
VMCAI

Evaluation

Artifact

Functional

Leveraging Compiler Intermediate
Representation for Multi- and Cross-Language

Verification?

Jack J. Garzella, Marek Baranowski, Shaobo He, and Zvonimir Rakamarić

School of Computing, University of Utah
Salt Lake City, UT, USA
jjgarzella@gmail.com,

{baranows,shaobo,zvonimir}@cs.utah.edu

Abstract. Developers nowadays regularly use numerous programming
languages with different characteristics and trade-offs. Unfortunately,
implementing a software verifier for a new language from scratch is a
large and tedious undertaking, requiring expert knowledge in multiple
domains, such as compilers, verification, and constraint solving. Hence,
only a tiny fraction of the used languages has readily available soft-
ware verifiers to aid in the development of correct programs. In the past
decade, there has been a trend of leveraging popular compiler interme-
diate representations (IRs), such as LLVM IR, when implementing soft-
ware verifiers. Processing IR promises out-of-the-box multi- and cross-
language verification since, at least in theory, a verifier ought to be able
to handle a program in any programming language (and their combina-
tion) that can be compiled into the IR. In practice though, to the best
of our knowledge, nobody has explored the feasibility and ease of such
integration of new languages. In this paper, we provide a procedure for
adding support for a new language into an IR-based verification toolflow.
Using our procedure, we extend the SMACK verifier with prototypical
support for 6 additional languages. We assess the quality of our exten-
sions through several case studies, and we describe our experience in
detail to guide future efforts in this area.

Keywords: Verification · Multi-Language · Cross-Language · Compiler
Intermediate Representation.

1 Introduction

The evolution of software systems motivates the need for new programming
languages with novel features to better adapt to new programming goals, such
as improving program safety or easing programming. For example, Rust [45]

? This work was supported by funding from the Undergraduate Research Opportuni-
ties Program at the University of Utah awarded to Jack J. Garzella, the National
Science Foundation awards CNS 1527526 and CCF 1837051, and a gift from the
VMware’s University Research Fund.



2 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

is a novel performant systems programming language with guaranteed memory
safety and safer parallel programming. The D programming language also aims
to provide memory safety and high-level programming primitives, while main-
taining performance and low-level programming capabilities. Swift and Kotlin
employ modern programming language concepts to reduce language verbosity
and allow for easier programming. On the other hand, there are legacy languages
that are still widely used in certain domains. For example, Fortran dominates as
a programming language of choice among domain scientists, such as physicists
and chemists. To further complicate matters, developers typically build real-
world software systems using a combination of several programming languages
by implementing various components in different languages depending on the
requirements and trade-offs.

Software verification is integral to improving software quality. Among soft-
ware verification techniques, the ones based on satisfiability modulo theories
(SMT) have become increasingly popular due to its rigor, automation, and
tremendous scalability improvements of the past two decades. There are numer-
ous SMT-based tools available with various capabilities, features, and trade-offs
(e.g., [1,2,3,5,6,7,8,10,11,12,13,14,15,23,30,37,39,41,47,51]). However, the tradi-
tional way to prototype a program verifier, by implementing all of its com-
ponents (e.g., front-end, SMT formula generator) from scratch, is extremely
time-consuming and heavily coupled with target language details. Hence, de-
spite widespread usage of many programming languages and their combinations,
automatic software verifiers still predominantly target the C programming lan-
guage, thereby denying many developers a valuable tool for ensuring safety and
reliability of their programs. It would be ideal if program verifiers can keep pace
with the development of emerging programming languages such that users can
benefit from this rigorous software analysis technique.

LLVM [35,34] is a popular, open source compiler infrastructure, which fea-
tures an assembly-like intermediate compiler representation, known as the LLVM
intermediate representation (IR). LLVM IR has been leveraged to build program
verifiers [41,26,37], since LLVM IR frees the verifier designer from the error prone
tasks of modeling the semantics and parsing of the source language [41]. In the-
ory, a well-designed verifier targeting LLVM IR should be able to support any
programming language that has a compiler front-end capable of emitting LLVM
IR, as well as their combinations. However, to the best of our knowledge, verifiers
built upon LLVM IR only support C/C++, and there has been no systematic
study exploring how well such verifiers extend to support other programming lan-
guages. This is despite the fact that compilers for other programming languages
can produce LLVM IR, such as the Rust compiler and the Flang compiler [24]
for Fortran.

The goal of this paper is to investigate the feasibility of multi- and cross-
language verification that leverages an intermediate compiler representation (e.g.,
LLVM IR). We chose to use SMACK [41,48] as an exemplar mature verification
toolchain based on LLVM IR. As our first step, we prescribe a procedure for
adding a new language to such a tool chain, consisting of interoperating with



Leveraging Compiler IR for Multi- and Cross-Language Verification 3

language models, compiling into IR, and adding models for missing language fea-
tures. Then, we evaluate our procedure by prototyping in SMACK support for
6 additional programming languages with compilers capable of emitting LLVM
IR. Since SMACK is an LLVM IR-based verifier with extensive, preexisting sup-
port for the C programming language, it is a good basis for building a verifier
for a new language. Additionally, the modular design of SMACK is a desirable
feature due to its decoupling of source language details from the verification task
through LLVM IR.

We performed several empirical case studies based around multi- and cross-
language verification. To this end, we created a microbenchmark suite that tests
support for key language features such as dynamic dispatch. We also explore
cross-language verification using an example that exercises the interaction be-
tween Rust, Fortran, and C code. This is an important task as many new pro-
gramming languages include a facility to invoke C functions natively to support
legacy code. We summarize our experience and lessons learned. We observe that
depending on features present in a programming language, SMACK may not
always work out-of-the-box. This is due to either SMACK not supporting cer-
tain LLVM IR patterns or lack of suitable models for the standard libraries
and runtime. We discuss the process of improving SMACK’s support for various
LLVM IR patterns, which involves modeling additional IR instructions. We also
describe how we provide basic models for standard libraries and runtimes for
several languages we added.

To summarize, our main contributions are as follows:

– We prescribe a procedure by which support for new programming languages
can be added to an IR-based software verifier.

– By following our procedure, we added basic multi-language support to the
SMACK software verifier for 6 additional programming languages: C++,
Objective-C, D, Fortran, Swift, and Kotlin. We also made the preexisting
support for Rust more robust, and hence we include it in our evaluation.

– We developed a suite of microbenchmarks for testing the robustness of multi-
language verification, which implements key language features across all of
the additional languages.

– We performed several multi- and cross-language case studies using SMACK,
and we report on our experience and lessons learned in the process to guide
future efforts in this area.

2 Related Work

In the past decade, numerous software verifiers have been developed on top of
the LLVM compiler infrastructure (e.g., [5,6,20,26,37,41]), while others leverage
GCC in a similar fashion (e.g., [21,27]). The authors of these tools have realized
the benefits LLVM offers for the development of verifiers, such as a canoni-
cal intermediate representation and readily available analysis and optimization
passes. In particular, verifiers such as SAW [20], LLBMC [37], SeaHorn [26], and
SMACK [41] all take as input LLVM bitcode produced by the clang compiler,



4 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

which is then handled differently by each verifier. SAW (Software Analysis Work-
bench) uses symbolic execution with path merging to produce formal models
from LLVM IR in a dependently-typed intermediate verification language; it rea-
sons about the resulting models using rewriting or external satisfiability solvers.
LLBMC generates its own intermediate logical representation (ILR) based on the
input LLVM IR program, and leverages SMT solvers to check the formula de-
rived from ILR. SeaHorn encodes an input LLVM IR program into Horn clauses,
which are further solved using different techniques. SMACK translates LLVM
IR into an intermediate verification language called Boogie, which is then ver-
ified using different back-end verification engines. Both LLBMC and SeaHorn
support both C and C++ (to some extent), while SMACK has mature support
only for C. Unlike the aforementioned tools, ESBMC [14] leverages clang just as
a parser to obtain ASTs, and it does not use LLVM IR; it supports both C and
C++. Despite the popularity of LLVM IR in building software verifiers, to the
best of our knowledge, we are the first to study the feasibility of leveraging an
intermediate representation to perform multi- and cross-language verification.

Some of the languages we considered in this paper have standalone verifiers.
For instance, CRUST [50] verifies unsafe Rust code by translating a Rust pro-
gram into a C program, and then using an off-the-shelf C verifier. Rust2Viper [28]
and its successor Prusti [4] are modular verifiers for Rust programs that include a
design-by-contract specification language. As input they take an annotated pro-
gram in the Rust’s high-level intermediate representation, which simplifies and
canonicalizes complex language constructs. Then, such a program is encoded
into the Viper intermediate verification language [38] for verification. These ap-
proaches would require substantial effort to support verification of other pro-
gramming languages. To the best of our knowledge, there are no verifiers avail-
able targeting Swift, Kotlin, D, or Fortran.

There are software verifiers that process the input languages directly as op-
posed to delegating to a compiler IR. For example, CPAchecker [7], Ultimate
Automizer [30], CBMC [12], SAW [20], and CIVL [47] all leverage off-the-shelf
or custom parsers to generate abstract syntax trees (ASTs), and then process
these ASTs in various ways to carry out verification. (Note that CPAchecker,
CBMC, and SAW support LLVM IR as well.) The verifiers in this category
can potentially perform multi-language verification, but often at the expense of
having to perform some language-specific work. For example, SAW’s work-in-
progress support for Rust involves implementing a designated symbolic simula-
tor. While taking compiler IR as input has its drawbacks over directly handling
input languages, such as losing type information and precise debugging data,
it also demonstrates an advantage in the context of multi-language verification
— only the details of one language (namely compiler IR) need to be addressed.
This implies that supporting a new programming language does not require sup-
porting all the new constructs that it brings to the table. For example, C++
templates are completely compiled away at the LLVM IR level. Instead, only
the new program constructs in the IR that are not yet supported, but are used
by the new language, need to be modeled.



Leveraging Compiler IR for Multi- and Cross-Language Verification 5

Boogie
IVL

(Backend	
Verifiers)

clang

llvm2bpl
IR	Translation

SMACK	
Models

clang

clang LLVM
IR

LLVM
IR

llvm-linkLLVM
IR

LLVM
IR

C	source

C	stdlib
models

Fig. 1. Toolflow of SMACK.

3 SMACK Software Verification Toolchain

SMACK [9,41,48] is an open source, modular software verification toolchain. The
core component of SMACK converts LLVM IR code into Boogie intermediate
verification language [18]. The remainder of the SMACK toolchain handles de-
tails such as compiling the source program into LLVM IR and invoking a Boogie
verifier. Its modular nature decouples source language details from verification
by leveraging compiler front-ends to translate programs into the Boogie inter-
mediate verification language through LLVM IR. Before we implemented the
multi-language extensions described in this paper, SMACK had been predomi-
nantly used to verify LLVM IR programs produced by the clang C compiler.

Fig. 1 shows the current toolflow of SMACK, which proceeds as follows:

1. SMACK first invokes clang, the LLVM’s C compiler, to compile the in-
put program, SMACK models, and C standard library models (e.g., strings,
pthreads, math). SMACK models contain various verification primitives (e.g.,
for generating nondeterministic values) and the encoding of the memory
model for handling of dynamically allocated memory. All of the models are
written in C since SMACK provides a convenient mechanism for interoper-
ating with the underlying Boogie code, which we describe below.

2. SMACK links together all of the generated LLVM IR files into one LLVM
IR program.

3. The core llvm2bpl component of SMACK transforms an LLVM IR pro-
gram produced by the previous step into a semantically equivalent Boogie
program.

4. Finally, a back-end verifier, such as Corral [33], verifies the generated Boogie
program using an SMT solver, such as Z3 [17].

In this work, we use Corral in its bounded verification mode, meaning that it
unrolls loops and recursion up to a certain user-provided bound.

SMACK models verifier primitives and memory models through the use of
__SMACK_code function. This C routine takes a formatted string as a parameter,
and is declared in the SMACK header files, but not implemented in any models.
When llvm2bpl comes across a call to this function, instead of translating
the function call, it simply inserts the parameters into the Boogie code snippet
passed as string; this functionality is akin to C’s inline assembly. This allows for
Boogie code or ghost variables to be injected into the translation, giving an easy



6 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

Boogie
IVL

(Backend	
Verifiers)

clang

llvm2bpl
IR	Translation

SMACK	
Models

X	compiler

X	compiler LLVM
IR

LLVM
IR

llvm-linkLLVM
IR

LLVM
IR

X	source

X stdlib
models

Fig. 2. Toolflow for adding support for programming language X to SMACK.

way to encapsulate routines like assume which are not normally available in C.
It also provides an abstraction that can be used for any primitive or model.

4 Procedure for Adding a Language

In this section, we introduce our prescribed procedure for adding support for a
new programming language into an LLVM-based software verifier. The procedure
is based on our study of adding languages to SMACK, but the lessons we learned
generalize to other verifiers that have similar architecture. By showing how the
procedure of adding a new language to SMACK is relatively straightforward,
we also motivate the adoption of a SMACK-like verifier architecture. Note that
while our procedure is focused on LLVM, we expect that a similar process could
be adopted for any IR-based verifier. We structure our procedure into three
tasks: interoperating with language models, compiling into compiler intermediate
representation (IR), and adding models for missing language features.

4.1 Interoperating with Language Models

A software verifier has to encode the desired semantics of an input programming
language in order to perform verification. In the case of an LLVM-based software
verifier, that typically amounts to providing a memory model in addition to
models for LLVM IR statements generated by the chosen compiler. A memory
model encodes dynamic memory allocation, pointer dereferencing, and memory
accesses. Adding a new programming language necessitates for the verification
to be able to interoperate with the mentioned models.

The architecture of SMACK allows for a new programming language to eas-
ily interoperate with SMACK models, as Fig. 2 shows. First, SMACK’s mod-
els for LLVM IR instructions are general and internal to SMACK, and hence
they can be shared across all languages that are compiled into LLVM IR. Sec-
ond, SMACK’s memory model [42] is encoded as a regular C language header
and its accompanying implementation. This is achieved using the convenient
__SMACK_code mechanism described in the previous section, which allows for the
low-level model encoding to be done at the level of C. We must be able to link an
input program with this header in order to interoperate with the memory model.
According to our experience, most languages have interoperability with the C
language as a feature. Hence, linking against the SMACK’s memory model in a



Leveraging Compiler IR for Multi- and Cross-Language Verification 7

new programming language is an easy task. It is worth emphasizing that since
the code in the new language is linking with the C code of the memory model,
every verification in a new language is already a cross-language verification.

4.2 Compiling and Linking into Compiler IR

As opposed to verifiers that operate directly on program source, an IR-based
verifier needs for the input program to be first compiled into the chosen IR. In the
case of the LLVM compiler infrastructure, there are many popular programming
languages with front-ends that output LLVM IR. Hence, producing LLVM IR
for the programming language of choice is typically straightforward. Once the
input program is compiled into IR, it gets linked with the SMACK models, which
are written in either C (common ones) or the target language (language-specific
ones) and automatically compiled by SMACK. The resulting linked IR file is in
turn handed over to the SMACK verifier for processing (see Fig. 2). A verifier
needs a program entry point, such as function main in C, to know from where to
start the verification process. The LLVM IR specification does not prescribe a
well-defined entry point, and hence language developers are free to choose how
to define the entry point for a program in their language — most languages
define entry points other than main. Thus, we either implement a simple post-
processing step to mark the program’s entry point, or manually specify it in
SMACK’s command line, which is in turn passed to the SMACK verifier.

4.3 Adding Models for Missing Language Features

When adding a new language, we typically observe three categories of models
that might be missing in a verifier: unsupported LLVM IR instructions, runtime
features, and standard libraries.

LLVM IR is an extensive format comprised of more than one hundred instruc-
tions and intrinsics [36], many of which are not commonly used. Hence, when
adding a new language, its compiler can potentially generate IR instructions or
intrinsics that a verifier has not encountered before, and hence are potentially
not supported. This necessitates updating the verifier to account for the seman-
tics of such instructions. Our experience shows that in the case of a mature
LLVM-based verifier such as SMACK, we rarely encountered a new compiler
generating instructions/intrinsics that it did not already support.

Most languages require the use of a standard library to achieve almost any-
thing of practical value. SMACK provides extensive models for the C standard
library, such as pthreads, strings, and math. However, every programming lan-
guage comes with its own standard libraries that it relies on, with different
specifications. A language may rely heavily on its standard libraries, even if it
has little or no runtime. For example, unlike C, D, and Fortran, languages such
as Rust and Swift implement arrays as a compound type in the standard library.
Hence, models for the standard libraries of a new programming language have
to be written manually mostly from scratch. This is the most tedious and time



8 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

consuming aspect of adding support for a new language. To somewhat allevi-
ate the burden of developing models, SMACK architecture enables for a user to
write models for standard library functions as header files that are linked with
input programs. This is a convenient mechanism for writing such models since
it requires no updates to be made to the actual SMACK verifier source code.

Some languages are also heavily dependent on runtime functionality, such
as Objective-C, Swift, and Kotlin. For example, Objective-C relies heavily on
its runtime for method dispatch, memory management, and other basic features.
Code from the runtime is not included in the LLVM IR which is generated by the
compiler. Therefore, runtime functions must be modeled before any nontrivial
verification. Languages like C, Fortran, and D have very few runtime models,
and as a result these are much easier languages to verify out-of-the-box.

5 Case Studies

We perform three case studies to assess the feasibility and ease of adding sup-
port for an additional input programming language into an IR-based software
verification toolchain such as SMACK. Before we describe each case study in
detail, we provide our strategy for selecting input programming languages we
attempted to support.

5.1 Choice of Input Programming Languages

There are numerous programming languages in existence today, and clearly it
would be infeasible for us to handle all of them. Hence, for our case studies, we
used the following criteria for choosing which languages to add support for in
SMACK. First, we selected popular languages from the Stack Overflow Devel-
oper Survey [19] that can be compiled down into LLVM IR. Second, we performed
a thorough search for other languages that can be compiled into LLVM IR, and
are important in certain domains but less popular overall (i.e., domain specific).
Then, we prune this list based on our requirements on the front-end, which are
as follows:

1. Compile input programs into LLVM IR Ahead-of-Time
2. Target the same version of LLVM as SMACK
3. Be stable and under active development

Table 1 lists the languages we considered and their relevant properties.
As SMACK directly translates an entire program from LLVM to Boogie, it

requires all related definitions to be available at translation time. A Just-in-Time
compiler does not have a whole program readily available in the LLVM IR format
for SMACK to process. Therefore, Ahead-of-Time compilers are the only ones
that can currently be used with SMACK. LLVM does not preserve backwards
compatibility of the LLVM IR format. Hence, the LLVM version supported by
SMACK and the chosen language front-end have to match. The used version
of SMACK supports LLVM 3.9, and hence our requirement is for a language



Leveraging Compiler IR for Multi- and Cross-Language Verification 9

Table 1. List of programming languages we considered and their properties. Column
Ahead-of-Time shows whether an Ahead-of-Time compiler is available for the lan-
guage; column LLVM 3.9 indicates whether the needed LLVM version is supported;
column Active indicates whether the compiler is under active development, while
column Stable indicates if there is a stable release; finally, column Used it? shows
whether we used the language in our evaluation.

Language Compiler Ahead-of-Time LLVM 3.9 Active Stable Used it?

C clang 3 3 3 3 3

C++ clang 3 3 3 3 3

Fortran [24] flang 3 3 3 3 3

D [16] ldc 3 3 3 3 3

Rust [45] rustc 3 3 3 3 3

Objective-C clang 3 3 3 3 3

Swift [49] swiftc 3 3 3 3 3

Kotlin [32] kotlinc 3 3 3 3 3

Scala [46] scala-native 3 3 3 3 7

C# [52] llilc 3 ? 3 3 7

Haskell [29] ghc 3 3 3 3 7

Julia [31] julia 7 3 3 7 7

Go [25] llgo 3 3 7 7 7

Python [40] pyston 3 ? 7 7 7

Ruby [43] ruby-llvm 3 7 7 7 7

Java [22] falcon (Azul) 7 7 3 7 7

front-end to support the same LLVM version. We sometimes had to revert to an
older front-end version to satisfy this requirement. For example, Swift 4.2 does
not target the required LLVM 3.9, but Swift 3.0 does. Of course, as SMACK
gets updated to newer LLVM versions, this requirement will change as well. In
order to limit our focus to compilers of practical value, we ignore the ones that
are not stable and under active development.

Of the LLVM-IR-based languages in the developer survey, there are 4 that
satisfy our criteria: C, C++, Objective-C, and Swift. Kotlin, Scala [46], and
C# [52]) have compilers that are not yet fully mature, but are stable and under
active development. We chose Kotlin as the representative of this “managed
language into LLVM IR” category. In addition to the popular languages listed
on Stack Overflow, there are other notable, stable languages that target LLVM.
Most of these are tailored for domain-specific coding. The Rust programming
language [45] is a performant systems language with an emphasis on safety and
concurrency. The D programming language [16] is a mature language which offers
low-level control combined with high-level abstractions. Both Rust and D target
the systems programming community. Fortran is primarily used in the scientific



10 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

int cap(int x) {
int y = x;
if (10 < x) { y = 10; }
return y;

}

int main(void) {
assert(cap(2) == 2);

assert(cap(15) == 10);

int x = nondet_int();
assert(cap(x) <= 10);

}

func cap(_ x: Int) -> Int {
var y = x
if 10 < x {
y = 10

}

return y
}

assert(cap(2) == 2)

assert(cap(15) == 10)

let x = Int(nondet_int())
assert(cap(x) <= 10)

fn cap(x: usize) -> usize {
let mut y = x;
if 10 < x {
y = 10;

}

return y;
}

fn main() {
let two = cap(2);
let ten = cap(15);
assert!(two == 2);

assert!(ten == 10);

let x = nondet_int();
assert!(x <= 10);

}

pure function cap(x)
integer, intent(in) :: x
integer :: cap, y
y = x

if (10 < y) then
y = 10

end if
cap = y

end function

program main
integer :: cap, x
call assert(cap(2) == 2)
call assert(cap(15) == 10)
x = nondet_int()

call assert(cap(x) <= 10)
end program main

Fig. 3. Microbenchmark with program versions in C, Swift, Rust, and Fortran.

programming community, since it provides support for parallel processing and
compatibility with legacy code for projects that span multiple decades. The only
language we do not use which satisfies our criteria is Haskell. Its LLVM back-end
is not compatible with SMACK, mainly because the entry point for the code is
not included in a standalone bitcode file.

5.2 Case Study 1: Microbenchmarks

We developed a microbenchmark suite to evaluate the quality of the support for
different languages we implemented in SMACK. We crafted each benchmark to
exercise across all languages (8 languages total, see Table 1) a specific language
feature we deem important, meaning that a benchmark consists of a number of
programs, each implementing the chosen feature in a different language. In addi-
tion, we injected a property to be verified into each benchmark using assertions.



Leveraging Compiler IR for Multi- and Cross-Language Verification 11

Table 2. Characteristics of our microbenchmark suite. Column LOC is the average
number of lines of code per benchmark across supporting languages; column #Lang
is the number of languages supporting the features tested.

Benchmark Features Tested LOC #Lang

basic basic assertions 8 8

compute integer arithmetic 12 8

function functions, if-then-else, nondet values 19 8

forloop for loops 14 8

fib recursion 20 8

compound objects and structures, fields 18 8

array array creation, array access 10 8

pointer dynamic memory allocation, references 14 6

inout updates via side effects 17 7

method single type dispatch 26 6

dynamic polymorphic dispatch 29 6

Hence, there are several (at least two) program versions per each benchmark-
language pair: a passing version (i.e., no failing assertions) and a failing version
(i.e., a failing assertion) for each assertion. Figure 3 shows several variations
of one of our microbenchmarks. Table 2 gives basic characteristics of our mi-
crobenchmark suite.1

We designed the microbenchmarks to be as small as possible, and yet still test
a particular language feature. Hence, a failing benchmark is a good indicator of
which feature is not properly supported by a verifier. While our microbenchmarks
are not based on real-world programs, since they focus on common and widely-
used language features, being able to handle them is a prerequisite to verifying
real-world code. One can think of our microbenchmarks as being litmus tests for
various key language features.

Not all benchmarks have a program version for every language since not
all language features are supported across the board. For example, languages
without support for object-oriented programming (e.g., C, Fortran) do not have
versions of the corresponding benchmark (i.e., method). Then, Swift and Kotlin
do not have syntactic support for pointers, and so we could not implement ver-
sions of the pointer benchmark for these languages. We also sometimes had to
implement benchmark versions differently across languages. For example, we
implemented the dynamic dispatch benchmark in Rust using traits instead of
inheritance. As another example, we implemented the inout benchmark in Swift
and Fortran using a specific mutable-parameter syntax, while in most other lan-
guages we replicate this feature using pointers. We did not implement this bench-

1 We made our microbenchmark suite publicly available at https://github.com/
soarlab/gandalv.

https://github.com/soarlab/gandalv
https://github.com/soarlab/gandalv


12 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

Table 3. Results of running SMACK on our microbenchmarks. Symbol 3 marks pass-
ing, symbol 7 failing, and N/A marks benchmarks that do not have a version for the
corresponding language.

Benchmark C C++ Objective-C Rust Fortran D Swift Kotlin

basic 3 3 3 3 3 3 3 3

compute 3 3 3 3 3 3 3 3

function 3 3 3 3 3 3 3 3

forloop 3 3 3 3 3 3 7 3

fib 3 3 3 3 3 3 3 3

compound 3 3 7 3 3 3 3 7

array 3 3 7 3 3 3 7 7

pointer 3 3 3 3 3 3 N/A N/A

inout 3 3 3 3 3 3 3 N/A

method N/A 3 7 3 N/A 3 7 3

dynamic N/A 7 7 3 N/A 7 7 7

mark in Kotlin since it has no support for pointers, nor for mutable-parameter
syntax.

Table 3 summarizes the results of running SMACK with our extensions on
the microbenchmarks. Overall, SMACK successfully discharges all available pro-
gram versions of benchmarks in C, Fortran, and Rust. For C++ and D, the main
missing language feature that we still have to add support for is dynamic dis-
patch. Swift, Objective-C, and Kotlin need more work before SMACK could
support language features beyond just the very basic ones. The primary cause
for the failing benchmarks is SMACK lacking models of standard libraries and
runtime.

Swift, Objective-C, Kotlin, and Rust are all very library- and runtime-depen-
dent. Hence, there are many basic language features that SMACK does not
capture precisely (i.e., that are not modeled in SMACK), which causes even
some small benchmarks to fail. As we note in Sec. 6.2, developing such models
for a verifier is typically a tedious manual process, and is an exercise we could
not perform for all languages in the limited amount of time we had for our case
study. However, the version of SMACK we used already contained models of
several popular Rust standard library functions. Hence, in our experiments, the
other three languages have more failing benchmarks than Rust, which are caused
by the following unmodeled functionality:

Swift range structures (forloop), array subscripts (array), dispatching functions
via function pointers (method)

Obj-C objc-msg-send for dispatching methods via function pointers (compound,
method), NSArray class (array)

Kotlin dynamic object instantiation (compound, array)



Leveraging Compiler IR for Multi- and Cross-Language Verification 13

Table 4. Time commitment summary for adding a new language.

Procedure Step Person-Hours

Write code to interoperate with SMACK models 8

Compile and link at the LLVM IR level, test 3

Add and model missing functionality 4

Total: 15

5.3 Case Study 2: Adding a Language

In order to get a rough estimate of the time commitment required to add support
for a new language to an IR-based verifier, we conducted an informal timed exer-
cise where an undergraduate student working on this project (Jack J. Garzella,
one of the coauthors) added support for one additional language, the D pro-
gramming language, to SMACK. During the exercise, the student followed the
steps we prescribe in our procedure from Sec. 4, and we measured elapsed time
(in hours) it took him to accomplish each of the steps. Table 4 summarizes our
measurements.

The student had no experience with D beyond implementing the microbench-
marks; he was also not familiar with the SMACK internals, which ended up not
being important for this exercise since no changes to SMACK were needed. How-
ever, as D was the sixth programming language the student added, he had ample
experience adding support for new languages, which contributed to this exercise
proceeding smoothly. Furthermore, D was an easy language to add since the
LLVM IR it generates is close to the one generated by the C clang compiler, and
hence heavily tested with SMACK. In addition, basic code in D does not heavily
depend on its standard library and runtime. Hence, the student spent very little
time modeling missing functions for D. For languages with extensive usage of
standard libraries and runtime (e.g., Swift, Kotlin), we expect that modeling the
runtime and standard library functionality to dominate the total time.

5.4 Case Study 3: Cross-Language Verification

One of the major advantages to the IR-based approach to verification is the
ease of cross-language verification. In fact, with the approach that SMACK
takes, every verification (of a non-C language) is a cross-language verification,
as SMACK’s models that have to be linked against the input program are writ-
ten in C. With this in mind, non-trivial cross-language verification efforts are
typically as simple as any regular single-language verification. As a proof of this
concept, we took a simple algorithm, namely a classic triangle classifier, and im-
plemented it in C, Rust, and Fortran. Our triangle classifier takes 3 integers as
input, which represent the sides of a triangle, and it determines and returns the
type of the triangle defined by the input sides. We wrote a harness program that
invokes triangle classifiers from each language in turn, feeds equal nondetermin-
istic inputs to all of them, and asserts that they return the same result. Hence,



14 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

Table 5. Equivalence checking of half-precision floating-point implementations in C
and Rust. Column Equal? shows whether the two implementations are equivalent;
column Time gives the verification runtime in seconds; column LOC gives the number
of lines of code in the checked Rust function.

Function Equal? Time(s) LOC

eq 3 13 8

lt 3 22 13

le 3 18 13

gt 3 17 13

ge 3 18 13

to f32 3 8 41

to f64 3 8 41

from f32 7 5 68

from f64 7 4 70

is nan 3 4 3

we performed cross-language verification to verify the equivalence of our imple-
mentations in all three languages. SMACK was able to verify the equivalence
(i.e., the harness program) in around 19 seconds. We expect such cross-language
equivalence checking to be a valuable tool for developers when rewriting legacy
applications in, for example Fortran or C, into more modern languages, such as
C++ or Rust.

We further push our cross-language verification case study to a real-world
Rust application — the half crate [44] that implements the half-precision floating-
point type f16. We chose the half crate because its implementation is compact
in terms of code size (functions range from only a few to around 70 LOC, see
Table 5), but difficult to reason about because it frequently performs low-level
bit manipulations. Furthermore, the equivalence of functions implementing the
half-precision floating-point type can be easily expressed. This makes the half
crate a suitable target for our cross-language verification case study.

For the purpose of this case study, we developed a simple C reference imple-
mentation of the half-precision floating-point type that leverages the available
__f16 type. Then, we verify that several important representative methods of the
half crate, such as lt, gt, and to_f32, are equivalent to the respective C imple-
mentations. We leverage the Rust’s Foreign Function Interface to write harness
programs that assert the equivalence between Rust and C functions. (Note that
if such a mechanism for interoperating between languages does not exist, we
could implement the equivalence check at the LLVM IR level; however, working
directly with the low-level LLVM IR would be more tedious.) Thanks to Rust’s
high interoperability with C, we are able to trivially express equivalence using
the equality operator. For example, relational operators in C evaluate to 1 if the
relation is true and otherwise they evaluate to 0. In Rust, casting a value of type



Leveraging Compiler IR for Multi- and Cross-Language Verification 15

bool into an integer has the same behavior. Therefore, comparing a predicate
function such as eq in C and Rust reduces to checking if the return value of the
C version is equal to the return value of the Rust version cast to type u8.

Table 5 summarizes the results of this case study. SMACK is able to verify
that most of the chosen functions of the f16 type are equivalent to their reference
C implementations. The only exceptions are functions from f32 and from f64,
for which SMACK discovered inconsistencies between the two implementations:
conversions from larger bit-width floating-point types to f16 are rounded differ-
ently. We reported this issue to the half crate developers, and they confirmed
and fixed it. The verification runtimes range between 4–22 seconds on a 3.5GHz
Intel 3770k machine.

6 Experience

In this section, we describe our experience of applying the procedure introduced
in Section 4 to add support for new languages into SMACK as well as perform
cross-language verification. First, we discuss why our approach and procedure
allow us to trivially support many language constructs of the added programming
languages (Section 6.1). Second, we describe key challenges that we encountered
in the process of adding support for new languages and propose solutions for
them (Section 6.2). Third, we present our experience with leveraging the cross-
language verification capability to perform equivalence checking (Section 6.3).

6.1 Trivially Supported Features

SMACK is a mature C verifier that has been successfully applied on numerous C
programs, including large-scale real-world C projects such as OpenSSH, SQLite,
and Linux device drivers. Hence, SMACK already fully supports an extensive
subset of LLVM IR that gets generated by the clang C compiler. For example, the
key language constructs of LLVM IR such as functions, control flow, arithmetic,
and derived types are completely modeled. As a result, SMACK readily supports
new languages of which compilers emit LLVM IR code that is akin to what
clang generates. We find that these languages are typically also procedural C-
like languages, such as Fortran and D.

As it turns out, to our surprise, SMACK was often able to out-of-the-box
support even language features that are not found in C. For example, without
any modifications SMACK could handle the vectorized addition of arrays in
Fortran, which we show in Figure 4. After inspecting the IR code generated by
the Fortran compiler, we observe that the vectorized addition operation compiles
into an element-wise array addition, which is a common IR operation and hence
was already supported by SMACK.

Having an extensive subset of LLVM IR supported also saved us from mod-
eling a lot of key program constructs in non-C-like languages such as Rust and
Swift. For example, even though function calls and control flow constructs are
different from those found in C (e.g., closures and match expressions), they are



16 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

program main
use smack
implicit none
integer, dimension(2) :: A = (/ 2, 3 /)
integer, dimension(2) :: B = (/ 3, 4 /)
integer, dimension(2) :: S
S = A + B

call assert(S(1) == 5)
call assert(S(2) == 7)

end program main

Fig. 4. Fortran program that utilizes vectorized addition.

compiled to the subset of LLVM IR that was already understood by SMACK.
Therefore, our approach enables us to evade cumbersome modeling of advanced
language features such as closures. In this regard, our experience demonstrates
the advantages of our IR-based approach for multi-language verification.

6.2 Adding New Languages: Challenges and Solutions

As expected, supporting even a small subset of a new language in a verifier is
often challenging. For example, a major challenge is the need to model previously
unsupported LLVM IR constructs. Our experience shows that the compilers of
non-C-like languages, such as Rust and Swift, indeed produce LLVM IR that
was not supported by SMACK. Moreover, another important challenge is that
we have to model a language runtime and its standard libraries to enable for
practically usable verification. In the rest of this section, we describe in detail
these challenges as well as our efforts to solve them.

Unsupported LLVM Constructs SMACK is a mature verifier that has been
thoroughly tested on C programs, including thousands of SVCOMP benchmarks
as well as large real-world applications such as OpenSSH. Despite SMACK’s
maturity, we found that compilers for the emerging languages, such as Rust and
Swift, readily generate LLVM IR constructs we do not observe in LLVM IR
generated from C code by clang. Hence, we had to extend SMACK with support
for such constructs, and we describe some of these next.

Both the Rust and Swift compilers heavily rely on the use of LLVM structure
types, often emitting different instructions involving structures than what clang
would generate. We solved this problem by modeling LLVM IR structure types
using uninterpreted functions that recursively constrain each field. For example,
we represent value {v,1} of structure type {T,i1} using an integer s with con-
straint f(s,0)==v && f(s,1)==1, where f is an uninterpreted function with the
second argument being the index of a structure field. This encoding allows us to
model two basic LLVM IR structure instructions extractvalue and insertvalue



Leveraging Compiler IR for Multi- and Cross-Language Verification 17

that read and write structure fields, respectively. Loads and stores of structures
into memory are recursively translated into a sequence of instructions that gen-
erate load/store for each field of primitive type, in conjunction with the two
aforementioned instructions.

Another previously unsupported but frequently used LLVM IR construct
is intrinsics. For example, both the Rust and Swift compilers default to using
LLVM IR’s overflow arithmetic intrinsics, such as llvm.add.with.overflow.i32.
The leading_zeros methods of unsigned integer types in Rust are compiled to
llvm.ctlz.* intrinsics. Such intrinsics can be easily modeled. For example, we
model these intrinsics in SMACK by first performing the requested operation
in the double-bit-width precision, to avoid potential overflows. Then, we inspect
the result to detect if it overflowed, in which case we either report an overflow
error or we block the overflowing path.

In addition to supporting more LLVM IR instructions, we also extended
SMACK to support instruction sequences that are not regularly generated by
clang. For example, the Rust compiler performs a packing optimization where
structures with a size less than 8 bytes are packed into 8 byte integers (e.g., a
load of a structure of type {i32,i32} gets encoded as a load of i64). This breaks
the completeness of SMACK’s memory model [42], which is not precise enough
to capture such low-level operations, thereby leading to false alarms. We added
an analysis pass to SMACK that detects load/store instruction patterns with
pointer operands of integer element type that refer to structures. We translate
such patterns to load from or store into structure fields (following the encoding
described earlier), thereby avoiding packing.

Although we had to model these additional constructs, our approach still
demonstrates the advantages discussed in Section 6.1: modeling one LLVM IR
construct benefits the support of multiple languages, and this process becomes
progressively easier as adding a new language benefits from previous modeling
efforts.

Languages with Large Runtimes Getting a verifier to translate LLVM IR
generated from a language with a large runtime is not any more difficult than
for languages with smaller runtimes. However, performing a nontrivial verifica-
tion task for such a language is much harder, because even rudimentary language
features are sometimes under the hood implemented using complex runtime con-
structs and standard libraries. Moreover, the source code implementing such fea-
tures is not readily accessible to the verifier as IR code linked with the program
source. We found this to be the most challenging problem when adding a new
language to a verifier. Note that this problem persists even if the verification is
done directly on program source (as opposed to IR) since the source code of the
underlying runtime is typically not available, written in a different programming
language, or too large to be efficiently handled by a verifier.

As an example of such a language feature, consider the for-in loop over an
iterable structure. All of the languages with substantial runtime we considered
provide such a feature. In fact, in Swift, Kotlin, and Rust, the C-style for loop is



18 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

not even supported, and range structures are used to emulate the same behavior.
Consider this simple example in Swift: for i in 0..<10 {x += 5}. The compiler
translates the code 0..<10 using a Range<Int> structure/class, whose member
methods are then called in the compiled loop code. The code of such member
methods is not readily available to the verifier, but is a part of the runtime. On
the other hand, both Kotlin and Rust compile such loops into basic LLVM IR
instructions that do not contain method calls into runtime, despite the high-
level concept of a range being similar to Swift. Many features of large-runtime
languages are implemented like this, and they vary wildly between languages.
Examples of other basic language features the heavily depend on runtime in-
clude method dispatch (Swift, Objective-C), arrays (Swift, Objective-C, Rust,
Kotlin), and object instantiation (Kotlin). As a more extreme example, even
basic arithmetic in Kotlin is abstracted into invoking methods belonging to its
runtime, instead of generating the appropriate LLVM IR instructions directly.
We relied on two solutions to overcome such problems, with different trade-offs,
as we describe next.

We compile and link an existing implementation of the runtime/standard
library with the input program. For example, to support basic integer opera-
tions in Kotlin, we used the existing implementation of these operations from
the Kotlin runtime and linked it with the input program. The main advantage
of this approach is that it requires no manual effort. It also avoids the user po-
tentially introducing errors while modeling the runtime. The main drawback is
that the standard libraries and runtime are generally very large, and this may
cause verification to blow up even on small input programs. For example, the
implementation of the array structure in Swift is thousands of lines of code. Such
code is also heavily optimized, and often relies on low-level bit vector operations
and compiler builtins, which further complicate its verification.

Table 6. Sizes of models we developed
for each language. Column Model
LOC gives the size of each model in
terms of lines of code.

Language Model LOC

C 2566

C++ 13

Fortran 38

D 0

Rust 480

Objective-C 0

Swift 2

Kotlin 17

We model the standard libraries and
runtime by writing stubs for the relevant
methods. Table 6 gives the sizes of the
models we developed for each language
we support. SMACK already came with
extensive models for the C standard li-
brary and a part of the Rust standard li-
brary, which is why these two models are
by far the largest. The main advantage of
this approach is that the manually writ-
ten models make the verification much
more tractable, and hence most verifiers,
no matter whether they are IR-based or
not, require it to achieve scalable verifica-
tion. The main drawback is that writing
them is a tedious manual effort that re-
quires detailed understanding of the lan-
guage specifications. Hence, we did not do



Leveraging Compiler IR for Multi- and Cross-Language Verification 19

that for other languages. In principle, the standard libraries and runtime of
Kotlin, Objective-C, and Swift could each be modeled in a similar way to Rust.
Note that this solution is contradictory to the general principle of our approach
since it requires per-language modeling.

6.3 Cross-Language Verification

Although our experience with cross-language verification is limited to equiva-
lence checking of programs written in different languages, it captures an impor-
tant pattern in cross-language development: a program written in one language
uses external libraries written in another language. Furthermore, equivalence
checking is a useful application of cross-language verification, giving confidence
to developers that a new, native implementation of a library retains the behav-
iors of the previous non-native implementation. This is especially true when large
rewriting efforts are under way, such as replacing legacy libraries implemented
using Fortran with C/C++ implementations in the context of high-performance
computing, or libraries implemented using C with their Rust counterparts.

We find that once the languages involved in the cross-language verification
process are well-supported and there are available mechanisms for these lan-
guages to interoperate, cross-language verification is feasible, highly automated,
and comes almost for free. This is expected since our approach casts the prob-
lem of cross-language verification into the problem of verifying a single language,
namely LLVM IR. Therefore, the main impediments we encountered while veri-
fying cross-language programs were related to SMACK’s incomplete support for
LLVM IR, similarly to our efforts to add support for new languages. For exam-
ple, while performing the case study, the only issue we encountered was that
SMACK did not model the LLVM count-leading-zeros intrinsics. We quickly
added support for this instruction and were able to complete the verification
process smoothly.

7 Conclusions

In this paper, we proposed a procedure for extending an IR-based verifier with
multi- and cross-language verification capabilities. By relying on the proposed
procedure, we extended the LLVM-IR-based SMACK software verification tool-
chain with basic prototypical support for 6 additional languages. We performed
several case studies to assess the quality of our extensions and the feasibility of
leveraging the IR-based verifier architecture in the context of multi- and cross-
language verification. Our evaluation is encouraging and indicates that the IR-
based architecture indeed lowers the bar for adding support for a new language
into an existing verifier — languages with small runtimes could be reliably added
with only a modest effort. It also allows for straightforward cross-language verifi-
cation. As we anticipated, supporting languages with large runtimes that heavily
rely on standard libraries is possible, but mature support would require a large
manual effort to model the runtime and libraries.



20 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

References

1. Albarghouthi, A., Li, Y., Gurfinkel, A., Chechik, M.: UFO: A framework
for abstraction- and interpolation-based software verification. In: Interna-
tional Conference on Computer Aided Verification (CAV). pp. 672–678 (2012).
https://doi.org/10.1007/978-3-642-31424-7 48

2. Arlt, S., Rubio-González, C., Rümmer, P., Schäf, M., Shankar, N.: The grad-
ual verifier. In: NASA Formal Methods Symposium (NFM). pp. 313–327 (2014).
https://doi.org/10.1007/978-3-319-06200-6 27

3. Arlt, S., Rümmer, P., Schäf, M.: Joogie: From Java through Jimple to Boogie. In:
ACM SIGPLAN International Workshop on State Of the Art in Java Program
Analysis (SOAP). pp. 3–8 (2013). https://doi.org/10.1145/2487568.2487570

4. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging Rust types for
modular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA),
147:1–147:30 (2019). https://doi.org/10.1145/3360573

5. Babić, D., Hu, A.J.: Calysto: Scalable and precise extended static checking. In:
International Conference on Software Engineering (ICSE). pp. 211–220 (2008).
https://doi.org/10.1145/1368088.1368118

6. Baranová, Z., Barnat, J., Kejstová, K., Kucera, T., Lauko, H., Mrázek, J., Rockai,
P., Still, V.: Model checking of C and C++ with DIVINE 4. In: International
Symposium on Automated Technology for Verification and Analysis (ATVA). pp.
201–207 (2017). https://doi.org/10.1007/978-3-319-68167-2 14

7. Beyer, D., Keremoglu, M.E.: CPAchecker: A tool for configurable software verifi-
cation. In: International Conference on Computer Aided Verification (CAV). pp.
184–190 (2011). https://doi.org/10.1007/978-3-642-22110-1 16

8. Cadar, C., Dunbar, D., Engler, D.: KLEE: Unassisted and automatic generation
of high-coverage tests for complex systems programs. In: USENIX Conference on
Operating Systems Design and Implementation (OSDI). pp. 209–224 (2008)

9. Carter, M., He, S., Whitaker, J., Rakamarić, Z., Emmi, M.: SMACK software ver-
ification toolchain. In: International Conference on Software Engineering (ICSE).
pp. 589–592 (2016). https://doi.org/10.1145/2889160.2889163

10. Chatterjee, S., Lahiri, S.K., Qadeer, S., Rakamarić, Z.: A reachability predicate
for analyzing low-level software. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). pp. 19–33 (2007).
https://doi.org/10.1007/978-3-540-71209-1 4

11. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based pred-
icate abstraction for ANSI-C. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS). pp. 570–574 (2005).
https://doi.org/10.1007/978-3-540-31980-1 40

12. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). pp. 168–176 (2004). https://doi.org/10.1007/978-
3-540-24730-2 15

13. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A practical system for verifying concurrent C. In:
International Conference on Theorem Proving in Higher Order Logics (TPHOLs).
pp. 23–42 (2009). https://doi.org/10.1007/978-3-642-03359-9 2

14. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-based bounded model
checking for embedded ANSI-C software. In: IEEE/ACM International Con-
ference on Automated Software Engineering (ASE). pp. 137–148 (2009).
https://doi.org/10.1109/TSE.2011.59

https://doi.org/10.1007/978-3-642-31424-7_48
https://doi.org/10.1007/978-3-319-06200-6_27
https://doi.org/10.1145/2487568.2487570
https://doi.org/10.1145/3360573
https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1145/2889160.2889163
https://doi.org/10.1007/978-3-540-71209-1_4
https://doi.org/10.1007/978-3-540-31980-1_40
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1109/TSE.2011.59


Leveraging Compiler IR for Multi- and Cross-Language Verification 21

15. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C: A software analysis perspective. In: International Conference
on Software Engineering and Formal Methods (SEFM). pp. 233–247 (2012).
https://doi.org/10.1007/s00165-014-0326-7

16. The D programming language. https://dlang.org/
17. de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: International Con-

ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS). pp. 337–340 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

18. DeLine, R., Leino, K.R.M.: BoogiePL: A typed procedural language for check-
ing object-oriented programs. Tech. Rep. MSR-TR-2005-70, Microsoft Research
(2005). https://doi.org/10.1.1.212.7449

19. Stack overflow developer survey. https://insights.stackoverflow.com/survey/
2018 (2018)

20. Dockins, R., Foltzer, A., Hendrix, J., Huffman, B., McNamee, D., Tomb, A.: Con-
structing semantic models of programs with the software analysis workbench.
In: Working Conference on Verified Software: Theories, Tools, and Experiments
(VSTTE). pp. 56–72 (2016). https://doi.org/10.1007/978-3-319-48869-1 5

21. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking
manipulation of dynamic data structures using separation logic. In: Interna-
tional Conference on Computer Aided Verification (CAV). pp. 372–378 (2011).
https://doi.org/10.1007/978-3-642-22110-1 29

22. Azul Falcon. https://www.azul.com/called-new-jit-compiler-falcon/
23. Filliâtre, J.C., Marché, C.: Multi-prover verification of C programs. In: Interna-

tional Conference on Formal Engineering Methods (ICFEM). pp. 15–29 (2004).
https://doi.org/10.1007/978-3-540-30482-1 10

24. The Flang Fortran compiler. https://github.com/flang-compiler/flang
25. The Go programming language. https://golang.org/
26. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn verification

framework. In: International Conference on Computer Aided Verification (CAV).
pp. 343–361 (2015). https://doi.org/10.1007/978-3-319-21690-4 20

27. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: International Conference on Computer
Aided Verification (CAV). pp. 424–440 (2011). https://doi.org/10.1007/978-3-642-
22110-1 34

28. Hahn, F.: Rust2Viper: Building a Static Verifier for Rust. Master’s thesis, ETH
(2016)

29. The Haskell programming language. https://www.haskell.org/
30. Heizmann, M., Christ, J., Dietsch, D., Ermis, E., Hoenicke, J., Lindenmann, M.,

Nutz, A., Schilling, C., Podelski, A.: Ultimate Automizer with SMTInterpol. In:
International Conference on Tools and Algorithms for the Construction and Anal-
ysis of Systems (TACAS). pp. 641–643 (2013). https://doi.org/10.1007/978-3-642-
36742-7 53

31. Jeff Bezanson, Alan Edelman, S.K., Shah, V.B.: Julia: A fresh ap-
proach to numerical computing. SIAM Review 59, 65–98 (2017).
https://doi.org/10.1137/141000671

32. Kotlin/Native for native. https://kotlinlang.org/docs/reference/

native-overview.html

33. Lal, A., Qadeer, S., Lahiri, S.K.: A solver for reachability modulo theories. In: Inter-
national Conference on Computer Aided Verification (CAV). pp. 427–443 (2012).
https://doi.org/10.1007/978-3-642-31424-7 32

https://doi.org/10.1007/s00165-014-0326-7
https://dlang.org/
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1.1.212.7449
https://insights.stackoverflow.com/survey/2018
https://insights.stackoverflow.com/survey/2018
https://doi.org/10.1007/978-3-319-48869-1_5
https://doi.org/10.1007/978-3-642-22110-1_29
https://www.azul.com/called-new-jit-compiler-falcon/
https://doi.org/10.1007/978-3-540-30482-1_10
https://github.com/flang-compiler/flang
https://golang.org/
https://doi.org/10.1007/978-3-319-21690-4_20
https://doi.org/10.1007/978-3-642-22110-1_34
https://doi.org/10.1007/978-3-642-22110-1_34
https://www.haskell.org/
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1007/978-3-642-36742-7_53
https://doi.org/10.1137/141000671
https://kotlinlang.org/docs/reference/native-overview.html
https://kotlinlang.org/docs/reference/native-overview.html
https://doi.org/10.1007/978-3-642-31424-7_32


22 J. J. Garzella, M. Baranowski, S. He, Z. Rakamarić

34. Lattner, C., Adve, V.: LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In: International Symposium on Code Generation and Op-
timization (CGO). pp. 75–86 (2004)

35. The LLVM compiler infrastructure. http://llvm.org
36. LLVM language reference manual. https://llvm.org/docs/LangRef.html
37. Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and

C++ programs using a compiler IR. In: International Conference on Ver-
ified Software: Theories, Tools, Experiments (VSTTE). pp. 146–161 (2012).
https://doi.org/10.1007/978-3-642-27705-4 12

38. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: A verification infrastruc-
ture for permission-based reasoning. In: International Conference on Verifica-
tion, Model Checking, and Abstract Interpretation (VMCAI). pp. 41–62 (2016).
https://doi.org/10.1007/978-3-662-49122-5 2

39. Pǎsǎreanu, C.S., Mehlitz, P.C., Bushnell, D.H., Gundy-Burlet, K., Lowry,
M., Person, S., Pape, M.: Combining unit-level symbolic execution and
system-level concrete execution for testing NASA software. In: International
Symposium on Software Testing and Analysis (ISSTA). pp. 15–26 (2008).
https://doi.org/10.1145/1390630.1390635

40. Pyston. https://blog.pyston.org/about/
41. Rakamarić, Z., Emmi, M.: SMACK: Decoupling source language details from veri-

fier implementations. In: International Conference on Computer Aided Verification
(CAV). pp. 106–113 (2014). https://doi.org/10.1007/978-3-319-08867-9 7

42. Rakamarić, Z., Hu, A.J.: A scalable memory model for low-level code. In: Inter-
national Conference on Verification, Model Checking and Abstract Interpretation
(VMCAI). pp. 290–304 (2009). https://doi.org/10.1007/978-3-540-93900-9 24

43. Ruby-LLVM. https://github.com/ruby-llvm/ruby-llvm
44. half: f16 type for Rust. https://github.com/starkat99/half-rs
45. The Rust programming language. https://www.rust-lang.org
46. Scala Native. http://www.scala-native.org/en/v0.3.8/
47. Siegel, S.F., Zheng, M., Luo, Z., Zirkel, T.K., Marianiello, A.V., Eden-

hofner, J.G., Dwyer, M.B., Rogers, M.S.: CIVL: The concurrency intermedi-
ate verification language. In: International Conference for High Performance
Computing, Networking, Storage and Analysis (SC). pp. 61:1–61:12 (2015).
https://doi.org/10.1145/2807591.2807635

48. SMACK software verifier and verification toolchain. http://smackers.github.io
49. The Swift programming language. https://swift.org/
50. Toman, J., Pernsteiner, S., Torlak, E.: CRUST: A bounded verifier for Rust. In:

IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 75–80 (2015). https://doi.org/10.1109/ASE.2015.77

51. Wang, W., Barrett, C., Wies, T.: Cascade 2.0. In: International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCAI). pp. 142–160
(2014). https://doi.org/10.1007/978-3-642-54013-4 9

52. Woodward, M.: Announcing LLILC — a new LLVM-based com-
piler for .NET. https://www.dotnetfoundation.org/blog/2015/04/14/

announcing-llilc-llvm-for-dotnet (2015)

http://llvm.org
https://llvm.org/docs/LangRef.html
https://doi.org/10.1007/978-3-642-27705-4_12
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/1390630.1390635
https://blog.pyston.org/about/
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-540-93900-9_24
https://github.com/ruby-llvm/ruby-llvm
https://github.com/starkat99/half-rs
https://www.rust-lang.org
http://www.scala-native.org/en/v0.3.8/
https://doi.org/10.1145/2807591.2807635
http://smackers.github.io
https://swift.org/
https://doi.org/10.1109/ASE.2015.77
https://doi.org/10.1007/978-3-642-54013-4_9
https://www.dotnetfoundation.org/blog/2015/04/14/announcing-llilc-llvm-for-dotnet
https://www.dotnetfoundation.org/blog/2015/04/14/announcing-llilc-llvm-for-dotnet

	Leveraging Compiler Intermediate Representation for Multi- and Cross-Language Verification

