041-8

2. Andrysco, M., Nötzli, A., Brown, F., Jhala, R., Stefan, D.: Towards veri�ed,
constant-time �oating point operations. In: Proceedings of the ACM Confer-
ence on Computer and Communications Security (CCS). p. 1369�1382 (2018).
https://doi.org/10.1145/3243734.3243766

3. Anta, A., Majumdar, R., Saha, I., Tabuada, P.: Automatic veri�ca-
tion of control system implementations. In: Proceedings of the Interna-
tional Conference on Embedded Software (EMSOFT). pp. 9�18 (2010).
https://doi.org/10.1145/1879021.1879024

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanovi¢, D., King,
T., Reynolds, A., Tinelli, C.: CVC4. In: Proceedings of the International
Conference on Computer Aided Veri�cation (CAV). pp. 171�177 (2011).
https://doi.org/10.1007/978-3-642-22110-1_14

5. Beyer, D.: Software veri�cation and veri�able witnesses. In: Proceedings of the
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS). pp. 401�416 (2015). https://doi.org/10.1007/978-3-662-
46681-0_31

https://doi.org/10.1186/s13173-016-0041-8
https://doi.org/10.1145/3243734.3243766
https://doi.org/10.1145/1879021.1879024
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-662-46681-0_31
https://doi.org/10.1007/978-3-662-46681-0_31


An SMT Theory of Fixed-Point Arithmetic 17

6. Brain, M., D'Silva, V., Griggio, A., Haller, L., Kroening, D.: Deciding �oating-
point logic with abstract con�ict driven clause learning. Formal Methods in System
Design 45(2), 213�245 (2014). https://doi.org/10.1007/s10703-013-0203-7

7. Brain, M., Schanda, F., Sun, Y.: Building better bit-blasting for �oating-point
problems. In: Proceedings of the International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). pp. 79�98 (2019).
https://doi.org/10.1007/978-3-030-17462-0_5

8. Brain, M., Tinelli, C., Rümmer, P., Wahl, T.: An automatable formal seman-
tics for IEEE-754 �oating-point arithmetic. In: Proceedings of the IEEE Inter-
national Symposium on Computer Arithmetic (ARITH). pp. 160�167 (2015).
https://doi.org/10.1109/ARITH.2015.26

9. Brummayer, R., Biere, A.: Boolector: An e�cient SMT solver for bit-vectors and
arrays. In: Proceedings of the International conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 174�177 (2009).
https://doi.org/10.1007/978-3-642-00768-2_16

10. Carter, M., He, S., Whitaker, J., Rakamari¢, Z., Emmi, M.: SMACK software
veri�cation toolchain. In: Proceedings of the International Conference on Software
Engineering (ICSE). pp. 589�592 (2016). https://doi.org/10.1145/2889160.2889163

11. Cherkaev, A., Tai, W., Phillips, J.M., Srikumar, V.: Learning in practice: Reason-
ing about quantization. CoRR abs/1905.11478 (2019), http://arxiv.org/abs/
1905.11478

12. Cherubin, S., Cattaneo, D., Chiari, M., Bello, A.D., Agosta, G.: TAFFO: tuning
assistant for �oating to �xed point optimization. Embedded Systems Letters 12(1),
5�8 (2020). https://doi.org/10.1109/LES.2019.2913774

13. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 93�107 (2013).
https://doi.org/10.1007/978-3-642-36742-7_7

14. Conchon, S., Iguernlala, M., Ji, K., Melquiond, G., Fumex, C.: A three-tier strategy
for reasoning about �oating-point numbers in SMT. In: Proceedings of the Inter-
national Conference on Computer Aided Veri�cation (CAV). pp. 419�435 (2017).
https://doi.org/10.1007/978-3-319-63390-9_22

15. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model check-
ing for embedded ANSI-C software. In: Proceedings of the International
Conference on Automated Software Engineering (ASE). pp. 137�148 (2009).
https://doi.org/10.1109/ASE.2009.63

16. Darulova, E., Kuncak, V., Majumdar, R., Saha, I.: Synthesis of
�xed-point programs. In: Proceedings of the International Confer-
ence on Embedded Software (EMSOFT). pp. 22:1�22:10 (2013).
https://doi.org/10.1109/EMSOFT.2013.6658600

17. De Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: Proceedings of the Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). pp. 337�340 (2008). https://doi.org/10.1007/978-3-540-78800-
3_24

18. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for checking
object-oriented programs. Tech. Rep. MSR-TR-2005-70, Microsoft Research (2005)

19. Dutertre, B.: Yices 2.2. In: Proceedings of the International Conference on Com-
puter Aided Veri�cation (CAV). pp. 737�744 (2014). https://doi.org/10.1007/978-
3-319-08867-9_49

https://doi.org/10.1007/s10703-013-0203-7
https://doi.org/10.1007/978-3-030-17462-0_5
https://doi.org/10.1109/ARITH.2015.26
https://doi.org/10.1007/978-3-642-00768-2_16
https://doi.org/10.1145/2889160.2889163
http://arxiv.org/abs/1905.11478
http://arxiv.org/abs/1905.11478
https://doi.org/10.1109/LES.2019.2913774
https://doi.org/10.1007/978-3-642-36742-7_7
https://doi.org/10.1007/978-3-319-63390-9_22
https://doi.org/10.1109/ASE.2009.63
https://doi.org/10.1109/EMSOFT.2013.6658600
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.1007/978-3-319-08867-9_49


18 Baranowski, He, Lechner, Nguyen, Rakamari¢

20. Ehlers, R.: Formal veri�cation of piece-wise linear feed-forward neural networks.
In: Proceedings of the International Symposium on Automated Technology for Ver-
i�catimn and Analysis (ATVA). pp. 269�286 (2017). https://doi.org/10.1007/978-
3-319-68167-2_19

21. Eldib, H., Wang, C.: An SMT based method for optimizing arithmetic com-
putations in embedded software code. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 33(11), 1611�1622 (Nov 2014).
https://doi.org/10.1109/TCAD.2014.2341931

22. The �xed crate. https://gitlab.com/tspiteri/fixed
23. Programming languages � C � extensions to support embedded processors. Stan-

dard 18037, ISO/IEC (2008), https://www.iso.org/standard/51126.html
24. Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:

ESBMC 5.0: An industrial-strength C model checker. In: Proceedings of the In-
ternational Conference on Automated Software Engineering (ASE). p. 888�891.
https://doi.org/10.1145/3238147.3240481

25. Gario, M., Micheli, A.: PySMT: A solver-agnostic library for fast prototyping of
SMT-based algorithms. In: International Workshop on Satis�ability Modulo The-
ories (SMT) (2015)

26. Giacobbe, M., Henzinger, T.A., Lechner, M.: How many bits does it take to quan-
tize your neural network? In: Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS) (2020), to
appear

27. Gupta, S., Agrawal, A., Gopalakrishnan, K., Narayanan, P.: Deep learning with
limited numerical precision. In: Proceedings of the International Conference on
Machine Learning (ICML). pp. 1737�1746 (2015)

28. Signed 15.16 precision �xed-point arithmetic. https://github.com/ekmett/fixed
29. He, S., Baranowski, M., Rakamari¢, Z.: Stochastic local search for solving �oating-

point constraints. In: Proceedings of the International Workshop on Numerical
Software Veri�cation (NSV). pp. 76�84 (2019). https://doi.org/10.1007/978-3-030-
28423-7_5

30. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.G., Adam,
H., Kalenichenko, D.: Quantization and training of neural networks for e�-
cient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 2704�2713 (2018).
https://doi.org/10.1109/CVPR.2018.00286

31. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
e�cient SMT solver for verifying deep neural networks. In: Proceedings of the In-
ternational Conference on Computer Aided Veri�cation (CAV). pp. 97�117 (2017).
https://doi.org/10.1007/978-3-319-63387-9_5

32. Krizhevsky, A.: Convolutional deep belief networks on CIFAR-10 (2010), unpub-
lished manuscript

33. Leeser, M., Mukherjee, S., Ramachandran, J., Wahl, T.: Make it real: E�ective
�oating-point reasoning via exact arithmetic. In: Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition (DATE). pp. 1�4 (2014).
https://doi.org/10.7873/DATE.2014.130

34. Cross platform �xed point maths library. https://github.com/PetteriAimonen/
libfixmath

35. Liew, D., Cadar, C., Donaldson, A.F., Stinnett, J.R.: Just fuzz it: Solv-
ing �oating-point constraints using coverage-guided fuzzing. In: Proceedings of
the ACM Joint European Software Engineering Conference and Symposium

https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1007/978-3-319-68167-2_19
https://doi.org/10.1109/TCAD.2014.2341931
https://gitlab.com/tspiteri/fixed
https://www.iso.org/standard/51126.html
https://doi.org/10.1145/3238147.3240481
https://github.com/ekmett/fixed
https://doi.org/10.1007/978-3-030-28423-7_5
https://doi.org/10.1007/978-3-030-28423-7_5
https://doi.org/10.1109/CVPR.2018.00286
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.7873/DATE.2014.130
https://github.com/PetteriAimonen/libfixmath
https://github.com/PetteriAimonen/libfixmath


An SMT Theory of Fixed-Point Arithmetic 19

on the Foundations of Software Engineering (ESEC/FSE). p. 521�532 (2019).
https://doi.org/10.1145/3338906.3338921

36. Liew, D., Schemmel, D., Cadar, C., Donaldson, A.F., Zähl, R., Wehrle, K.:
Floating-point symbolic execution: A case study in n-version programming. In:
Proceedings of the International Conference on Automated Software Engineering
(ASE). pp. 601�612 (2017). https://doi.org/10.1109/ASE.2017.8115670

37. Lin, D.D., Talathi, S.S., Annapureddy, V.S.: Fixed point quantization of deep con-
volutional networks. In: Proceedings of the International Conference on Machine
Learning (ICML). pp. 2849�2858 (2016)

38. Majumdar, R., Saha, I., Zamani, M.: Synthesis of minimal-error control software.
In: Proceedings of the International Conference on Embedded Software (EM-
SOFT). pp. 123�132 (2012). https://doi.org/10.1145/2380356.2380380

39. Menendez, D., Nagarakatte, S., Gupta, A.: Alive-FP: Automated veri�ca-
tion of �oating point based peephole optimizations in LLVM. In: Proceedings
of the International Static Analysis Symposium (SAS). pp. 317�337 (2016).
https://doi.org/10.1007/978-3-662-53413-7_16

40. Olah, C., Satyanarayan, A., Johnson, I., Carter, S., Schubert, L., Ye,
K., Mordvintsev, A.: The building blocks of interpretability. Distill (2018).
https://doi.org/10.23915/distill.00010

41. Paganelli, G., Ahrendt, W.: Verifying (in-)stability in �oating-point programs by
increasing precision, using SMT solving. In: Proceedings of the International Sym-
posium on Symbolic and Numeric Algorithms for Scienti�c Computing (SYNASC).
pp. 209�216 (2013). https://doi.org/10.1109/SYNASC.2013.35

42. Rakamari¢, Z., Emmi, M.: SMACK: Decoupling source language details from veri-
�er implementations. In: Proceedings of the International Conference on Computer
Aided Veri�cation (CAV). pp. 106�113 (2014). https://doi.org/10.1007/978-3-319-
08867-9_7

43. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representa-
tions by back-propagating errors. Nature 323(6088), 533�536 (1986).
https://doi.org/10.1038/323533a0

44. Rümmer, P., Wahl, T.: An SMT-LIB theory of binary �oating-point arithmetic.
In: Informal Proceedings of the International Workshop on Satis�ability Modulo
Theories (SMT) (2010)

45. SMT-LIB benchmarks in the QF_FP theory. https://clc-gitlab.cs.uiowa.
edu:2443/SMT-LIB-benchmarks/QF_FP

46. SMT-LIB: the satis�ability modulo theories library. http://smtlib.cs.uiowa.edu
47. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with

mixed integer programming. In: International Conference on Learning Represen-
tations (ICLR) (2019)

48. Volkova, A., Hilaire, T., Lauter, C.: Determining �xed-point formats for a digital
�lter implementation using the worst-case peak gain measure. In: Proceedings of
the Asilomar Conference on Signals, Systems and Computers. pp. 737�741 (2015).
https://doi.org/10.1109/ACSSC.2015.7421231

49. Volkova, A., Hilaire, T., Lauter, C.Q.: Arithmetic approaches for rigorous design
of reliable �xed-point LTI �lters. IEEE Transactions on Computers 69(4), 489�504
(2020). https://doi.org/10.1109/TC.2019.2950658

50. Zelji¢, A., Backeman, P., Wintersteiger, C.M., Rümmer, P.: Exploring approxima-
tions for �oating-point arithmetic using UppSAT. In: Proceedings of the Interna-
tional Joint Conference on Automated Reasoning (IJCAR). pp. 246�262 (2018).
https://doi.org/10.1007/978-3-319-94205-6_17

https://doi.org/10.1145/3338906.3338921
https://doi.org/10.1109/ASE.2017.8115670
https://doi.org/10.1145/2380356.2380380
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.23915/distill.00010
https://doi.org/10.1109/SYNASC.2013.35
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1038/323533a0
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
https://clc-gitlab.cs.uiowa.edu:2443/SMT-LIB-benchmarks/QF_FP
http://smtlib.cs.uiowa.edu
https://doi.org/10.1109/ACSSC.2015.7421231
https://doi.org/10.1109/TC.2019.2950658
https://doi.org/10.1007/978-3-319-94205-6_17

	An SMT Theory of Fixed-Point Arithmetic

